Closure homomorphisms and interior mappings
by
R. Sikorski (Warszawa)

This Apa:per is a continuation of my paper Closure Algebras?) cited
hereafter as CA.

A closure algebra A is a Boolean c-algebra with a closure operation
satisfying the well known axioms of Kuratowski:
ACd,
0=0.

1. A+B=44B, I1.
IIIL. IV.
Every closure algebra is thus an “abstract algebra”?) with the fol-
lowing fundamental operations: .
(a) Boolean enumerable addition S Ay,
(b) Boolean complementation A',n=1
(e) closure operation A.

By a closure homomorphism we shall understand a homomorphism
(in the sense of the Modern Algebra)3) with respect to the fundamental
operations (a), (b), (¢), .e. a transformation & (of a closure algebra A
into another closure algebra B) preserving all the operations (a), (b), (c):

(a) "‘,,‘EA")=£"<A"”
(b)) h(4')=h(4);
(¢') h(A)=h(4).

The conditions (a’) and (b’) mean that & is a Boolean ¢-homomor-
phism. Thus a closure homomorphism is a Boolean o-homomorphism
satisfying the condition (c’).

i !) See [9]. Terminology and notation in this paper are the same as in CA. In par-
ticular, the letters 4, B denote closure algebras. (or Boolean algebras), the letters
A,B,... — their elements.

%) See [12], p. 212.
%) Cf. [3] and [12], p. 212.
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A closure isomorphism i3 a one-to-one closure homomorphism, . e.
a Boolean o-isomorphism % satisfying the eondition (¢’).

Closure isomorphisms have been examined in CA under the name
homeomorphisms *) since they are a generalization of the notion of homeo-
morphism from the Topology of Point Spaces.

Another class of homomorphisms examined in CA is the class of con-
ttnuous homomorphisms ), i. e. Boolean o-homomorphisms % of a closure
algebra 4 into another B, satisfying the condition

(¢") R(A)Ch(A) for each AeA:

Continuous homomorphisms are a natural generalization of the notion
of a continuous point mapping from the Topology of Point Spaces.
Clearly every closure homomorphism is continuous. The converse state-
ment is not true.

The subject of the first part of this paper is the study of closure
homomorphisms. It will be shown that closure homomorphisms are
a generalization of the notion of interior mapping from the Topology
of Point Spaces (see (ii)).

The second part contains some representation theorems for closure
algebras with an enumerable basis. The representation problem for such
closure algebras is not completely solved. It can be reduced to the
question whether every Hausdorff space with an enumerable basis is
an interior image of a separable metric space.

Incidentally I shall show that the dimension of a closure subalgebra S
of a C-algebra®) 4 can be greater than the dimension of A.

§ 1. The relation between closure homomorphisms and interior mappings

By a topological space we shall mean a set & with a elosure operation
defined for all AC& such that I-IV hold (it is not assumed that A=A
if 4 is a one-point set). The closure algebra of all subsets of & will be
denoted by S(&). The closure algebra of all Borel subsets of & will be
denoted by B(X).

The letters & and ¥ will always denote topological spaces.

A mapping ¢ of & into ¥ is said to be open if ¢(@) is open in Y for
every open set GCE (in particular, p(&) is an open subset of ¥). The
mapping ¢ is said to be nterior if it is open and continuous. -

(i) A mapping ¢ of & into Y is open if and only if ¢~ Y)Ce—1(XY) for
every set YC3Y.
1) See CA, p. 175.
5) A closure algebra A is called a C-algebra, if there is a sequence (Zn) of open
elements of A such that each open Ge A is the sum of all B, such that E.cG. See
CA, p. 182. (-algebras are a generalization of separable metric space.
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The proof is based on the following true statements®):
(o) if XC&F, YCY, then tp(iX;LY——:tp(X'(p-l(Y));
(8) if U is open, then UZCUZ. L .
Suppose ¢ is open. Let YC Y and G=%F—¢~1(Y). The set ¢(G) being
open, we have by («) and (B)
P(p—(T)-G)=¢(&) T Co(
—p(F—g (D) Y Cp(E—¢ (X)) XY =0=0.

@

@Y

Hence g—(Y)-G=0, i.e. (P“l(YlC‘P”l(Y)-

Suppose now that ¢—1(¥)Ce~1(Y) for each ¥C %Y. Let G be any open
subset of &. Put Y=Y —¢(G). We have by (x) and ()

2(6)- T=p(6¢-¢1(T))Co(G ¢ (Y))Co(F¢71(Y))
=o(G o (Y—o(@))=p(0)=0.

Hence Y —¢(F)=TYCY—p(&), i e. ¢(G) is open.
It follows immediately from (i) that

(i) A mapping ¢ of & into Y is interior if and only if U T )=¢1(T)
for every YCYY, i.e. if the Booleam o-homomorphism I of S(Y)
into S (&):

(+) RY)=¢72(Y)

for all Y eS(¥Y)

is a closure homomorphism.

Then Y is an interior image of F (i. e Y=g (&) where ¢ is interior)
if and only if S(Y) is homeomorphic to a closure subalgebra of S(&).

(iii) Suppose ? is less than the first aleph inacessible in the strict sense”).

In fact, if Y=0¢(%¥) and ¢ is interior, then h defined by (*) is a homeo-
morphism of S(%) onto a closure subalgebra of S(&). Conversely, if &
is an homeomorphism of &(%/) onto a closure subalgebra of S(&), then
there is a mapping &) ¢ such that (x) holds. Then ¢ is an interior map-
ping and Y=¢(&¥). )

Kolmogoroff, KaZdan and Anderson?®) have given examples of
compact metric spaces &, and %, such that ¥, is an interior image

&) See [7], p. 17 and p. 25.
") An aleph N, is said to be inaccessible in the striet sense if 10 4> 0; 20 NIy
and Ty, imply STm,<n,; 30 if m<y,, then 2"<y,.
teT
8) See [10], p. 12.
°) [61, [5]. [2].
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of &, and dim ¥, >dim &,. By (iii), &(%Y,) is homeomorphic to a closure
subalgebra S of S(&,). Clearly S and &(%,) are C-algebras5) and dim S
>dim (S&,). This example shows that the dimension of a C-subalgebra
of a C-algebra can be greater than the dimension of the entire C-algebra.
(iv) Let ¥ fulfil one of the following conditions:
(1) ¥ is a Tyspace) satisfying the second amiom of eountability
(i.e. Y has an enumerable basis)1);
(2) Y is a Ti-space®) satisfying the first aziom of countability.
Then the following statements are equivalent for any mapping ¢ of
& into Y
(@) @ 48 interior;
(B) ¢H(¥)=9p=1(Y) for each Y B(Y);
(v) @ s continuous and g=(Y)=¢1(¥) for every at most enumera-
ble set YCY.

Consequently, ¢ is interior if and only if the homomorphism h defined
by () and restricted to Borel subsets of Y is a closure homomorphism of
B(Y) into S(F) (or: into B(K)).

The implication («)—() follows from (ii). The implication (B)->(y)
is trivial since, under our assumptions about 9/, each enumerable set
YC% is a Borel set. .

Suppose that the condition (y) is satisfied. In order to prove (a) it
suffices to show that ¢—%(¥)Cy—(¥) for every YCY (see (i)). Let
@ ep(Y). Then g(»)e Y. Bach of the conditions (1) and (2) implies
that there is an at most enumerable set ¥,C Y such that o) e ¥,. Hence
By e (Y o)=g1(¥,) Cg2(Y), gq. . d.

Notice that in the case (2) (in particular for mefric spaces) the con-
dition (y) may be weakened. It suffices to require that the equation
¢ Y)=¢—1(Y) should hold if ¥ is the set of all terms of convergent
sequence. If X satisfies one of the conditions (1) or (2), we can omit
in (y) the hypothesis that ¢ is continuous. In fact, if ze@—21(Y), then
there is an at most enumerable set X,Co—2(Y) such that ze X,. We
have mew—l(qw(xg)j:q)—l(-(—pm Ce—1(¥), which proves the continuity of @.

As an application we shall prove the following generalization of the
well known theorem of Eilenberg 12):

1) See [1], p. 58-59.
1) An enumerable basis is a sequence {Ex} of open subsets such that each open
subset (7 is the sum of all R, such that E,c@. More generally, an enumerable basis
of a closure algebra 4 is a sequence {R.} of open elements of A such that each open
(f¢ A is the sum of all Ry such that Byc@.

2) [4], p. 174. Eilenberg’s assumptions that & is compact and Y =¢(X) are super-
fluons.
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(v) Let ¢ be a mapping of a metric space & into another meiric space Y.
The following conditions are equivalent:
() @ s interior;
(B) o '(limy,)=Lime—(y,) for every convergent sequence y, e Y,
(v) ¢ *(limy,)=Lsg=(y,) for every convergent sequence y, e Y 13y,
If p(&)=9, the condition () means that {1 (W) }yey 18 & continuons
decomposition of &.

Hence o
=[] Y Unei))= [T S Wnri) =[] 3¢ Ynsx)s
n=1 k=0 n=1 k=0 n=1 k=0
that is 14)

7 HYo) = L8 ¢ (y).

Since the last equation holds also for every subsequence {y, } of {y,},
we obtain 1)
¢ (Yo)=Lim ¢—(y,),
which proves the implication (o) —(B).
The implication (8)—(y) is trivial.
Suppose now that (y) is true. We shall show that @ is interior. By (iv)
and by the remarks below the proof of (iv) it is sufficient to prove that

(Y1, Y2y ) = ((41, Y5 ...))

for every convergent sequence Yne Y. Let y,=1limy,. Clearly (y) implies
that ¢—1(y) is closed for every y e Y. We havel)

90_1((‘?/-17?/27 ---))z‘P_l(((’/o’yu?/zy -~~))=‘P“l(yo) + 5_,:‘7’_1(%)

n=1
=Lgs g=1(y,)+ 2’ 7HYn) = f‘ Y= ((yy, 2/2:5),
n=1 n=1

which completes the proof of (v).
Let 4 be a closure algebra and let B e 4. The symbol BA will de-
note the closure algebra ) formed of all clements ACE with the fol-

*®) The superior limit Ls X, of a sequence of sets Xne & is the set of all points
ze& such that z=lim Zny %n € Xk, , Iy <ky<... The inferior limit Li Xn of a sequence
of sets X,c& is the set of all points % e & such that z=lim Tn, Bn€ Xn for m==1,9,...
If s Xn=1i Xo=2X, we write X=Tim Xn and we say that the sequence {Xn} con-
verges to X. See C. Kuratowski [7], P- 245 and p. 243,

14) Bee C. Kuratowski [7], p- 243, 1V, 8.

¥) Bee C. Kuratowski [7], P-244, V, 1.

1) See CA, p. 171.
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lowing closure operation: Az=EJ for 4 ¢ BEA. For instance, if 4 =G(¥),
then HG (%)= G(E). ‘

(vi) The continuous homomorphism h of A onto EA defined by the equation
hA)=FA for AdeAd

is a closure homomorphism if and only if B is open in A.

If F is open, then?) ﬂZ):E-EE:EITZ:EJ:h(J), thus % is
a’ closure homomorphism. Conversely, if h is closure homomorphism,
then B-E'=h(E)=h(E)=0=0, i. e. B is open.

The following theorem explains the structure of closure homomor-
phisms.

(vil) Let A be a closure algebra with an enumerable basis, and let h be
a closure homomorphism of A into a closwre algebra B. Then there
is an open element G ¢ A such that
() R(4)=0 if and only if AG=0; )

(B) the homomorphism h restricted to elements A e @A is a homeo-
morphism of GA onto a closure subalgebra of B.

If {F};e, is an transfinite strictly increasing sequence of closed ele-

ments in .4 such that MFg)=0, then n<Q by CA 3.3, and W Y Fe)=0
§<n

since the sequence {F;} is enumerable. Consequently h( ) F,)= hT Fe)=0.
£ o
Using Zorn’s lemma we infer that there is a closed element F, .4 such

that h(F,)=0, and the conditions WF)=0, F=F imply PCF,. Since
WA)=0 implies h(A)=h{4)=0, we infer that h(A)=0 if and only if
ACF,. Put G=F; (i. e. the complement of F,). Clearly (o) is fulfilled.
If A cGA, then Wdg)=h(AG)=n) W(@)=h(4) which proves (B).

If I is a o-ideal of a Boolean algebra 4 and A A, then [A] denotes
the element (coset) of 4/I determined by 4 =),

If A is a closure algebra with an enumerable basis, and I is a ¢-ideal
of A, then the closure operation in A induces g closure operation in . 4/I
such that A/I forms a closure algebra 1),

Under the above assumptions:

(vili) The natural homomorphism h of A onto Al

h(A)=[A] for Aed

1) See the statement (8) on .p. 14, which holds- also for every closure algebra.
18) See CA, p. 168. :
. ') See CA, p. 180.
Fundamenta Mathematicae. T, XLI. . 2
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is a cosure homomorphism if and only if the ideal I is principal
and generated by o closed element Foe A (i.e. Bel if and only
if BCF,).

This remark follows immediately from (vii).

§ 2. The representation problem for closure algebras with an
enumerable basis

(ix) Suppose that the closure algebra A is of the form A=Bl where B
is a Boolean o-algebra and I is a o-ideal of B. If A has an enwmer-
able basis, it is possible to define a closure operation in B in such
a way that
() B is a closure algebra with an enwmerable basis;

(B) the closure algebra A is identical with the closwre algebra yrhi(:h,
we obtain by the division of the closure algebra B by the ideal I
using the method described in CA 9 (p. 180).

The proof of this theorem is analogous to the proof of CA 14.1. It is
even simpler in the above case. o
If a closure algebra is a o-field of sets, it is called a closure field.

(x) Ewvery closure field is weakly homeomorphic®) to a T\-space. Buvery
closure field with an enumerable basis is weakly homeomorphic to
a Ty-space with an enumerable basis. )

The proof is similar to that of CA 13.1.

Since every Boolean c-algebra is isomorphic to a quotient algebra ')
X/I where X is a o-field of sets and I is a c-ideal of X, we find from
(ix) that
(xi) Every closure algebra A with an enumerable basis is isomorphic to

a quotient closure algebra X/I where X is a closure field with an
enumerable basis, and I is a o-ideal of X.

Combining (ix) and (x) we find that

(xil) Every closure algebra A with an enumerable basis is weakly homeo-

morphic to a closure quotient algebra &(X)/I where E is Ty-space

with an enumerable basis (i. e. B(A) is homeomorphic to B(E)/,,
I,=I-B(%)).

Theorems (ix), (x), (xi), (xii) are analogous to Theorems CA 14.1,

13.1, 14.2 and 15.1 proved for C-algebras. The question arrises whether

%) If A is a closure algebra, then B(A4) denotes the closure algebra of all Borel
elements of A. Two closure algebras A and B are weakly homeomorphic if B(4) and
B(B) are homeomorphic. See -CA, p. 171 and p. 176.

®) See [8] and [11], p. 256.
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& theorem analogous to CA 15.2 is true for closure algebras with an
enumerable basis. I hope that the following non-proved statement is true:

(H,) For every closure algebra .4 With an enumerable bagis there
is a closure subalgebra S of the closure algebra S(H) of all subsets of
the Hilbert cube K, and a s-ideal I of- S such that 4 is weakly homeo-
morphic to S/I. ‘ '

The difficulty of the above problem lies in the fact that we know
no characterization of closure subalgebras of closure algebras G(&F) where
& is a separable metric space. By CA 4.3 each such subalgebra has an
enumerable basis and therefore is weakly homeomorphic to a T-space.
A simple example given in CA (p- 184, footnote %)) shows that a com-
plete four-element closure subalgebra of S(R), where R=the set of all
real numbers, need not be weakly homeomorphic to a T,-space. It seems
probable that

(H) If & is a Tyspace with an enumerable basis, then S(&) is
homeomorphic to a complete closure subalgebra of S(%¥) where Y is
a separable metric space.

On account of (iii), hypothesis (H) may be formulated in the fol-
lowing equivalent form:

(H') Each T,-space with an enumerable basis is an interior image
of a separable metric space 2).

We can only prove that

(xiii) Bach Tyspace & with an enumerable basis is an interior image
of a totally disconnected ) Hausdorff space with an enumerable basis.

Let R denote the set of all real numbers. Consider the Cartesian pro-
duct EXR with the usual topology. F xR has an enumerable basis.
Since < 2%, we can associate with every z ¢ & a set R, of irrational
numbers such that

(1) E. is dense in R for every z ¢ &;

(2) it z 7w, (2,2, ¢ F), then By Ryy=0.

The space Y= 3 (x) x R,CE X R (with the topology induced by & x R)
has an enumerabfé Xbasis. Y is a totally disconnected Hausdortf space.
In fact, let (z,,7,)5 (2,,1,) be two points in Y. If z,=x,, then r,s7r, If
@y FLy, then r;s%7, also since r, € Ry, 7y € Ry, and R, -R.,=0. Suppose,
for instance, that 7, <7,. Let 7, be a rational number such that 1Ly <Ty.
The sets U1=?j-(E)(r<m), U,=%- E)(r >7,) are disjoint neighbourhoods

Ty X, (x,r

of (@,7) and (x,,7,) respectively, and Y =U,+U,.

%) See Colloquium Mathematicum 2 (1951), p. 171, P 78. .
®) A space & is totally discomnected if for every pair x,,%, ¢ &, x,£%,, there are
open sets U; and U, such that w, ¢ Uy, z,¢ U,, ¥= U,+U,, U,-U,=0. .
2*
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To complete the proof we shall show that the projection = of Y
onto & is open (clearly = is continuous). It suffices to prove that
n(Z/'(GxV))=G for every open GC& and for every open interval V40,
VCR.

Obviously 2(¥Y (G xV))C@. If x € G, then, by (1), there is an re Ry-V.
Consequently « e (Y -(G xV)), which yields GCa(Y (GxV)), q. e. d.

The problem whether every Hausdorfl space with an enumerable
basis is an interior image of a separable metric space is unsolved *).

Notice that (H) implies easily (H,).
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On existential theorems in non-classical functional
calculi 1)

by

H. Rasiowa (Warszawa) and R. Sikorski (Warszawa)

) Let &, be the Heyting propositional caleulus, and let S be the Hey-
ting functional ealculus. The individual variables of the system S; will
be denoted by ,#,,..., the quantifiers — by 3 and []. The formulas

*p

o xp
from &; will be denoted by the letters «, f. If « is a formula from Sy
- &, :
then a(;) denotes the formula obtained from « by replacing each free

¢4
occurrence of x, by 2, (each bound occurrence of x, should be replaced
earlier by x which does not appear in a, 17#gq).
Godel ?) formulated (without proof) the following theorem:

(xo) Let o, = be two formulas from the Heyting propositional calculus Sy
If the disjunction o7 is a theorem of Sy then either o or T is a theorem of 8.

Theorem (x,) was later proved by MecKinsey and Tarski [2] by an
algebraical method. Another algebraical proof was given by Riegers3).

The purpose of this paper is to prove the following theorem (x) which
is an extension of (y,) over the Heyting functional caleulus §?. The second
part of Theorem (y) shows that the Heyting functional caleulus is the
well formalization of Brouwer's ideas concerning existential theorems.

(x) If the formula a+f is provable in Sy, then either a or B are pro-
vable in Sy. If the formula 3 a is provable in &%, then there is a positive

*p
tnteger q such that the formula a(z") is provable in S}.
P

Clearly if the sequence Zigy oy, contains all the free variables which
appear in a, the integer ¢ can be chosen among the numbers Byyeneylne
If « contains no free variable, then ¢ is an arbitrary integer, e. g. g=p.

1) Presented at the Seminar on Foundations of Mathematics in the Mathematical
Institute of the Polish Academy of Sciences in November 1952.

%) See K. Godel [1]. See also G. Gentzen [1].

®) See L. Rieger [1], p. 29.
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