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by
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1. A family F of subsets of a fixed set S is called & ring if J" ig closed
for finite unions and intersections; F' is called a' Zd-ring if it is closed
for arbitrary unions and intersections ). It is clear that a ring is a dis-
tributive lattice when partially ordered by set-inclusion. Further it can
be shown that every XA-ring is a completely distributive lattice with
respect to set inclusion 2). But whereas it is true that every distributive
lattice is isomorphic (for definition, see below) with a ring of subsets,
it does not hold in general that every completely distributive lattice ig
isomorphic with a ZA-ring of subsets (see Remark below).

) ‘In this note we obtain a characterization of a complete lattice which
is isomorphic with a XA-ring of subsets, in terms of a new order notion
which we have called supercompactness: this is closely connected with
the notion of completely prime dual ideal of Birkhoff?3) and is stronger
than the concept of compactness introduced by Nachbin4). We at{so

deduce as & corollary a new characterization for the Boolean set-algebra B
of all subsets of a set R.

2. Definitions. For basic concepts and results in lattice theory
we refer the reader to [1] and [3] (Chpt. IIT). We shall define here only
2 few relevant terms. An element s of a:lattice I is called superaompdci
if Ya;,>s always implies some ¢;> s, where > is the p. o. relation in L7
and Ya; denotes any existing lattice sum in L. We remark that s is supm‘z

!) See R. Vaidyanathaswamy [4], p. 12.
%) By a completely distributive lattice is meant a complete lattice L satistying tho
generalised distributive law stated on p. 10 of [4] and its dual: viz., 3 [] = [I ’5\1‘0
) 1EZ ker, ¥ jeG Key
i i s g .t of 1 v
ot parssion of F, hA -y-o al .su})sets g of F hav‘mg just one member
each Fi. Every ZA-ring satisfies these generalised distributive laws

(see p. 10 of [4]), and is therefore a complet istributi
s d ely distrib > latti
%) See G. Birkhoff (2], p. 12. Py Gsibutive lattie.

%) See L. Nachbin [3], p. 137.
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compact, if and only if, the dual ideal {s} of all ‘elements x>s is com-
pletely prime (a dualideal 4 is called completely prime whenever fa;ed
implies some a;eA)5). :

A lattice I is said to be isomorphic with a lattice L' if there is a one-
to-one reversible mapping f: a<>a’ of L onto L’ preserving order both
ways, 4. 6. a<<b, if and only if, f(a)<f(d). It is clear that elements cor-
responding to one another under an isomorphism f have identical order
properties; thus in particular, f(a) is supercompact, if and only if this
is true of a.

3. We prove now the

THEOREM A. For a lattice L io be isomorphic with o ZA-ring L' of
subsets of a set 8, it is necessary and sufftcient that L be
(1) complete, -
(2) have an additive basis of supercompact elements (1. e. each element
a e L is ewpressible as a laitice sum of supercompact elements ).

Proof. To prove the necessity of the conditions we need only to
show that every TA-ring I’ satisfies them. That L’ is a complete lattice
follows immediately from the definition of a XA-ring, and thus it only
remains to demonstrate that L' fulfils condition (2). ) .

We may clearly assume that the set § is the union of all elements
in I’. Now to each point p in § we can associate an element ap in I/
defined thus: a, is the intersection Na’ of all elements o' in L’ contain-
ing (p) (aj exists since L’ is closed for arbitrary intersections, and a, is
evidently the smallest element of L' containing (p)). We now assert that
aj, is a supereompact element of L. For, if Za;>ay, then Taj=Ua{Da,D(p)
50 that, for some aj, a;D(p) and for that o we have a; >=a,, since a, i3
the smallest element of L’ containing p. Thus a, is a supercompact ele-
ment of I’. Further for any element &' in L we have obviously o' =2Zay,
(p ranging in the set a’). This completes the proof of the necessity
part. ‘

To prove the sufficiency part we let I satisfy conditions (1) and (2),
and denote by S= {s} the totality of non-zero ®) supercompact elements s
in L and by 8,, the subset of § comprising those &’s with s<Ca, where
@ is an arbitrary element of L. It follows immediately from the de-
finition of the S,'s that ;S’H,,i:_ﬂSai; §,=o. Also we have Sz4=U8a;
(since s<any a; obviously implies s<Za;, while s<Za; implies, on ac-

5) A more detailed study of the properties of supercompact elements will be made
in a forthcoming paper. -

¢) This restriction is not guite essential but is made here for the convenience of
making the ZA-ring L’ (which we are going to construct) include the null-get.
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count of supercompactness of s, s<{some a;). Thus the 8,’s constitute
4 ZA-ring L' of subsets........ v e

Consider now the mapping f: a—8, of L onto?) L’. This gives an
isomorphism of L-with L'. For in the first ‘place it is one-to-one rever-
gible, (f(a)=f(b)—>a=Dh, since s-is an additive basis. of L). Secondly a<b
implies evidently 8,C S, while 8,CS, implies a<d, since a and b are
the lattice sum of elements in- 8, and Sy respectively. This completes
the proof. R R

Now let L be a lattice satisfying besides conditions (1) and (2) of

Theorem A also the condition: )
(3) To each element as£1 there corresponds an element b= with ab==0,
" Denote by § the totality of non-zero supercompact eimrmul;ﬂ s of L
and by L’ the ZA-ring constructed from § as in the proof of the seeond
half of Theorem A. Then in view of the isomorphism f of I with I’,
I’ also satisties condition (3). For a given s in' 8, let S, be the imagé
of s in I’ under f (s € 8,), and (8,)* be the union of all elements in L’ not
containing s (as a point); then s¢(8;)* so that (S,)* is the largest element
of I not containing s. Also 8,V (8,)*=8. For §,U(8,)*C8, and 8L (8,)*C8
would imply by condition (3),-the existence of an element. 8 (s4).in L’
with 8,1(8,U(8;)*)=0. Hence also S3N&,=p, whence s$¢5S,, s0 that
SpC(8:*CSL(8,)*, which leads to the contradiction 8y =8N (8, (8s)*) =0,
Thus 8,U (8)*=8.

Now let sye8; so that s,<s. If s,7s then 8¢ 8, and since
,s-e‘SzS,nU(Sso)*, it follows that SE(S;»)*. But thert 306(&0)* (since so<Cs
and se (8,,)* whieh .contradicts the definition. (85,)). Consequently we
have 8,={(s). It follows that L' includes all one-pointic subsets of 8,
and being itself a 24-ring, L' comprises all subsets of §, whence L’ co-
incides with the Boolean algebra Bg of all subsets of S.

On the other hand in any Boolean set-algebra By condition (3) holds,
since for any element X4 R in Bz we have the complement X'=£g and
XNX' =g.

We have thus proved the

TEROREM B. A lattice L is isomorphic with a Boolean set algebra Bg,
if and only if, L satisfies conditions (1)-(3).

4. Remarks. The closed interval I=[0,1] considered as a chain
has no supercompact elements except 0, since each element as:0 in I
can 'be expressed as the lattice sum S of all elements z<a. However;
it is easy to verify that it is a completely distributive lattice. Thug wé

have in I a completely distributive lattice which is not g ZA4-ring of
subsets,

) That f maps L onto I results immediately from the. definition of I/.

o
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Note added in proof. Since sending this paper to the editor (in No-
vember 1952) it came to our notice that G. N. Raney has given in
his paper Completely distributive latiices, Proc. Amer. Math. Soc. 3 (1952),
p. 677-680, a result (Theorem 2) which is identical with Theorem A above.
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