On local disconnection of Euclidean spaces
by

A. Granas (Warszawa)

1. Introduction. Let S, be the n-dimensional sphere defined in
the (n--1)-dimensional Euclidean space E,., by the equation

B+ a5+t By =1

We consider a closed set FCS,1. Let U, denote the e-neighbour-
hood of a point aeF in 8,44, 4. e

Ua= F [lo—a|<el

X€8,41
Let us denote by 85", for every two positive numbers ¢ and 7%, ¢ >,

the number of eompone,nts of U;—F which have a common point with U2,
If n<n’, then bg"<bg", and consequently there exists

(1) lim bg"=b;.
-0
Evidently bi>b§ if e<e’. Consequently there exists a finite or infinite
limif
2) lim b8= bo(a7Sn+1“‘F)-
&0

The number by(a, S, —F) will be called the number of components in
which F decomposes the n+1 dimensional sphere Sy, at the point a.

In 1933 E. C'echl) proved, using the notion of local Betti numbers
that "che number by(a,8.41—F) is a topological invariant. The purpos(:
of this paper is to give an elementary proof of this fact without uéing
any mnotion of algebraic topology. The method of proof is ba;ﬂe(l
on the notion of Borsuk’s cohomotopy groups ?) and Borsuk’s theorem a‘)

on the structure of the n-th cohomotopy group of closed subset F of &,
1) E. Cech [1].

*) K. Borsuk [2].

% K. Borsuk [3].

&
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2. Definitions and notations. Throughout the paper by space
we understand a metric space and by a mapping a continuous trans-
formation.

X xY will denote the Cartesian product of two spaces X and ¥
4. e. the set of all ordered pairs (¢,y) with xe¢ X, y ¢ ¥, metrized by the
formula

l(z,9)— (", 9")| =Vg—a+ly—y P

If X, is a subset of X and f 2 mapping with the range X, then f|X,
will denote the partial mapping of f defined in X, 4. e. the mapping f,
defined in X, by the formula f,(z)=f(z). We shall say that f constitutes
an ewtension of f, on X; we then write f,Cf.

Y* will denote the set of all mappings of X into a compact space ¥,.
In the functional space Y we -define a metric topology setting

[f—gl=sup fte)—g(x)| for every f, g< T

Two mappings f, g eYYX are called homotopic (written f~g) if there
exists & mapping kb« ¥Z*' where I denotes the closed interval 0<{¢(<1,
such that

W, 0)=1@), 4, every zeX.
h(z,1)=g(2)

The relation of homotopy, established in Y,‘,Y, is a relation of equi-
valence and thus the set of all mappings 7 e¥X decomposes into disjoint
classes of homotopic mappings. The class of all mappings homotopic
with a mapping 7 ¥ will be denoted by (f) and called the homotopy
class of /. A mapping 7 €YY homotopic to a constant is said to be un-
essential; we then write f~1.

If X, is a closed subset of a compact space X, then by X|X, we de-
note the space obtained from X by identifying X, to a point g, . It is
known ¢) that for every space X|X, there exists a natural mapping
Pe (XHXD)X which maps X —X, topologically onto X|X,—g,,.

3. Cohomotopy groups. In this section we give the definition
and some properties of Borsuk’s cohomotopy groups needed in the sequel.

By a product of the mappings f,g e S¥ we understand the mapping
7% g(8.x8,)¥ defined by the formula

(f xg) (@)= (j(z), g(w))  for every xeX.

4) See for instance . Kuratowski [4], p. 42.
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It is known 5) that:

3y If Xisa compactum and dim X <2n, then for exery [xg e (8,x 8%
there ewists a mapping he (S, x8)**" satisfying the conditions

Wz, 0)=(fxg)(z) for every zelX,
(X ,1)Chy X Sy~+ 8, X by,

where by s an arbitrary point of S,.

. In this case we define the sum of the homotopy classes (H, (§)C8F
in the following manner: Setting '

w(z)=hz,1) for wzelX,
Duly,bo)=y for - (y,bq) € 8u X by,
Fu(bo, )=y  for (bg,¥)ebyX Sy,
S,,/\S,,: boXSn+SnX b(n

we have o € (8,A8,)%, 0, € 85" and B,0 8. We define the sum (f) -+ ()
of the homotopy classes (f), (9)CSE by setting

It is known ¢) that: () +i5) = Bu). '

(4) It X ;i’s a aompawtum and dim X << 2n—1, then the homotopy classes
(f.)FS,, constitute an Abelian group with the operation defined as ad-
dition of homotopy classes.

This group is called the n-th Borsuk group or n-th cohomotopy -group

of X and is denoted in the sequel by B,(X); the order of thi i
n r of th:
be denoted by b,(X). o ' Q }S gronp il

The zero element of B,(X)-is the homotopy class which .contains un-

essential mappings fe S%. An inverse element to (f)eB,(X) i ined
in the following manner: Setting D eBal) 35 obtained

Qn(mlﬂ’za vory Ly Bpgy) = (2, 3oy eeryPny _mn—}-l)y

for every (@,,,...,%11) €8, we defin i
ey &y ' e the inverse ele — e
homotopy class containing é,,feﬂf. ment (D) 2 the

If X, is a closed subset of & compactum X (with dim X <2n-1), then
) (N+(g)=(k) implies (f|Xo)+ (5| Xo)= (h]X,),
(f)=—(f2) implies (Al X o) =—(f:| X,).
Let { be a mapping of X into Y. If y
. If ge8,; then gf e 8Y, if g,~ e
qif~g.f. Let us set, for every homotopy clafss (9)C8Y, f,[(g)]giz (g;’)é}:sgl

) See K. Borsuk [2] and E. § i
. Spanier [5].
‘) See K. Borsuk [2] and E. Spanier [51, p. 211.
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It is known?) that:

(6) If X and ¥ are compacta and dimX <2 —1, dim¥Y<2n—1, then
the mapping | (induced by f) is o homomorphism of B,(X) into B,(X).

Let X, be a closed subset of X. By H,(X,X,) we denote the set of
homotopy classes (f)C SZ such that f|X,~1. Then:

If X is a compactum and dim X <2n—1, then the set Hy(X,X,) is
a subgroup of Bn(X).

Proof. Let (),(y) € Ha(X, X) and (f)+ (9)=(k)- By (5) it is (h|Xo)
= (f| X,o) + (9] X;). Bub f| Xo~1 and g|X,~1, hence h|Xy~1 and
(k) e Ho(X, X,). Tt (f)) e Ha(X, X;) and (f)=—(f), then, by (), {f2lXo)
=—(f|X,). But f,]X,~1, hence fol Xo~1 and () e Ha(X, X).

The order of the group H,(X,X,) will be denoted by h,{(X,X,).

4. Some lemmas. Let F be a proper closed subseb of Spt1. Let
Gy, G, ..., Gy, ... e a finite or infinite sequence of all components of Spp1—F.
In every component G; we choose an arbitrary point p; and a spherical
n-+1 dimensional element @; with centre p; and boundary Su.

It is known8) that:

(7) There ewists a one-one correspondence between the set of all homotopy
classes (f)CSE and the set of all sequences {(fi)}, where (f;)C 8y,
fi=1\8n, 1=1,2,... and f; is unessential for almost all 1. This cor-
respondence is an isomorphism between the cohomotopy growp Bu(F)

<]
and the direct sum?®) D) Bu(Su).
=1

Nowlet 75 5, beforevery izla mapping of 8, outo 8,, homotopic to aho-
meomorphism of 8, onto S,. Let 7,, be an extension of the mapping
r;upiesf’” on Sp1—(po)—(p:). Then, for izj, the mapping Tpor| Sny 18
unessential (because 7y, | S,,er,,o,,i]Q,,,-eS,?"f), and for every i=1,2,...
the homotopy class (rpopi[S,.i)CSf"‘ is a generator of the free cyclic
group B,(Sn). From this, applying (7), we obtain the following

7) See E. Spanier [5], p. 214.

8) See K. Borsuk [3], p. 227 and 240. .

%) By the direct sum IZA{ of Abelian groups 4i, i=1,2,... we understand the
Abelian group 4 constituted by all sequences {a;} with a,€ 4;, where a,= 0 for almost
all indices i and where the group operation is defined by the formula {a}+Hap={a,+ a3}
It is clear that if a, is a generator of the free cyclic group A; and 53: 0for iz£7, 6i.=1
for i=j, then the sequence {6}~a1},{6?'a2},..., 6{ a} e constitutes the basis of the
group A= Z Ai.

7
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Levma 1. The sequence of the homotopy classes
(8) (25, | T, (T, | By o (g | )y s C 8

constitutes the basis of the n-th cohomotopy group of F.

LeMma 2. Let F be a closed subset of Spy1 (FSyq1) and G an open
connected subset of Spr1(G#Bpr1). If Gy, Gy, G are all components of
Spp1—F such that G- G0 for i=0,1,...,k, then k= h,(F,F—@q).

Proof. Let us order all components of §,.;—F in a finite or infinite
sequence Gy,G,...,G%, Gry1,... and choose in every component @ a point
p; in such a manner that p,,p,,...,pxe @ We infer by lemma 1 that
the homotopy classes

(9) (7’pupl|F)) (7o, | By ooes (7"p0ple)€Bn(F)

P2
are linearly independent. Since F—@ does not disconnect §,., between
any pair of points p,,p,,...,px, then 7,5 F—G~1 for every i=1,2,...,k.
Thus we have shown that there exist at least k& linearly independent
elements of the group H,(F,F—@).

Now let us have any mapping fe 8% such that /|F—G~1. We shall
prove that the homotopy class (f) is a linear combination of the clas-
ses (9). By lemoma 1 the homotopy class (f) is a linear combination of
a finite number of elements of the sequence (8):

(10) ’ (H= 01(7’17017,-1 IF)"*"GZ(”'P”P,'Q [ F)+ ... +Gm('7'pnp,-m | 7).

Since the set ¥ —@& disconnects 8,,; between every pair of the points
of the sequence PysPpy11Prrns-r We have

(11) (Tpopy| F— @) (const | F—@)  for every §>k.

From this and from f|¥ —G~1 we infer that the linear combination
(10) cannot contain any class (r,,o,,ilF) for j>k. Consequently the homo-
topy class (f) is a linear combination of the homotopy classes (9) and
the proof of lemma 2 is completed.

Levva 3. If H,, H, and G are three open netghbour ] it
; N ghbourhoods of a point
aeF(dim F<2n—1) such that H,CH,C@, then fa
(12) h,,[F]]F—G,(F||F~G)—Hl]<h,,,[F||F~G,(F|[F——G)—H2].

. iro (]):T.FI:et us set F*=F|FP—@. For every fe 87" the relation fl*—H, ~1
implies —H,~1. It follows that H,[F* F*_J CH,[F* F*—H,] and
consequently also (12). , 1SS ¥ fal and
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LemMA 4. If H, G, and @, are three open neighbourhoods of a point
a e F(dim F<2n—1) such that HCG,C@,, then

(13) Fon(F*, F*—H) < ho[F*|| F*—G,, (B F*—G) — H],
where F* denotes the set F||F—@,. )
Proof. Let ¢ be a natural mapping of F* onto F*=F*|F*—@, and

¢ the induced homomorphism of B,(F**) into B,(F*). If feS:  and
f|F*—H~1, then f|F*—H~1. From this we infer that

G {H(F**, F*—H)}C H,(F*, F*—H).

Now let (§)CS%" and g|F*—H ~1. Without loss of generality we can
suppose that g(F*—H)=pyeS,. It follows that g(F*—G,)=p,. We de-
fine the mapping h of F** into S, as follows:

gl (@)] for @eF*|F*—Gi—(gp_g),
Po if m:gpt_al.
Evidently heSh , h|F*—H~1 and g(z)=hp(z)] for every zeF*.

It follows that g{(k)}=(g) and ¢{H,[F**|F*—H]}=H,(F*, F*—H). From
this we infer the inequality (13).

5. The local cohomotopy numbers. Let a be an arbitrary point
of a compactum F with dim F<2n—1. Let U;(F) denote the e-neigh-
bourhood of a in #, i. e.

Uo(F)= E [lo—a] <e].

Let us set
(14) 07 (a,F)=ha[F|F—UL(F),(F| F—Ua(F)|—Ua(F)] for 0<e<n.
By lemma 3, if n<xn’, then b2"<{b2". Consequently there exists

(15) im b7"(a,F)= by (a,F).
70
By lemma 4, if e<¢’, then b (a,F)>b: (a,F). Consequently there exists
a finite or infinite limit
(16) lim ¥ (a,F)=b,(a,F).

&0

The number b,(a,F) will be called the local cohomotopy number of F
at the point a e F.
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Trom the definition of b§" and b;"(a,F) and by lemma 2, ‘wé infer
that in the case of FCS,41
- (17) BE" = b (@, ) +1.
From (17), (1), (2), (16) and (16) we obtain the following
THEOREM. If & € F=F C 81, then the number of components bo(a, Spiy—F)

in which the set F decomposes the (n-+ 1)-dimensional sphere Spe1 at the'

point a is determined by the local cohomotopy number b,(a,F) of I at the
point a by the formula

(18) bo(t, Bnia—T) = bn(a, F)+ 1.

Since the number b,(a,F) is topologically invariant, we obtain the

following

COROLLARY. The number of components bo(a,Sp—F) in which a closed
set FC8,yy decomposes the (n- 1)-dimensional sphere 8,1 at the point
a el is topologically invariant.
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Effectiveness of the representation theory for Boolean

algebras 1)

by
J. Eo$ (Torui) and C. Ryll-Nardzewski (Warszawa)

Stone calls Fundamental Existence Proposition of Ideal

Arithmetic the lemma according to which:

(I) In every Boolean algebra there is a prime ideal.

This lemma plays a chief part in the demonstration that

(R)
which is the most important result of Stone’s representation theory.

According to Stone, (R) is effectively equivalent?) to (I). It was
a long time ago noticed 3), that (I) holds only with the help of trans-
finite methods. All the known proofs of it (S. Ulam?), A. Tarski?),
M. H. Stone?)) are based upon the principle of choice (or well-ordering
theorem). A problem arises, whether the proposition (I) is really de-
pendent on the prineiple of choice, and especially whether some parti-
cular cases of that principle?) are the consequences of the above-men-
tioned proposition.

A partial solution of this problem is given by W. Sierpinski?). It ig
known that the result of (I);, without the use of transfinite methods,
is that in the field of all subsets of an arbitrary infinite set B, there
exists a two-valued measure which vanishes for one-point sets. Sier-
pinski has proved that the existence of such a measure in the set of

any Boolean algebra is isomorphic with a field of sets,

1) Presented to the Polish Mathematical Society, Warsaw Section, on May 12, 1950.

2) (f. [8], Fund. Exist. Prop., p. 78; Theorem 67, p. 106 and Theorem 70, p. 110.

3) Cf. [9], p- 812.

4 [11].

5) [10], Lemma 1, p. 43.

) [8], Theorem 63, p. 100.

7) By particular cases of the principle of choice we mean those forms of this prin-
ciple in which the family of sets {M:}rer is subject to some restrictions e. g. that every
M; is finite, or that it is a bicompact space, ete.

5 7).
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