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Boolean representation through propositional calculus h
by
L. Henkin (Los Angeles)

By the boolean representation theorem we mean the proposition, first
proved by Marshall Stone[l], that every boolean algebra is isomor-
phie to a boolean algebra of sets. By the Gddel- Malcev (functional) theo-
rem we shall mean the metamathematical result stating that every
formally consistent set of sentences of a first-order functional calculus
is simultaneously satisfiable?). Each of these two theorems has been
proved with the aid of the axiom of choice ), but neither one seems to
be as strong as that axiom.

Although the boolean representation theorem and the Gédel-Malcev
theorem appear to deal with very different subjects, the two have re-
cently been shown to be quite closely related. Rasiowa and Sikorski[7]
have given a proof of the Godel-Malcev theorem using some of the same
technigues which Stone employed in establishing the boolean represen-
tation theorem. By a slight change in their argument, it can be turned
into a proof that the boolean representation theorem émplies the Godel-
-Malcev theorem. On the other hand, it has also been shown 4) that the
boolean representation theorem follows from the Godel-Malcev theorem.
In short, the two theorems are equivalent. Furthermore, although it
appears necessary to employ the axiom of choice in order to establish

1) This work was supported in part by a grant from the National Science Foundation.

2) Godel [2] and Maleev 3]

3) The Godel-Malecev theorem is often stated for a first-order functional calculus
containing only a countable number of symbols. This is the form in which it was first
established by Gédel, and in this form it is not necessary to use the axiom of choice.
It was Malcev, in the case of formulas of the propositional calculus, who first con-
sidered this theorem in connection with formal systems containing a non-denumerable
number of symbols. The first statement or proof of the Godel-Malcev theorem for
first-order functional caleuli with a non-denumerable number of symbols seems to
oceur in Henkin [4]. Subsequently, and independently, the theorem appeared and
was proved in Robinson [6].

4) Henkin [5]. This paper contains some discussion of the relative strength of
the axiom of choice and the Godel-Malcev theorem.
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either of these theorems, the equivalence of the two theorems can be
established without recourse to the axiom of choice.

In this paper we shall show that the boolean representation theorem
follows, without the axiom of choice, from the Godel-Malcev proposi-
tional theorem, i.e. from the metamathematical result that every for-
mally consistent set of formulas of a propositional calculus is simulta-
neously satistiable. On the surface, this appears to be a weaker state-
ment than the Godel-Malcev functional theorem. That, conversely, the
Godel-Malcev propositional theorem follows from the boolean represen-
tation theorem, can easily be demonstrated by the methods of Rasiowa
and Sikorski, as they themselves have indicated. In the lagt sections
we consider the question of representing a boolean algebra as a boolean
algebra of sets using fewer points than there are elements in the given
algebra. :

1. A boolean algebra @ is a system (4 ,—,+,¢,<,0,I), where 4 is
a set, 0 and I are elements of 4, — is a unary operation on 4, 4 and
are binary operations on 4, and < is a binary relation on 4. We assume
that the reader is familiar with a set of axioms for boolean algebras,
as well as with the principal laws which relate the basic notions?). A hoo-
lean algebra of sets is a boolean algebra in which I is a set, A is a family
of subsets of I, 0 is the empty set, — is the operation of complemen-
tation (relative to I), + and o are respectively the operations of union
interseetion, and < is the relation of inclusion.

A propositional calculus is a formal system containing among its
primitive symbols a set of propositional symbols, parentheses, and the
further symbols ~, V, A, D, and =, of which the first is a unary con-
nective and the other four are binary connectives. We assume that the
reader is familiar with a set of formal axioms for such caleuli, as well
as with the principal formal theorems which can be derived ). We ghall
assume that the calculus is formalized with a single formal rule of in-
ference, modus ponens, which permits the inference of a formula f from
the formulas « and aDf.

Let I be any set of formulas of the propositional caleulus. The class
of formulas formally derivable from I' is the smallest class of formulas
containing I and the formal axioms, and eclosed under modus pouens,
To indicate that a formula « is derivable from I, we write I"f-a. Thus,
a set I" of formulas is formally consistent if and only if there is no tor-
mula « such that I't-o and also I'~a. :

) See, for example, Stone [1].
%) See, for example, Hilbert and Bernays [8].
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Now consider an arbitrary boolean algebra a={4,—, +,0,<,0,I).
Our object is to find a boolean algebra of sets, @y=<4,,—, +1,°1, <4,04, 13,
which is isomorphic to the given a. To this end, we consider a propo-
sitional caleulus which contains a propositional symbol p,. corresponding
to each element z of A (distinet symbols corresponding to distinet ele-
ments). And we let I' be the set containing all of the following formulas:

i) ~p,=DP_, for all zed,

(

(i) (p,Vp,)=p,,,

(1) (px/\py)spxoy for all z,yeAd,
( )

ii for all z,yed,

~

iv) (p,Op,) for all z,yed such that »<y,
(V) ~Do
(vi) p,;-

LEMMA. Let a be any element of A other than 0. Then the set I, con-
sisting of the above mentioned set I' together with the additional formula pa,
is formally consistent.

Proof. We define a function  which assigns to each formula of the
propositional calculus an element of A, as follows:

(i)  y(px)=x for each zed,

(Yii)  w(~a)=—yp(a) for each formula «,

(Uiti) plavp)=yla)+y(f) for each a,f;

($iv) wlanf)=p(a)op(f) for each a,p,

(v)  pladp)y=—vp(a)+v(p) for each a,p,

(Wvi) pla=p)=(p(a)op(f)+(—w(@) o —v(p) for each «,p.

Trom the elementary laws of boolean algebra, together with (¢v),
we see that yp(a=p)=1I if and only if p(a)=%(B), while from (Yiv) we
infer that p(a2p)=1I if and only if p(a)<y(B). From these facts, together
with formulas (i)-(vi), we easily conclude that wp(a)=I for every formula
a in I". Since p(p.)=a, a<< I, and I<<I, we see that a<<y(a) for every aef'a-.

Now we also have a<w(z) for each formal axiom o of the proposi-
tional caleulus, for in fact y(a)=1I for each such a as we easily show by
the elementary laws of boolean algebras. Furthermore,' modus ponens
preserves the property of formulas to be mapped by v into an element
of A twhich includes a. That is, if a<\y(a) and a<yp(aDp), then also
a<y(f). (This follows from the boolean law that z<z and zg(—l-?—i—y)
imply 2<{y). Hence we see that a<{y(a) for every formula « derivable
from I7.

Suppose, now, that I, were not formally consistent. Then there

a

would be a formula « such that both o and I'yp-~a. Hence a<<y(a)
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and a<y(~a)=—p(a). Using the boolean law that y<w and y<—w
imply y=0, we conclude that a=0. But this contradicts the assumption
of the lemma. Hence I, must be formally consistent, and the lemma
is proved.

Having demonstrated that I, is formally consistent (for each as0),
we can apply the Godel-Malcev (propositional) theorem and conclude
that I, is simultaneously satisfiable. This means that there exists a fune-
tion ¢,, assigning to each formula of the propositional calculus a truth-
value, T or F, such that

(0i)  @o{~a)is T or F according as ¢,(«) is F or T, for each formula «,

(o) ga(avp)=T if and only if @u(a)=gdf)=T1,

(¢iil) pa(waf)=F it and only if g.(a)=pdf)=T,

(9iv) @o(aDB)=F if and only if ¢ (a)=T and ¢ f)=F,
(o) pala=p)=T if and only if gila)=gdf),

(pvi) @ (a)=T for every aell.

In general, of course, there will be many such functions ¢, for each
a0, and without the axiom of choice we do not know of any way to
select a unique ¢, corresponding to each a.

Let I, be the set of all these functions ¢, (for all ae 4, a% 0).'We
asso;iate to each element z of 4 a subset S(z) of I, as follows: For every
Ga €1y,

(*) #a € ()

Let A, be the family of all sets S(z), xed. Let —, +, o1, <, 04
pe the standard boolean set-theoretic concepts: eomplemeﬁtation, union,
intersection, inclusion, null set. We asgert that a,=<4,,~—, 4,04, <17
0,,1;> is a boolean algebra of sets, and that the mapping § of 4 ont(;
A, is an isomorphism between a and a,.

To show that S(—z)=—8(z), we proceed as follows. By (+), we have
Pae8(—w) if and only if @ (p_.)=T. From (pv), (evi), and (i} we
conclude that @u(p_i)=@o(~px), 50 that from (¢i) and («) it follows
that ¢, e8(—2) if and only if ¢,¢S(z). Hence, by definition of
1y 8(—m)=—8(=).

In an entirely similar manner we can show

Sla+y)=8@)+8y),  S@oy)=8(z)o8(y),
if and only if 8(z)<;S(y),
8(0)=0, S(I)=I,.

In short, 8 %s a homomorphism, and hence a, is a boolean algebra
of sets. It remains only to show that § is a one-one mapping, and for

if and only if g@u(ps)=17.

<y
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this it suffices to show that S(z)s£0, for every 2540, x ¢ A. But this is
clear, for if 220 then by (), (pvi), and the fact that p.el, we see that
@x € 8(x).

This concludes the proof of the boolean representation theorem from
the Godel-Malcev (propositional) theorem.

2. Since the proof of the Godel-Malcev (propositional) theorem from
the boolean representation theorem follows closely the line of argument
of the Rasiowa-Sikorski theorem, we give it here only in brief outline.

We suppose, then, that we are given a propositional calenlus and
a formally consistent set i of its formulas. Our object is to show that
I is simultaneously satisfiable.

To this end we consider the binary relation = defined on the for-
mulas of the ealculus, such that a=p holds if and only if I' ta=p. This
is easily shown to be an equivalence relation, so that the formulas of
the caleulus are partitioned into disjoint equivalence classes E(a), where
B(a) is the set of all formulas f such that f~a.

Tet 4 Dbe the set of all these equivalence classes. It can Dbe shown
that there is an operation — defined on A4 by the rule —F{a)=E(~a).
Similarly we define E(a)+E(f)=E(a)V ), E(a)eE(p)=E(anp), B(a)< E(B)
if and only if I'a>p, 0=E(an~a), I =E(aV~a). Then from the
elementary theorems of propositional calculus we can show that
a=<A,—,+,0,<,0,I> satisties the axioms for boolean algebras.

Applying the boolean representation theorem, we conclude that there
exists a boolean algebra of sets, a,=d{4y,—1, t1:01s <4,04,1,), and
a mapping § of A onto 4, such that S is an isomorphism between a
and @,. Choose any point j in I;. Let ¢ be the function which assigns to
each formula of the propositional calculus a truth-value, 7' or F, accord-
ing to the rule: p(a)=1T if and only if jeS(E(a)). This assignment ¢ can
be shown to satisfy simultaneously all formulas of I

8. In part 1 of this paper we started with an arbitrary Dboolean al-
gebra a and associated with it a certain formally consistent set I of
formulas of a propositional calculus. Let us call this set I'*(a), to show
that it is dependent on and determined by a. In part 2 we started with
a formally consistent set I' of formulas, and associated with it a boo-
lean algebra @, which we will now call a*(I"). These two construetions
are related by the following theorems, whose proof we leave to the
interested reader:

Any boolean algebra a is isomorphic to a*(I'*(a)).

If I is any formally consistent set of formulas of a propositional cal-
culus, and o any formula, then I'-a if and only if F*(a*(I’))l—pE@.
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4. In part 1 we have shown how, starting with a boolean algebra a
we can find an isomorphic algebra of sets @;. The unit element I, of the
latter has as its elements certain functions ¢,, and it may well happen
that the cardinality of I, is greater than that of the set 4 of elements
of the given algebra a7).

If we permit ourselves the use of the axiom of choice (as we shall
freely do in the remainder of this paper), we can easily modify the con-
struction of part 1 to ensure that in the representing algebra of sets,
a,, the unit element I, has a cardinality not exceeding that of the gi-
ven 4. Namely, for each a ¢ 4, a0, we select a single function ¢, which
simultaneously satisfies all formulas of I;. We let I, be the set of non-
zero elements of 4. S(z) is then defined to be the subset of I, consisting
of those elements a such that gu(ps)=7T. Clearly, under this modified
congtruction, the element I; will have exactly as many elements as there
are elements in A different from 0. Hence the cardinal of I, will be less
than or equal to the cardinal of A according as 4 is finite or infinite.

Now there are certainly boolean algebras e for which no representing
algebra a, can have a unit element I, whose cardinality is less than that
of the given A — for example, this is true whenever 4 is denumerably
infinite. On the other hand, for other algebras a such a representation
is possible — for example, if @ is itself & boolean algebra of sets in which A4
consists of all subsets of I. We ‘may, therefore, seek some condition on
the algebraic structure of a boolean algebra @ which will determine
whether or not @ admits a representation in which I, has smaller car-
dinality than 4. '

As the theorem below shows, sueh a condition can be described in
terms of the concept of finite intersection property. A set u of elements
of a boolean algebra is said to have the finite intersection property if,
whenever z,,,,...,&, are a finite number of elements of u, L;0my0...0 2,52 0.

THEOREM. Let @a={d,—,+,0,<,0,I> be a given boolean algebra.
A necessary and sufficient condition for @ to be isomorphic to some boo-
lean algebra of sets, a,, whose unit element has cardinality less than that
of A, is the existence of a class U satisfying the following conditions:

) The close relation between our method of representing a boolean algebra and
that of Stone will be appreciated if it is observed that the set of funetions r; and ’rhé
set of maximal ideals of @ are in one-one correspondence. In fact, for each fu{;mtionjzp
tE}e se.t (_yf all elements = of A such that ?,(p, ) =F, is a maximal ideal not containing a”
Now it is well known that there are denumerable boolean algebras with a non~d(;n‘1:
merable number of prime ideals; hence for such a denumerable algebra there will he

a non-denumerable number of funetions ssoci: i
T ions @, associated with the g i
o lennmera A the corresponding propo-
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(Ui)  Each element w of U is a subset of A which has the finite in-
tersection property.

(Uil) Buvery element x of A, other than 0, is in ai least one element
u of U.

(Uiil) The cardinal of U is less than the cardinal of A.

Proof. Assume first the existence of a class U satisfying (Ui)-(Utii).
As in part 1, we construet a propositional caleulus which contains a pro-
positional symbol p, corresponding to each element z of 4; and we form
the same set I' of formulas which is described there.

Now for each u e U, let I', be the set of formulas obtained by adding
to I'" all of the formulas p, such that a e u. We assert that {7, is formally
consistent.

For suppose (for some u e U) that I, is inconsistent, so that Iy a
and I, -~« for some formula «. From the definition of formally derivable
it follows that I'+-« and I'j~«, where [} is obtained from I' by ad-
ding some finite nwmber of formulas pay,...,Pa, (Gryeeyta being elements
of u). Now we construct the same function p described in the proof of
the lemma of part 1, and following the argument presented there. we
show that aye...oa,<w(p) for each p formally derivable from I';. Hence,
in particular, ¢o...ca,<y(a) and @y ... By <p(~a)=—yp(c), 50 that we must
have @po...00,=0. This, however, contradicts (Ui), since a,...,a, are all
elements of u. This contradiction establishes the formal consistency of .

We then apply the Godel-Malcev (propositional) theorem to infer
the existence of a function p,, assigning a truth-value, T or F, to each
formula of the ﬁrolaositional caleulus, which satisfies simultaneously all
formulas of I',; and we use the axiom of choice to select one such func-
tion @, corresponding to each w e U. Finally, we take I; to be U, and
for each ze A we let S(x) be the set of those elements u of I, such that
@ x)=T. As in part 1, we let 4, be the family of all these sets S(x), we
leb —y, -y 01, <pp 0, be the standard boolean set-theoretic concepts,
and we then show that & is a homomorphism of @ onto the system
a,={A,,—, 1,01, <1,01, 11>, which is thereby shown to be a boolean
algebra of sets. Finally, 8 is one-one because if ze 4, 50, then by (Uii)
theve is & welU such that weu, and this « is in 8(x) since px is in r,.
The fact that I, has cardinality less than that of A is simply the con-
dition (Uiii). This completes the proof of the sufficiency of the condi-
tion described in our theorem.

To show the necessity of our condition, we suppose that we have
a boolean algebra of sets @, whose unit element I, has cardinality less
than that of 4, and that § is an isomorphism between a and a,. Our
object is to show the existence of & class U satisfying conditions (Ui)-(Uiii).
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To this end, associate with each element § of I, the set u; consisting of
all elements & of A such that jeS(z), and let U be the class of all such
sets uj, j e I,. We assert that this class U satisties the required conditions.

First let #,...,2, be any finite number of elements from one of the
sets u;. Now S(@)op...008(2,) 70, since je8(@y)o;...0;8(x,). But § is an
isomorphism, so ml;..co,,;é 0. Thus condition (Ui) is satisfied.

Next consider any ze A, #+#0. Since § is an isomorphism, S(x)70,,
and so there exists a §j in 8(z). But then @ eu; so condition (Uii) is
satisfied.

Finally, (Uiii) is an immediate consequence of our assumption on the
cardinality of I,, since the cardinality of U clearly does notexceed that of [,.

This completes the proof of our theorem.

5. We do not know whether the theorem of part 4 can be proven
from the Godel-Malcev (propositional) theorem without using the axiom
of choice. However, without the axiom of choice we can show by Stone’s
method that the possibility of representing a given hboolean algebra a
by a boolean algebra of sets @, whose unit element has smaller cardi-
nality than that of A, is equivalent to the existence of a non-empty
class V satisfying the following conditions:

(Vi) Every element » of V is a maximal ideal of a.
(Vii) The intersection of all the elements » of ¥V is empty.
(Viii) The cardinality of V is less than that of 4.

Using the axiom of choice, one can give a direet proof that the exis-
tence of a class U satisfying (Ui)-(Uiil) is equivalent to the existence
of a class V satisfying (Vi)-(Viii). '
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On the existence of totally heterogeneous spaces

by
J. R. Biichi (Ann Arbor)

The main purpose of this note is to prove the existence of a set M
of real numbers, which is heterogeneous in the sense that every Borel-
function defined on a subset X of M into M is trivial. Some conse-
quences and related facts are pointed out in notes at the end of the
paper.

We first state the following fact:

(1) Let f be a veal valued measurable function defined on a measurable
set X of real numbers. Then the set D of all y, for which ) s of
positive measure, is at most of cardinality Ro.

Now we prove,

Leama 1. Let F be a class of real valued measurable functions, de-
fined on measurable sets of real numbers, and suppose the cardinality of F
is ;. Then there ewists a set M of real numbers, which is of cardinality %y,
such that the sets [f(z)|xe M, f(x) e M, f(z)7#®] are at most of cardinality N,
for all members | of F.

Proof. Let o, be the first ordinal of cardinality s,. By hypothesis
the class F can be arranged into a o,-series [f¢& <w,]. Let De=[y[fs Hy)
of positive measure] and define a o,-series of real numbers xz; by the
following induction.

Choose any real number as z,. If the x, are already defined for all
n<é& then choose x; such that the following conditions are satisfied:

(o) re#x, for all n<&,
(B) re#fy(z,) for all n<é and »<§,
(v) f(xe)#£m, or f.lx:)eD, for all n<¢ and »r<&.

That such an element & exists one shows as follows. To realize («)
and (8) one has to avoid a set of cardinality less than s, only. As for
the realization of (y) note first that in case z,¢ D, the condition (y) is
void. In the alternative case the pair (»,7) is such that x,¢ D,. Then, by
definition of D,, f,*(x,) is of measure 0. Therefore, for any pair (7,7),

Fundamenta Mathematicae. T. XLI. T
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