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Introduction

The present study is of meta-mathematical origin. In its initial
stage the main aim was to solve the decision problem for the elementary
theory of Abelian groups’). By the elementary theory of Abelian groups
we understand that part of the general theory of Abelian groups in which
we concern ourselves exclusively with group elements and fundamental
group operations without involving any set-theoretical notions (like those
of subgroup, isomorphism, etc.). Speaking more technically it is that
part of general group theory which can be formalized within elementary
logic (i.e., the lower predicate calculus)?). In an analogous sense we
speak of the elementary theory of any other kind of algebraic systems —
besides the term “elementary theory” we also use in the same sense the
term arithmetrc. The decision problem for the elementary theory of Abe-
lian groups is the problem of existence of a proeedure which permits
us to decide in each particular case whether a given sentence formulated
in terms of the theory holds in all Abelian groups, i. ., whether this sen-
tence is a logical consequence of postulates characterizing the notion

*) This paper includes all results of the Doctoral Dissertation done by author
at the University of California in 1950.

1) Previously the decision problem has been solved affirmatively for some special
Abelian groups; see [4].

) [2] and [10] may be consulted for various logical and meta-mathematical no-
tions and results involved in our discussion.


GUEST


204 W. Szmielew

of an Abelian group. We have succeeded in obtaining a positive and
constructive solution of this problem; a decision procedure for the arith-
metic of Abelian groups (based upon the so called method of eliminating
quantifiers 3)) has actually been found ?) ). '

By analysing the results obtained it can be noticed that the argu-
ments and methods applied in establishing these results have many im-
plications which go far beyond the original aims of this study. In par-

ticular, we have obtained in this way an exhaustive description of what _

are called arithmetical classes and arithmetical types of Abelian groups.
From this description we have derived some further consequences ap-
plying to arithmetical classes and types of arbitrary groups, :Lmd even
of arbitrary algebraic systems. Arithmetical eclass and arithmetical type
are notions of a general algebraic character which only recently have
been introduced by Tarskis®). The notions in question, in view of their
intuitive content and the abundance of problems in which they are in-
volved, seem to deserve the attention of modern algebraists and should
attract their interest. In the present case additional interest is provided
by the fact that the notions of an arithmetical class and an arithmetical
type are applied to Abelian groups, thus to a class of algebraic systems
which play a fundamental role in modern algebraic research. For all
these Teasons we have decided, when putting the results in final form,
to shift the focal point from the solution of the decision procedure to
2 discussion of arithmetical classes and types, and to present this dis-
cussion as a chapter of the theory of Abelian groups. In consequence
the present work has assumed a purely mathematical character and,
as we hope, has become easily comprehensible even to those mathema-
ticians who are not acquianted with meta-mathematical technique.

An Abelian group U is regarded here as an algebraic system for-
med by a set 4 and a binary operation -+ (on elements of 4) which are
assumed o satisfy certain well known postulates; the fact that A is
formed by 4 and + is expressed by the formula A =(A4,-+5 7). A prop-
erty of Abelian groups is called arithmetical (or elementary) if it can
be expressed entirely in terms of the arithmetic of Abelian groups —
i. e., by using exclusively variables ranging over elements of {he group,
the symbol -+, and the terms of elementary logic (sentential connec-

¥} As an example of a discussion applying this method see [8]. For further bi-
bliographical references cf. [8], p. 50, footnote 11.

4} See [6].

¥) This result cannob be extended to the elementary theory of arbitrary groups;
see [13].

®) See [9], [L1], and [12].

7} For information regarding group theory, counsult e. g. [14].
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tives, guantifiers and the identity symbol). In formal discussion the
term “arithmetical property” is replaced by “arithmetical class”: A class
of Abelian groups is arithmetical if it consists of all those Abelian groups
which possess a certain arithmetical property in common; i. e. if a ne-
cessary and sufficient condition for a group to belong to this class can
be put in the form of a sentence from the arithmetic of Abelian groups.
This meta-mathematical definition of an arithmetical class will be re-
placed in the main body of the paper by a purely mathematical one.
As examples of arithmetical classes we may mention the following: the
class of all groups of order », the class of all eyclic groups of order n,
and the class of all groups in which the order of every element divides n
{where »n is any given positive integer). Thus all groups in which every
non-zero element is of order 2 form an arithmetical class since a group
belongs to this class if and only if it satisfies the condition:
For every o, XAy ==,

Similarly the class of all eyclic groups of order 4 is arithmetical since
groups of this class are characterized by the following condition:

There is an x such that xz+ r#Er+ e+ r, and dFr-trtr4x,
and for every y, either y=xryorly=r+rory=r+artr,ory=rt+ctaotz.

From the definition of arithmetical classes it is easily seen that the
family of these classes is infinitely denumerable. The smallest class in
this family is clearly the empty class, the largest is the class of all Abe-
lian groups. The union and intersection of two arithmetical classes is
again arithmetical; also the complement of an arithmetical class to the
class of all Abelian groups is arithmetical. Thus the tamily of arithmet-
ical classes is a field in the sense of set theory. Our problem is to obtain
a detailed description of this field. We shall apply the familiar notion
of linear independence modulo m 8). In addition we use a stronger notion:
the elements xy,...,, of a group are called linearly independent modulo m
in the stronger sense if whenever kyoy+... 4+ kax, is congruent to 0 mo-
dulo m, then all the coetficients ky,...,k, are also congruent to 0 modulo m
(kyy.. ke being arbitrarvy integers, and m being a positive integer). We
are interested bere only in the case when m =pk where P is & prime num-
ber and k>0. Given any group A=<A4,+> we denote respectively by

() o®[p,kJA), (i) o@[p, kW), (i) o®[p, kA

the maximum number (if it exists) of elements which are
(1) of order gk and linearly independent modulo pk,
(i)’ Uinearly independent modulo p* in the stronger sense,
(i) of order p* and linearly independent modulo p* in the stronger sense;

®) Compare, for instance, [1], p. 582, theorem E.
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if there is no maximum (finite) number of elements sabisfying (i)', (iiy,
or (ili), we put respectively o®[p,k](¥)=oco, o@[p,k](A)=00, or
0®[p,k](U)=o00 (thus making no distinction between various kinds of
infinity). Let RO[p,k,n] (where i=1,2,3, p is a prime and &,n >0)
be the class of all Abelian groups % such that o®@[p,k](A)>n, and
let K[n] be the class of all Abelian groups U such that nx=0 for every
element @ of the group. The classes ROp,k,n] and K[n], just defined,
together with their complements, are referred to as basic classes. It is
easily seen that every basic class is arithmetical. The fundamental result
of this paper can now be formulated as follows: Bvery arithmetical class
of Abelian groups is o finite union of finite intersections of basic classes;
in other words, the family of all arithmetical classes is the smallest field
generated by basic classes,

Using this result we can obtain many examples of non-arithmetical
classes. Consider for instance the class of all infinite eyclic groups. The
usual definition of an infinite cyclic group is not formulated exclusively
in terms of the arithmetic of Abelian groups; nor do we know any char-
acteristic property. of these groups which is formulated in such terms.
Hence the conjecture arises that the class of infinite cyclic groups is not
arithmetical, and our fundamental result permits us to confirm this
conjecture with rigorous proof. In a similar way we can show that, for
instance, the following classes are not arithmetical: the class of all finite
groups, the class of all simple groups, the class of all torsion groups (4. e.,
groups containing exclusively elements of finite order) and that of all
torsion-free groups (i. e., groups containing no element of finite order
except 0).

Two Abelian groups are called arithmetically equivalent (or element-
arily indistinguishable), if they have all arithmetical properties in com-
mon — or, in other words, if every arithmetical class contains either
both these groups or neither of them. The relation of arithmetical equi-
valence is clearly reflexive, symmetric and transitive; hence by applying
to it the partition theorem we obtain a division of all Abelian groups
into mutually exclusive classes such that two groups belong to the same
clags if and only if they are arithmetically equivalent. These classes are
referred to as arithmetical types. Thus the arithmetical type of a group %A
is simply the class of all groups which ave arithmetically equivalent to 2.
As a consequence of the fundamental theorem on arithmetical classes
we obtain the following fundamental result concerning the arithmetical
equivalence of Abelian groups: Let us agree to say that a group
W=(A,+) is of the first kind or of the second kind according to whether
_or not there is a positive integer # such that ne =0 for every element
in A. Then, for two groups A and B to be arithmetically equivalent it is
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necessary and sufficient that W and B be both of the first or boih of the scc-
ond kind and that 9{p,k1(A)=¢O[p,k1(B) (i=1,2,3) for erery prime
number p and every positive integer k. This result provides us in turn with
an exhaustive description of all arithmetical types of Abelian groups;
in meta-mathematical interpretation this amounts to the description of
all complete and consistent extensions of the arithmetic of Ahelian groups.
The notion of arithmetical equivalence is related to that of isomorphism;
in fact the two notions coincide when applied to finite groups, in ge-
neral, however, the notion of arithmetical equivalence is much weaker
than that of isomorphism. This follows, if from nothing clse, from the
fact that for every infinite Abelian group there is an arithmetically equi-
valent group of an arbitrary infinite power given in advance. Our fun-
damental results show also that there are two infinite groups of the same
power, for instance two denumerable groups, which are arithmetically
equivalent without being isomorphic. In particular if A is any group
of the second kind and B is the direct product of ¥ and the additive
group of rationals, then % and B are always arithmetically equivalent
though in general they are not isomorphie. :

A class of Abelian groups is called arithmetically closed if together
with any Abelian group U it also contains all gronps which are arithmet-
ically equivalent to . The family of all arithmetically closed classes
is much more comprehensive than that of all arithmetical classes. Above
we have given examples of classes of Abelian groups which are not arith-
metical. Among them the class of all finite groups, all simple groups
and all torsion-free groups are arithmetically closed, while the classes
of all infinite eyelic groups and of all torsion groups are not even arith-
metically closed. Every arithmetical type is an arithmetically closed class
{without being in general an arithmetical class); an arithmetically closed
class can be characterized as a class which is a union of finitely or in-
finitely many arithmetical types.

The notion of an arithmetical class and all the related notions can
be extended from Abelian groups to arhitrary algebras A={4,+) (and
even, more generally, to arbitrary algebraic systems formed by a set
and a sequence of finitary operations under which this set is closed).
In particular the class of Abelian groups is an arithmetical subclass of
the class of all algebras W =<4 ,+>, and so is the class of all groups.
From the results obtained in the discussion of arithmetical classes of
Abelian groups some conclusions can be derived which concern arithmet-
ical classes of arbitrary algebras. Thus, e. g., it turns out that the class
of all algebras with one generator, the class of all directly indecomposable
algebrag and that of all simple algebras are not arithmetical; all these
classes are not even arithmetically closed.
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The present paper contains the first application in literature of the
technique elaborated by Tarski in his theory of arithmetical clagses.
For the convenience of the reader we give in Chapter 2 a short swm-
mary of [12] in which the mathematical definitions of arithmetical clas-
ses and related notions, and the fundamental theorems concerning these
notions are explicity formulated.

Chapter 1. Set-theoretical notation; auxiliary notions from the theory
of Abelian groups

. Let the variables ,x,y,... represent arbitvary entitics and the va-
riables I,X,Y,... arbitrary sets. The formula

Z,Yy... e X, or  x,y,.¢4,

will express, as usual, the fact that the elements ,Y,... belony, or de
not belong, to X. By

E ()

xeX
where the dots in the parentheses stand for a formula involving x, we
mean the set of all elements 2 in X which satisfy this formula. The for-
fnula X CY expresses the fact that the set X is contained in ¥ (2. €.,
is a subset of Y). The expressions Xu¥, XnY, and X—Y 1’espeetivel‘;;
denote the union, the intersection, and the difference of the sets X and Y.
The empty set will be denoted by 0. | ’ )

The variables f and ¢ will be used to denote arbitrary functions. By
D(f) we denote the domain of a function 1; X being a subset of D(f), the
function obtained from f by restricting its domain to X is denoted by f1X.
To represent function values of a function j we shall sometimes use the
notation f, or f®, instead of the ordinary notation f(x). This will always
be applied to those special functions which are defined below as se-
quenoes. Whenever we decide to apply this notation, we shall use as the
variable denoting the function itself not one of the letters fand g, but one
of ﬁh.ose variables which will be chosen to represent the funetio;l values.
For instance, we may use X to denote a function whose values are sets;
th'en X, denotes the function value correlated with an element ¢ of D(X ).’
Given a funetion X of this kind and an arbitrary set I contained in D (X)
the expressions ’

UX;, and NX

iel ier

denote the union and the iniersection of all sets X,

. 1x

iel

with 7 e I. Furthermore

icm

Elementary properties of Abelian groups 209

denotes the cardinal (or Cartesian) product of all sets X, with ieI, 4. e.,
the set of all functions 7 such that D(f)=1I, and f(i) e X; for every ¢el.
If in particular all the sets X; are identical with a given set ¥, the car-
dinal product is called the cardinal power of ¥ with the ezponent I and
is denoted by Y’ Thus ¥’ is the set of all functions on I to Y, i.e, of
all functions whose domain is I and whose range (counter domain) is
contained in Y. If I is the set consisting of the two numbers 0 and 1,
and if X,=Y and X;=7, we set

[1X,=Yx2Z.
i€l
. The notion of an ordinal number is assumed to be known. It proves

convenient to assume that the ordinal numbers have been constructed
in set theory in such a way that every ordinal » coincides with the seb
of all ordinals smaller than ». The only ordinals which will be involved
in our discussion are the finite ordinals and the ordinal m, i.e., the smal-
lest transfinite ordinal. The finite ordinals are identified with non-neg-
ative integers, and hence o is the set of all non-negative integers. IV will
denote the set of all positive integers (natural numbers) and P will de-
note the set of all prime numbers. It proves convenient to take as car-
dinal numbers special ordinals; namely the smallest ones among all or-
dinals of the same power. In particular all finite ordinals and the or-
dinal o are cardinals.

A function whose domain -is 2 non-negative integer n is referred
to as a finite sequence and specifically as an n-termed sequence; a func-
tion whose domain is o is called an infinite sequence. For an n-termed
sequence x we shall use the alternative designation <{%,...,%,-1>; on the
other hand, the range of this sequence z, 7. e., the set of all its terms,
will be denoted by {zg,...,@_1}. In agreement with our previous con-
vention, X” denotes the set of all n-termed sequences x with all the terms
RgyeeeyLuey in X; similarly for X®. However, the symbol m» where m
and n are two non-negative integers will mostly be used in its ordinary
arithmetical sense; in those few cases in which this symbol is used to
denote the set of all n-termed sequences whosé terms are less than m,
the special meaning of this symbol will be clear from the context.

By an algebra we understand g system constituted by a certain
non-empty set 4 and certain operations O,...,0,—, Wwith the assumption
that the set A is closed under the operations O,,...,0,—y, i. €., that the
operations are performable on arbitrary elements of 4, and always yield
again an element of 4. Formally an algebra can be treated as an n-termed
sequence whose Oth term is the set 4 and the remaining terms are the
operations 0;, 1<i<n. In this paper we shall be concerned almost ex-
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clusively with the case when n=2 and the only operation O, of the al-
gebra is a binary one. The set 4 will actually be referred to as 2, while
for the operation 0, we shall always use the symbol +; hence the no-
tation .
U= (QI(H +> ‘
The set of all such algebras will be denoted by HA.
We shall not always strictly distinguish between an algebra %A and
‘the correlated set 9, Thus instead of elements of A, we shall sometimes
speak of elements of the algebra U itself. Similarly we shall speak of the
power (cardinal number) of an algebra U, of finite, denumerable (i. e.,
infinitely denumerable) algebras. The set of all finite algebras in A will
be denoted by &, and that of all n-element algebras in A by HA,.
Various general algebraic notions, such as a subalgebra, a subalgebra
generated by a set of elements, an algebra with n generators, isomorphism,
homomorphism, a simple algebra, ete. are assumed to be known; the
formula, A=B expresses the fact that the algebras 9 and B are iso-
morphic. By the cardinal (or direct) product of algebras U =&, 1+,
with ¢ ranging over the elements of a set I, we understand the algebra
P=(Py, +) defined in the following way:
PBo=]1 m?;
iel
F g being any two functions in P, f+ g is the function h such that D(h)=1I,
and h(i)=f(i)4-g({) for every ieI. The fact that the algebra P is the
<cardinal product of U with i is expressed by
B=[]2°.
iel
As particular cases of this notion we obtain (as in the case of the car-
-dinal product of sets) the power of an algebra, B, and the cardinal product
of two algebras, B X €. An algebra U is called indecomposable (or directly
indecomposable), if A ¢ A, and i, for any algebras B and €, A=BxCE
implies that either Be A, or CeA,.
The Abelian groups form a subset of A, denoted by AG. The fa-
‘miliar definition of this notion follows:
Definition 1.1. AG is the set consisting of all algebras W= Wy, +>
for which the following three postulates hold:
{i)  For all ® and y, a-+y=y-+ta,
(i) for all x;, y, and 2z, (x4y)+e=a+(y+2),
{iil) for all @ and y there exists a 2z such that Ttz =y.
(The variables z, y, and 2

are assomed to range over the elements of
the set U,.) ’
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The most familiar example of an Abelian group is the additive
group of integers. This group will be denoted by <, hence 3, will denote
the set of all integers. The familiar arithmetical notation used for the
group I natwrally extends to arbitrary Abelian groups. Thus, for any
given Abelian group ¥, the symbols 0, —z, r—y, 'Em; (n — a non-nega-
tive integer), and ke (k — an arbitrary integer) lafr% employed in their
usnal sense. Two elements r,ye¥, ave called congruent modulo m, in
symbols

7=y (mod m),
if for some element ze2,
&r=y-+mz.

The fornwmla wz=y(modm) expresses, of course, the fact that = and y
are not congruent modulo m. The use of the formulas r=y(mod m)
and. a=£y(mod m) will be restricted almost entirely to the case when
y=0. In this particular case we read the formulas: » is divisible by m
and z is not divisible by m, respectively.

For further references we list some elementary properties of con-
gruences:

for all integers m,n,r we have

(i) if e=0(modm) and y=0(modm), then £+ y=0(mod m) and
& —y==0(mod m),

(ii) = 0 (mod m),

(iii) ¥ ne=0(mod m) and n,x=0(mod m), then (n,n,)r=0(mod m),

(iv)  if @x=0(mod m), then —x=0(mod m),

(v) if &=0(mod m), then nw=0(mod nm),

(vi}  f #=0(mod mn), then z=0(mod m),

(vil) if (m,n)=1, 2=0(mod m) and x=0(modn), then x=0(modmn),

(viii) #f (m,n)=1 and nw=0(mod m), then x=0(mod m).

The proof is quite elementary. The symbol (m,n) denotes as usual
the greatest common divisor of the integers m and n.

The notion of the order of an. element x is certainly familiar to the
reader. For a finite group U, the terms “the order of the group A’ and
“the power of the group U are used interchangably.

In the theory of Abelian groups we apply the general algebraic
notions listed previously as well as some related nofions of a more spe-
cialized nature, such as a subgroup, a eyclic group (a group with one gen-
erator), and a quotient group A/B (where B is a subgroup of A). The
following subgroups of an Abelian group % are especially important for
Fundamenta Mathematicae. T. XLI. 14
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our purposes: the group 3 consisting of the only element 0, the group ,%
consisting of all elements xe%, with ma=0, and the group mA con-
sisting of all elements r ¢ %, which are divisible by m; the quotient group
W/mA will be denoted by "U.

" If for some m >0 we have m¥%=3, we call A a group of the first
Lind, symbolically e AG,, otherwise of the second kind, symbolically
NeAG..

It proves convenient to assume that for an arbitrary Abelian group 9
AW=3.

Besides cardinal product of Abelian groups we use (and even more
- frequently) the so-called weak cardinal product. The weak cardinal prod-
uct of Abelian groups AP with iel is the subgroup of HQ[(’) consti-

tuted by all the funetions f satisfying the following condltlon there are
at most finitely many elements ¢ eI for which f() differs from the zero-
-element of AP. Analogously we define the notion of the weak cardinal
power of a group. To construct. the weak eardinal product of an infinite
sequence of groups AP or the weak w-power of a group B we can use
(instead of infinite sequences in which almost all terms are zeros) finite
sequences with arbitrary number of terms. For instance, we may define
the weak w-power of the group J of integers as the group U construeted
in the following way: %, is the set of all finite sequences of integers;
a being an m-termed sequence and b an n-termed sequence of integers
we set
a+b={ay+by,...

a-+b={ay+ by,...

s U1 Dy s Oy oo in case

)aﬂ—-l'+ bn—l,a’ny"'

7bn—1>

1“"1-1>

m<n,

in case m>n.

Hence the symbols like —a, ka, a=b anltomaticmlly acquire a definite
meaning for arbitrary finite sequences ‘@ and b of integers (fmd for an
arbitrary integer k); for instance

ka=Ckay,... k).

In addition to the group J, there are some other Abelian groups
which are of special importance for our further discussion and for which,
therefore, we infroduce special symbols. Thus R is the additive group
of all rationals, and for any given prime number p, R, is the subgroup
of R constituted by all rationals m/n with (n,p)=1. Again, for any given
prime number p, §, is the group constituted by all rationals of the form
mip¥ with 0<m/p*<1 (m and k — arbitrary non-negative integers).
The group operation in €, is addition modulo 1, i. ¢., # and y being any
two elements of R,, #+y is the unique element of Q: which is congruent,
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modulo 1 to the ordinary arithmetical sum of z and y. Finally, for any
given prime number p and for any positive integer k, G is the sub-
group of €, constituted by all elements of €, which are of the form m/p*.

The remaining part of this section is devoted to a somewhat more
detailed discussion of a few less familiar notions of the theory of Abelian
groups:

Definition 1.3. Let A be an Abelian group, let m and » be non-
-mgqtlve integers, and let # be a sequence in %g.

(1) We say that the elements wxy,...,2,—y are independent modulo m
if for every sequence a3 the formula

2 ayr; =0
. . i<n
always implies

a=0mod m) for i=0.1,...,n—1.

(ii) We say that the elements xy,...,2,; are strongly independent mod-
wle m if for every sequence a ¢ J; the formmla
Nagr =0 (mod m)

. . i<n
always implies

a;=0 (mod ) for i=0,1,..,n—1.

The first of the two notions just defined is known in literature as
linear independence modulo m *?).

In what follows Definition 1.3 will be applied only in the case when
m is a power of a prime. In this particular case the fo]lowmg transfor-
mation of 1.3 proves possible and useful: v

THEOREM 1.4. Let e AG, p be a prime, k>0, n>0, and x U
For &y,... Ty to be (1) independent, or (ii) strongly independent modulo p*,
it is necessary and sufficient that for every sequence aeJy the formula

(i) pF 1Y ar;=0, or (i) p*1 Y a;r=0 (mod p¥)
i<n - i<n
always implies
a;=0 (mod p} for

1=0,1,..,n—1.

Definition 1.5. Given any group % e AG, any prime p, and any
integer k>0, we define the ith rank modulo p* of A (i=0,1,2,3), in
symbols

o®[p, k120,

?) See footnote § on page 203,
14%
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ag the maximum finite number, if it exists, of elements in A, which are

for i=0 independent modulo p,

for i=1 of order p* and independent modulo pk,

for 1=2 strongly independent modulo p¥,

for i=3 of order pt and strongly independent modulo pE;

if such a maximum number does not exist, we set
o@Lp, B} (A) = oo.

Instead of “g®” we shall write simply ¢g”. .

It follows from Theorem 1.4 that o[p,k](U) = (n>0) implies the
existence of at least p different elements in p*~191, also that PR i
infinite whenever o[p,k](2) =co. The analogous statements for the ranks
o®[p, k), ¢®[p,k] and ¢@[p,k] are stronger:

THEOREM 1.6. Let A e AG, p be a prime, k>0 and n >0. Then we have

Olp, Kl W=n  (or ¢®[p,k](A) =co) (£=1,2,3)
if and only if there are exactly p (or infinitely many )

for i=1 different elements in P pF=290),

for i=2 elements incongruent modulo pE in pk-19l,

for i=3 elements incongruent modulo pF in (p*-190).

Proof. We shall prove the theorem only for ¢=1. The proofs in
the remaining cases are analogous.

) Assume that g®[p,k](%)=n. Then there exist elements 2, ;... g€
which are of order p* and independent modulo p* The elements
pk*llg,;a,w,- belong to ,(p*~1%) and by Theorem 1.4 they are different
for different sequences a e p". Hence there are at least pr different cle-
ments in ,(p*-190).

Let us take an arbitrary element Y =p*1oy € Hp*-290). Thus
1) » prx, =0.

The element§ Loy P1seey¥ny, @, aTe not linearly independent modulo pF
henee there is a sequence « € p"*1 such that ]

2
(-a) pk—] 2 al-Ti=0,
i<nt1

but (see (1)) a,==0(mod p). Thus for some integers » and s we have
(3) Pllyt§p =—1.
From (1)-(3) we obtain
Yy =pFli,= PR Y (ray) =pk-1 3 hr;
i<n i<n

where ro;=b;(mod p) and bepr. Hene ) ~ . )
exactly pr el;xnents. P nce the group ,(p*=19) consists of
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If o®W[p,k](A) =o0, then for each natural » we can find p= different
clements in ,(p"—1U). Hence the group ,(p+—1A) is infinite.
The proof in the opposite direction is obvious.
It can easily be checked that for every prime p and for every inte-
ger k>0 there is
oO[p, K)A) =o[p,k](,A) and  o®[p,k)(A) = o[p,k1(Z'A).
The connection between o® and g is a little more involved. To state
it we start with the following two lemmata:
LevmMa 1. Let e AG. If
(4) the elements Xgy...,8pm—q €Wy (M =0) are of order p*+i and linearly
independent modulo pk+1
and
(B) the elements Yg,...,Yn—g € Wy (n=0) are of order p* and linearly in-
dependent modulo pk in the stronger sense,
theu
(6) the elements Py, ..., PTmeyyYas--r2Y¥n-y € g are of order p* and linearly
independent modulo p*.
Proof. In fact,
(7) P Y ai(p)+ 3 bi.l/i) =0
i<m i<n

implies p¥-1 Y by =0 (mod pk) from which it follows by (5) that
i<n

(8) by=0(mod p) for i=0,1,..,n—1.

Now we obtain from (5), (7), and (8) that p’;Z. a;; =0, which implies by (4)
<m

a;=0 (mod p) for 7i=0,1,..,m—1.
Lomma 2. Let Ue AG. If
(9)  the elements xg,...,Tpeq € Wo(m 2 0) are linearly independent modulo
pk+1 in the stronger sense
and
(10) the elements gy ...;Yn—y € Ug(n>0) are of order p* and linearly in-
dependent modulo p* in the stronger sense,
then

(11) the elements gy ...y Ty s Yoy s Yn—z € Wo are linearly independent mod-
ulo pk in the stronger sense.
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Proof. In fact

12) pk—l(‘ ;x4 Y by ) =0 (mod p*)
i<m i<n

it follows hy (10) that p* Y a;z; =0 (mod p¥+1) which implies by (9)

(13) ;=0 (mod p) for 4=0,1,..,m—1.
Now we obtain from (12) and (13) P13 byy=0 (mod p*) which im-
i<m

plies by (10)
b;=0 (mod p) for i=0,1,..,n—1.

T ~ . -
THEOREM 1.7. Let W e AG. For every prime p and for every integer

k>0 we have
oO[p, k1(W) = ¢O[p, k+11(A) + o®[p,k](A)  for i=1,2.

Proof. It is sufficient to show that for every >0 fhe condition

(14) ) o[p k] (U) > r
holds if and only if
(18) O, k+1](A) + o®[p, k] (A) > 7.

o .Fron}) Lemmata l.and 2 it follows immediately that (15) implies (14)
rz: I;Lﬁ:}l t,,,. ;].‘h; proof 1]r11 the opposite direction follows by induction with

S 0 7. Assume t S X : lition ( i i
ospeot at for some » >0 the condition (14) implies (15)
(16) o®Lp, k](A) > r+1.

By our inductive assumption (16) implies (15), thus there are integers
m,n%() such that m-4-n=r, ¢®[p,k4+17(A) >m and 0®[p, k] (‘H)>;z.
e e lcarfy out.thej proof for 7=1. Suppose (4) and (3). Thus by
mma 1 we obtain (6). It can easily be seen that (6) and (16) imply
the existence of an element z ¢ A, such that 7

(17)  the elements PEBoyeeey Pllmey s Yo,
independent modulo p. ‘

We assert

w1 ¥n-1y% ave of order pk and linearly

that one of the two following conditions holds: Either

(18)  the elements y ]
¥ Yoy ¥n—1,% are of order p* and linearly independ
modulo p* in the stronger sense, ? oty fudependent
or there exists an element 2'c A, such that

(19) the elements Lyy..

Coy ey Ly 2 are 0F order pk+i ; 1
ol o, -1 f order gkt and linearly independent
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Tn fact, if (18) does not hold, then there is a sequence b e ™! and
an integer I, 0 <I<n, such that

(20) pk'l(:.z,‘ b,-yi-}-b,,z) =0 (mod p*),
21y - hi=£0 (mod p).
From (20) we have
(22) P X byt baz) =p
i<n

for some 2", Suppose now that for.a sequence ae ™t e have
P4 2 @i+ @) =05 then by (22)
i<m
pk_]< 2"i<pwi)+am( E bﬂ/{—" [),,3‘)) = O,
i<n ‘

i<m

by (17)
a=0 (mod p) for i=0,1,..,m—1 and a,b=0 (modp),

which together with (21) gives us a,=0 (mod p). Thus (19) holds.

By (4). (), and each of the conditions (18) and (19) we conclude
that o®[p, k+11(A) + o®@[p, kN A)>r+1.

We carry out the proof for i=2. Suppose (9) and (10). Thus by
Lemma 2 we obtain (11). It is easy to see that (11) and (16) imply the
oxistence of an element z e U, such that

(23) the elements Lyyeoo,Tm_yyYoremsYno1,¢ are linearly independent wmod-
wlo p* in the stronger sense.
We assert that one of the following two conditions holds: Either
(24) the elements wq.... dm—y,s are linearly independent modulo p*+1 in
the stronger seuse,
or there exists an element 2'e A, such that
(25) the elements Yy, Yn—g,& are of order p* and linearly independent
modulo pk in the stronger sense.
In fact, if (24) does not hold, then there is a sequence a el and
an integer I, 0 <!<m, such that

(26) | Z’a‘_‘riw;_a‘mz);—:o (mod pk+1),
P<m

(27) a;io (IIlOd Pl

Let -

(28) ’I,U'——*Z,v a,-ac;—}—a,,,z.

i<m
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It follows from (23) and (27) that
(29) p¥-luws£0 (mod p*),

then by (26), (28) and (29) there are elements 2',1'e¢%, such that
pFae = pkttw’ and
(30) Pt = phip’ 4 pr-1y,
where p*~12's£0 (mod p¥) and pkz’=0. Assume now that for a sequence
b e @™ there is
‘ pk“l( Z’b,-yi+b,,z') =0 (mod pk).
i<n

Then from (28) and (30) we obtain
p"*l( Zb,yi—{-b,,( Zaim,—}-azm))-_:o (mod p*);
i<n i<m

from (23) it follows that b;=0 (modp) for i=0,1,...,2—1 and that
bayy=0 (mod p), which together with (27) gives us b,=0 (mod P).
Thus (25) holds.

By (9), (10) and each of the conditions (24) and (25) we conclude that

o®[p, k+1](2) + ¢®[p, k1) > r+1.
Hence the proof is completed.
For fixed A, p, and ¢ (i=1 or {=2) let
(k) =o®[p,k)(A)  and (k) =o®[p,k](N).

Then by Theorem 1.7 we have
(31) fly=f(k~+1)+g(k).

Consider now two arbitrary functions 119 € (w4 {co})™ sabtistying
equality (31). It follows immediately from (31) that

(32) k) > f(k+1), k) = g(k),
(33) j(k):f(kHH-ngg(kH) for 1=1,2,..

The last equality implies f(k)}j 21 g(k-+4) for 1=1,2,..., hence
<
(34) f(k) >j2!/(k+f)-
€0

Assume now that f(k,)=0 for some ko>0. In this case we have

(85) 100 = 3 g k+-5).
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In fact, with respect to (32) and (34) it is obvious in case k>k, and
follows from (33) in case ky=k-1 for some 1>1.
Returning to the ranks, we obtain by (34) and (33) the following

THROREM 1.8. Let We AG. For every prime p and for every integer
k>0 we have

ePLp k](U) > 3 e®[p, k1) (i=1,2).
i<w
The equality
(O, KW = 3 eO[p,k+ /120 (i=1,2

i<e

holds whenever for some ky>0 we have g®[p,k,1(A)=0.

Let us consider now the special groups mentioned on page 212
and 213. It is quite easy to determine their ranks.

TEEOREM 1.9. For arbitrary primes p and g and jor arbitrary positive
integers k and 1 we hare
(i=17273)7
(i=1,2,3),

oO[p, k](3) =0
oOp, K} (R) =0
19 p=
0@l K1 (%) ={ 0 (l)];]zefwisg
e@p, kl(Ry) =0 . ({=1,3),

1 if p=yq
()] . =
e®lp, k() {0 otherwise

oW [p,k](E) =0 (i=2,3),
1 if p=g and k=l
3 5 .
o®lp, k1(Ca) {0 otherwise
1 4 = nd k<1
O, Gy ={1 T P=0 a

L0 otherwise (1=1,2).

Also the following theorem determining the ranks of cardinal prod-
ucts of algebras can be proved without any difficulties:

THROREM 1.10. For arbitrary groups AP ¢ AG with j ranging over
elements of a set J we have

oPlw, k1 ( [[UP) = X o®1p, KA
J jeJ

Jje

('i=1’273)

for any prime p and for any integer k>0.
Let us consider how an arbitrary Abelian group 9 of the first kind
(see page 212). Since the cyclic group of order p* is isomorphic to the
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eroup G, there exists a uniquely determined function « such that «(p,k)
is a cardinal number and

{36) a(p,k)y70 for at most finitely many couples (p,k>,
(37) A= [T []EP "
pelP keN
Using Theorems 1.9 and 1.10 we obtain from (37)
. _ f a(p,k) whenever a(p,k) is finite

38) ¢@lp, K1 "1 oo 7 whenever a(p,k) is infinite.

If »Y%=3, then from (37) we get
(39) U= [ GEP

@ iSe0
where the set QCP XN is determined by the condition

{40) (p,kre@Q if and only if
From (36)-(40) we derive

TeporEM 1.11. If e AG,, then ¢O[p,k)A) 0 jor at most finitely
amany couples {p,ky (i=1,2,3). And, in particular, if U =3, then

o[p, K] () =0.

In conclusion, we shall prove an important existence-theorem:
THEOREM 1.12. For three arbitrary functions

n=0 (mod p*).

n=£0 (mod p¥)  implies

@0, @@, o® ¢ (o + { oo}y
satisfying the formula

(41) ¢O(p, k) =¢(p,k+1)-+¢®(p,k) for any pe P and k>0 (i=1,2)
there is a group W e AG, such that

{42)  o@p,k](U) =¢O(p,k)
If moreover

{43)

for any peP and k>0 (i=1,2,3)

qO(p,k)£0  jor abt most finitely many couples <p,k> (i=1,2,3)
then one can find such a group A in AG, as well.

Proof. It follows from (39) that with a constant p the functions ¢®
{i=1,2) and @ together satisfy the funetional equation (31). Hence
by (33) and (34) we have, for an arbitrary prime p,

{44) 7O(p, k) =¢®(p,k+1) 4 30O (p k1) (i=1,2),
i<l
{45) ?O(p,k)> ¥ ¢ (p, k7).
i<w

10) See [3], p. 123 and 156 (the first theorem of Prifer).
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Now let us define two funections p®@,y® e (w--{co})” by setting
for every prime p
(46) YO p) =@ (p,k,) (i=1,2)

’

where I, is the smallest positive integer, if it exists, such that

{47) A(p,lj=0  for

=2

if such an integer does not exist, we set p®(p)=0.
Consider now the weak (it may also be strong) cardinal product

U= [ RO ] @70 [] ] €.
geP gel” geP JeXN

{Remark: For an arbitrary group ¥ we set A° =A*.) Using Theorems 1.9
‘and 1.10 we conclude immediately that for an arbitrary prime p and
for an arbitrary integer k>0

QO p K J(A) =@ (p, k) and oO[p, KAy =yp®(p)+ P (p,k+j) (i=1,2).

i<

Suppose that for a prime p there exists an integer k,>0 snch
that (47) holds. Then by (46) and (44) we have for k>k,
(8)  wO(pr=¢®(p,l) =4O (p, k) + 3 ¢® p kL j)=gO(p,k)

jk—k,

and 3 @@ (p,k+j)=0, hence ¢®{p,k|(A)=¢®(p,k); and fm‘f k<k,
j<w
O KW =gOp Ry = X gO(p,h+ 1) =¢O(p, k).

J<ky~k

If for a prime p such a number k, does not exist, we have
p@O{p) =0 and Y ¢®(p,k4-])=occ,

j<w

hence o@W[p . k](A) =00 and by (43) also p@[p, k] (A) =oco.

In this way we have checked that the group %, and thus also the
group R W (see Theorems 1.9 and 1.10), satisfy condition (42). But
R A is always of the second kind, while A proves to be of the first kind
whenever condition (43) is satisfied (since it follows from (48) that in
this case y®(q) =y®@(q) for every qeP). We infer from Theorem 1.11,

that if (43) does not hold then there is no group of the first kind satis-
fying condition (42).
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Chapter 2. General properties of arithmetical functions, classes,
and types

In the Introduction we have roughly characterized, by using meta-
-mathematical language, the notion of an arithmetical class and several
related notions as applied to Abelian groups. In the present chapter
we shall define these notions in a general and purely mathematical way
and we shall discuss (without proof) their fundamental properties, re-
stricting ourselves entirely to the facts which are essential for our fur-
ther study ).

‘We have agreed (in Chapter 1) to denote by A the set of all alge-
bras A=<{W,,+>-

Definition 2.1. By F we denote the set of all functions ' such that

DFy=A and FA)CA; for every algebra WeA.
Definition 2.2. Let F and ¢ be functions in F and let k >0. Then

(i)  The union Fu @G and the intersection F n @ of the functions ¥ and &
~are the functions in F' defined by the conditions:

FoGU)=FA) oGO and FnGA)=FE) G

for every algebra e A.
Analogously we define the wnion \UH,; and the intersection ﬂ’H i
iel ie
for arbitrary functions H; in F corrvelated with elements 7 of a cer-
tain set 1. :
(i) The complement F of the function F' is a function in F defined by
the eondition

FO)=U—F) for every algebra A e A.

(iii) ViF and AF are functions in F defined by the conditions
for every algebra A, v, F(A) is the set of all x VL such that there
is a y e F() with y;=ux; for every ik,
for every algebra W eA, A F(N) is the set of all x ey such that for
every y ey, if yi=a; for every ik, then y ¢ F(2).
We shall refer to the operations v, and Ay as the ewistential quanti-
fication (or outer cyliudrification) and the wuniversal quantification. (ov
inner eylindrification) with respect to k.

) Confront with the last section of the Introduction. For the intuitive content
of the notions introdneed in this chapter and for their meta-mathematical adequates
see [12].
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Definition 2.3. 0 and U are the functions in F defined by the
condition

0W =0 and UTN)=W; for every WeHA.

Definition 2.4. We say that the function F is included in the funec-

tion @, in symbols
rcea,
it F(A) C GA) for every Ae A.

The notion of a Boolean algebra and the elements of the general
theory of Boolean algebras are assumed to be familiar to the reader.
Boolean algebras will be treated here as algebras with two binary oper-
ations, - (join operation) and - (meet operation), and one unary oper-
ation, ~ (complementation).

From the Definitions 2.1-2.4 we obtain immediately

THEOREM 2.3.

(i) The set F together with the operations o, ~, and ~ jorms a Boolean
algebra.

Iu this algebra

(i) 0 and U are respectively the zero element and the wnit element, and
C is the inclusion relation,

(iii) U and (1 are the join and meet operations on arbitrary systems of
elements.

As a consequence of this theorem. the notions defined in 2.2 (i) (ii}
and 2.4 have all formal properties of the corresponding set-theoretical
notions (union, intersection, ete.).

From Definitions 2.1-2.4 we obtain the following two theorems:

THrOREM 2.6. If F e F and k>0, then

/\kF:T/;F:-

THEOREM 2.7. For any F,GeF and k>0, we have
(i) V=0 and p0=0,
(if) VelU=U and pU=T,
(iii) FCvpF and A FCF,
(iv) ViVIF =Y Vi and  ppniF = naiF,
(v) YilF @)=V FuViG and AP @) =pFnpG,
{vi) VEHENG)CVEF vt and  pF o acGC A(Fo @),
{(vii) FCG implies ViFCvpG and pALFCAG,
{viii) Vi AtF C pV i F.
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Definition 2.8. By the dimension index of a function FeF, in
symbols Dm(F), we understand the set determined by the formula

Dm (F)= F (Vi F'#F).
€w

In other words, the set Dm(F) consists of all non-negative integers k
for which there is an algebra e A and there are sequences x,yeUTG
such that

ay=y; for ik, zeF(A)  but yéRA).

The fundamental properties of the dimension index arve gathered
in the following

THEOREM 2.9.

(i) Dm (0) =Dm(U)=0.
Furthermore, for any F,G ¢ F and k>0, we have:

'(ii) Dn(Fu@)CDm(F)uDm(G) and Dm(F~G)CDm(F)oDm(F),

(i) Dm(F)=Dm(F),

(iv) Dm(VeF)CDm(F)—- {k} and Dm(AxF)C Dm(F)—{k}.

Then we have

THEOREM 2.10. For any F,G ¢ F and k>0, if k ¢ Dm(F), then

V(FrnG)=Fov,d and pp(Fu@)=FupnG.

Definition 2.11.

(i) TFor any k,l,m>0, I[k,l] and S[k,l,m] are the functions in F
defined by the following conditions: '

Ik QW) = F (we=a) and 8Tk, 1,m) (W)= F (-t 2= 2)

xeuy x”‘ﬁ’
for every algebra e A.

(i) The functions I[k,1] and S[k,l,m] for any k,I,m>0 ave called
elementary functions and the set. of these functions is denoted
by EF.

Definition 2.12. The set of the arithmetical functions, in symbols AF,
is taken to be the intersection of all the sets X CF which include EF
as a subset and are closed under the operations v, , and Vv, for
k=0,1,.. )
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From 2.5, 2.6 and 2.12 we obtain
THEOREM 2.15.
(i) EFCAFCF.

(i)  The system <AF,o,n, 7> is a Boolean algebra (and, in fact, ¢ sub-
algebra of “F,u,n, 7 Y). 2.5 (ii), as well as 2.5 (iii) restricted o finite
systems of elements, apply to this algebra.

(i) The set AF is closed under the operations Vi and Ay for k=0,1,...

It can be proved that every function ¥ ¢ 4AF can be represented
in the form
F=04,...,;01G.

where each of the operations O (i=0,1,...,m—1) coincides with one
of the operations V,,V,,.. and Ag,A;...., and where ¢ belongs to the
subalgebra of the Boolean algebra ¢AF,u,n,” . generated by the
set EF (i. e., @ is a finite union of finite intersections of elementary funec-
tions and their complements). From this it follows easily that the set 4AF
is denumerable.

Definition 2.14. A function P is called a simple arithmetical fune-
tion or, for brevity, a simple function it

FCAF and Dm(F)=0.

The set of all such functions is denoted by SF.
In othier words, an arithmetical funetion F is in SF if and only if

F=v.F for every k>0,
or if and only if
P(U) € {0,%} e A.

for every

The system <SF,u,n,  is a denumerable Boolean algebra (and
in fact, a subalgebra of <AF,u,n, 7 >). 2.5 (ii), as well as 2.5 (iil) re-
stricted to finite systems of elements, apply to this algebra.

Definition 2.15.

(i) For every function F e SF, we set

CL(F) gw (Pan =2u3).

€«

(ify A set SCHA is called an arithmetical class it there is a function
F ¢ SF for which
S =CL(F).

The family of all arithmetical classes is denoted by AC.
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The function Gl maps the system <SF,u,n, ) isomorphically
onto the system <4C,u,n, - where the operation ~¢% is deter-
mined by the equality

8P =g — 8

for every SCHA.

Hence the system <AC,u,n,~@3 is a denumerable Boolean algebra.
In other words, the family AC is a denumerable field of subsets of A.
Many different instances of arithmetical classes can be found among
sets of algebraic systems discussed in modern algebra. For instance, the
class G of all groups and the class AG of all Abelian groups are in AC.
In fact, let
F=noA1Vo(8[0,1,2]n8[1,0,2]),

G =noh1AaV3V,eV5/8[0,1,8]08(1,2,4]1 8[3,2,5] n8[0,4,5])
N AgA1VeS[0,2,11m AgA,VLS[2,0,1].
Then F,G¢ e SF and
G=Cl(@), AG=Cl(FnG).

The isomorphism type of each finite algebra % ¢ A and the class A,
{of all n-element algebras in HA), for every n >0, are further examples
of arithmetical classes.

‘We shall consider also two families which are more comprehensive
than AC, in fact, AC, and AC,. Since AC is denumerable, 4C, is the
family of all (finite or infinite) unions of arithmetical classes and, simi-
larly, AC, is the family of all intersections. Fundamental properties of
AC, and AC; can easily be derived from those of AC.

Definition 2.16.

{i) Two algebras A, BeA are said to bhe arithmetically equivalent,
symbolically
A= B,
if, for every set S e AC,

either A, BeS or
{ii) TFor every algebra U e A, the set
=B

n{Eﬂ'l ( )

is called the arithmetical type of A, in symbols T(A).

The family of all arithmetical types T(AN) of algebras A e A is de-
noted by AT.

A B¢ S,

¢ii)
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By 2.16 arithmetical types are partition sets under the equivalence
relation =, and for every algebra U ¢ A,

T = N 8.
HeSedC
Hence AT C ACG;. Thus AT lLas at most the power of the continuum.
In fact, AT hat exactly the power of the continuum. To show this it
suffices to construet a subfamily K of AT with the power of the con-
tinuum. Many families K with this property are known; it will be seen
in Chapter 5 that one of them is the family of all arithmetical types of
Abelian groups.

As the last in the series of notions defined exclusively in terms of AC
and general set-theoretical notions, we introduce the notions of an arith-
metically closed class of algebras.

Definition 2.17. A set SCHA is called an arithmetically closed elass if
together with every algebra U it contains all algebras B e A such that
W~ B. The tamily of all arithmetically closed classes is denoted by ACC.

From Definitions 2.16 and .2.17 we infer immediately that 4CC
is a complete and atomistic field of subsets of A, and that AT is the
set. of atoms of this field. Hence 4C, AC,, AC;C ACC.

All the notions discussed so far in this section apply to arbitrary
algebras (in A). In algebraic discussion, however, we are usually inter-
ested not in arbitrary algebras but in algebras having some special prop-
erties and constituting a well determined set 9/ that remains fixed
throughout the discussion, thus e. g., we discuss groups, or Abelian
groups, ete. To obtain an adequate apparatus for studying arithmetical
properties of algebras which constitute an arbitrary set U, we first gen-
eralize the notions previously introduced and, in fact, we subject them
to a process of relativization. As opposed to the new, relative notions,
the old notions will be referred to as absolute ones. If 9 is a subset of A,
the definitions of relativized notions are obtained from those of absolute
notions in the following way: by modifying Definition 2.1, we agree to de-
note by F(U) the set of all functions F such that D(F)=9 and F(A)C A3,
for every algebra % e Y; in all the subsequent definitions we replace F
by F(U). In such a way we obtain successively the definitions of EF ()
(the set of all elementary functions on U), AF(U), SF(U), AC(U) (the
family of all arithmetical classes in U), T Toy, AT(U), ACC(U).

Obviously the absolute notions are particular cases of the corres-
ponding relative notions, obtaining by taking A for U, e. g., we have
AC=AC (A).

If 9 is itself an arithmetical class in the abgolute sense (in the pre-
sent paper we are interested only in this case), then many of the rela-
Fﬁndamenta Mathematicae. T. XLI. 15


GUEST


228 W. Szmielew

tive notions simply coincide with the corresponding absolute notions.

In tact, we have then
Se AC(U) SedC

and a similar conclusion holds for 8¢ AC(U),, S e AC(U)s, S e AT (U)
and 8« ACC(U),

for any UA,B e U, 9I§,§B if and only it A~xPB 12),

if and only if SC and

for any

Hence there is no need for using relative notions referring to sets of al-
gebras, like AC(U), if U is an arithmetical class; the same applies to
the notions %5 B and Ty (). On the other hand, even in the case where
2 is an arithmetical class, it proves convenient to use relative notiong
referring to functions on algebras, like AF(Y).

A great majority of theorems concerning absolute notions can be
extended to relative notions. If 9 is an arithmetical class all the theo-
rems of this chapter remain true by the relativisation to 9. The state-
ments concerning the powers of certain sets have to be written in a weaker
form; in fact, the phrases is denumerable and has the power of conti-
nuum should be replaced by is at most denumerable and has at most
the power of continuum.

When studying a set 2 of algebras from the view point of its arith-
metical properties, we attempt to obtain an exhaustive description of
arithmetical classes. So far these attempts have been successful only in
a restricted number of cases. In all those cases éssentially the same pro-
cedure has been applied, which we want to disenss here in some detail.

In view of 2.15 the description of arithmetical classes amounts to
that of simple funetions; in practice the latter result is always obtained
a8 & consequence of an analogous, though more general, result concern-
ing all arithmetical functions. By definition arithmetical functions are
recursively constructed from the elementary functions, I%k,71|U and
8[k,1,m]| U by means of the operations u, 7, and V. The first two
operations have a very elementary character and are closely related to
the se’?«theoretical operations of addition and complementation, while
-t.he third one — the operation of (existential) quantification — i:s more
1nvolx.73d and may considerably change the mature of an arithmetical
funetion to which it is applied. Hence we obtain a clearer insight into
thfa 'structm’e of arithmetical functions if we succeed in replacing the
original construction of those functions by another recursive procedure

2) It remains true for arbitrary U c A.
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in which v and ~ ave the only operations applied. This is achieved by
singling out a certain set B of arithmetical functions (which is usually
more comprehensive than the set of all elementary functions) and by
proving in an effective way that every arithmetical function can be
obtained from functions in B by means of the operations v and —,
i. e., belongs to the set |B| consisting of finite unions of finite intersec-
tions of functions in B and their complements; consequently the formmula

(1 AF(Y)= B

is established. The functions constituting B will be referred to as basic
functions. The set B is selected in such a way that for any two func-
tions represented as finite unions of finite intersections of basic fune-
tions and their complements we are able to check whether or not they
coincide.

It is important to realize that no mechanical prescription for de-
fining the set B can be given; an appropriate selection of basie functions
for a given set 9 of algebras is often the most creative and diffieult point
in the whole procedure. In showing that the set B satisfies formula (1)
the crucial point is the proof that the operation v, performed on a func-
tion F e |B| yields again a function in |B]. As can easily be seen, it suf-
fices to establish this fact for speecial functions # in | B|, namely for func-
tions which are finite intersections of basic functions and-their comple-
ments; moreover we can restrict ourselves to basic functions whose di-
mension index contains k.

With the help of formula (1) we are usually able to derive the formula

(2) SF(U)={B~SF(U)|.

If we now agree to understand by a basic class every arithmetical class §
of the form S§=CI(F) where e BnSF({Y) and to denote the set of all
hasie classes by G, we conclude from (2) that

(3) AC(U)=|C]|,

where the set |C| consists of finite unions of finite intersections of basic
classes and their complements (to ). This is the form in which the de-
sired description of all arithmetical classes is obfained. Using this resulf
we obtain in turn a characterization of other families defined in terms
of AC(9), and in particular of the family AT () of all arithmetical
types.
For obvious reasons the procedure just outlined is called the method
of eliminating quantification.
In applications the set B usually satisfies an additional assumption:
it k21 and Fe B, then v (I[k,1]|U~F)eB. If we now agree to under-
16%
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stand by basic sentential functions all the sentential functions in the
formalize¢ arithmetic of ¢ 3) with which functions in B are correlated ),
then our assumption concerning B can be formulated in meta-mathe-
matical terms as follows: @ being a basic sentential function, every
sentential funetion ¥ obtained by substituting arbitrary variables for
some or all free variables in @ iy again a basic sentential function. This
assumption implies, for instance, that if S[k,l,m]|U (where k,I,m are
three distinet integers) is in B, then S[&,V,m']|U (where %',I',m’ are
three arbitrary integers) is also in B. Under the above assumption it
suffices to carvy the process of eliminating quantification for a single,
arbitrarily chosen valune of k, e. g., for k=0.

Various conditions under which formula (1) implies formula (2) —
hence also formula (3) — are known. We shall indicate one of them
which is applicable in the case where 2 coincides with the set AG ot
Abelian groups. In this condition we make two assumptions regarding
U and B which in meta-mathematical terminology are reducible to the
following ones: First we assume that a certain individual constant, say “¢”,
denoting an element of an algebra is definable in the arithmetic of U;
in other words, a sentential function @ with just one free variable can
be constructed of which it can be shown that in every algebra e 9
there is only one element which satisfies @, and this element is denoted
by e. (If, for instance, U is the set of all Abelian groups, we can take
#+o=gx for @ and ¢ coincides then with the zero element of a group.)
Secondly, we assume that if 9 is a set of algebras for which such a con-
stant ¢ has been arithmetically defined, then the basic sentential fune-
tions selected for 2 satisfy the following condition: @ being a basic sen-
tential function, every sentential function ¥ obtained by substituting
the constant ¢ for some or all free variables in @ is again a basic sen-

. tential function.

We shall now give a theorem which provides a formal foundation
for the method deseribed above:

THEOREM 2.18 %), Let U C A and let B a set satisfying the following
conditions:

{1) BCAF(U),

(ii) EF(%)C|B],

(iif) given any integers k,1>0 with k=21 and o function FeB, we have
VeIEJ|U~F) e B,

). See the first section of the Introducton.
1) See [12], p. 706, 707.

%) This theorem is not formulated in [12] but it is also due to Tarski.
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(iv) given a sequence {Fgy...,Fo_y> suchthat, for i=0,1,...,n—1,0eDm(F;),
and F ¢ B or F;e B, we have
VoV F; e |B5
i<n
Then
@ AF(U)=|B|;
(In SF(U)=|B~SF(U)|

if the sets U and B satisfy moreover the following condition:
(v) there is a function G ¢ AF(U) such that
Vol@ ~ ASI10,1| U o VTT0T][U N &) =U

and that, for every F,
F e B implies V(GnF)eB.

Chapter 3. Basic functions for Abelian groups

In the present chapter we shall define the set B of basic funef,ions
for Abelian groups. The set B will be seen to satisfy the conditions (1)-(v.)
of Theorem 2.18. We shall establish the dimension indices of .a]l basic
functions and distinguish among them the simple basic functions. B.y
means of the simple basic functions we shall construct the seb C of basic
arithmetical classes. In conclusion we shall discuss connections between
various basic functions. .
Throughout the present chapter we shall write
I{k,1] instead of I[k,N|AG,
S(k,1,m] instead of S[k,l,m]|AG,
U instead of U|AG.

Definition 3.1. Given an arbitrary integer n>0 and two finite
sequences of integers
0 ={ays s tnq),

4 ==(gylyy...,0nq) ANA

we define for every algebra A e AG
(i) Bla](¥)=Bla,,a')(W=E (X aa=0},

xe”s} i<n
given still another integer m >0, we define for A e« AG

(i) 0m;a)(M)=Clm; a0, 0 W=F (X az=0(mod m)).-

xe!lmv
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We set

E’[”’] :ETa—]i
Cim;a] =Clm;a],

Elay,a'] ='_Emyal:|:
Clm;ag,a0']=Clm;aq,a’].

‘We shall refer to the functions of the form E[a], Z[a], O[m;a], Clm;a)
a8 an equality function, an inequality function, a congruence function

and an incongruence function, respectively.
We shall refer to the function ‘of the form
Clp'=1;a] ~ Clphal
where p is a prime and I>0, as a compler function.

Remark. We can always assume the sequence @ to have as many
terms as we actually need, since the zero-terms do not affect the vzmlués
of the functions F[a] and CO[m;a]; hence, in particular, we can always
assume the sequence o’ to be non-empty.

Throughout the rest of our paper, by sequences we shall mean tinite,
non-empty sequences of integers, unless otherwise. specified.

.Deflnltlon 3.2, Given a prime p and any integers k>0, >0 e
define for cvery algebra % e AG

RO[p k= | Yo whenever  @p,k](0) > n

0 otherwise (i=1,2,3).

We set
EOlp,k,n]=F%p,k, n].
Definition 3.3.-Giv ; . N
Aeq 5 inition 3.3.-Given an integer n >0, we define for every algebra
K0 = | Uy whenever 2¥—3,

0 therwige.
We set otherwise

Kin]=K[n].
Definition 3.+. The following functions in F(AG):
) Efa] for every sequence a,

—

154

) C[p*a] for ime " ey i
Segjuénlg . every prime p, for every integer k>0 and for every
® :
(3) E¥[p,k,n] for every prime p and for all integers &, n > 0 (1=1,2,3)
(4) K[n] for every integer n>0 o

we specify as basic functions. The set of all bagi i
. agic functions we
by B. By |B| we denote, as in Chapter 2, the g

- ) - » 7
unions of finite intersections of functions in B

denote
set consisting of finite
and their complements.
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Remark. We can restriet the basic functions E[a] to those for
which the sequence ¢ has at least one term different from 0, and the
basic functions C[m;a] to those for which the sequence « has at least
one term not divisible by m; by this restriction the set |B| does not
change.

THEOREM 3.35.

EF(AG) CB.

In fact, all the elementary functions I(k,l] and S[k,I,m] are among
the basic functions Elal.
THEOREM 3.6.
BCAF(AG).
1]
Proof. First of all we shall prove that

{1) Elale AF(AG)

for every sequence d.

Given any integers m,n>0 and arbitrary sequences beewm and
ceon, lot us define an auxiliary function H[b,¢] in F(AG) by the con-
dition

Hib,e)W)= E | Xap=Yw,) for every UeAG,

xeuf PN

with the additional assumption that in case m=0 or n=0 we replace
the corresponding sum by 0.

It is obvious that for every sequence « there exist two sequences
b and ¢ of non-negative integers such that

Ela}=H[b,dl,
and that for any two sequences b,¢ of non-negative integers we have
H[b,e]=H[e,b].

Thus to prove (1) it is sufficient to show that for any two integers
m>n =0 and for any sequences b e o™ and ¢e 0"

(2) Hib,o] e AF(AG).

We carry out the proof by means of induction with respect to m.
Now
' m=n=0 implies H[b,c]=Uc¢ AF(AG),
m=1 and n=0 implies H[b,c]=~8[bs,bs,b))e AF(AG),
m=n=1 implies H[b,c}=1I[by,c]c AF(AG).
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Given now any two sequences

beoml and cew® where m>0 and m41>n,
let

P =MaX (bgyureyby,CoyennyCay) 1.
With these assumptions m-+-1>n implieg
H[b;a}=Vr(S[bm—11bmy7']”H[<bo:-'-:]’141—25"?:0])*
and m+1=n implies
Hib,c]=V,V,1q (8B by 7T N SCu-sgy Cuy,r+1]
”H[<bo---vbm—2;"'>7<007---50n—-377'+1>])-
Hence by 2.13 the problem is reduced to proving (2) for
b=Cbgyoisbmes, "> e and ceo"
where m >n, or for
b=Cbgyeueybypes, > cwm  and c¥=<co,...,c,,__3,r+1} € =1

where m =n—1.

Thus formula (2), and in consequence formula (1), are proved.

To eomplete the proof it is sufficient to notice that

1° By Definition 3.1, for any integers m,n >0.and for any a-termed
sequence a, we have O’[m;a,]=v,.E[(a,0,...,a,,_l,—m>]‘

?“ By Definition 3.2 and by Theorem 1.4, for any prime p and for
any integers k,n >0, we have

R(D[p’k’”] =VgVi.. Vn—l( N E['Pk"l(l] nN E(P"(d) )
a€Q, aeQ, .
R®p, k)= VoV Vg () Cpk; pi-ig],
a€Qy

B9,k n] =V VoV 0 0Ips5p%-2a] 0 1) Blpral),
aeQy  aeQ, R

where Q} is the set of all sequences 4 ep with at least one term ;=20
and Qoz is the s'et‘ Qf all sequences @e{0,1)* with exactly one term a; =;é0.7
3% By Definition 3.3, for any integer n>0, we have K[n] = B[{n>].

Now let us determine the dimension ind " .
funections: ex of each of the basic
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THEOREM 3.7. For every sequence a

(1) Dm(Ela]) = [ (az#0).

ke D(a)

For every sequence a and for an arbitrary integer wm >1

(2) : Dm(C[m;al) = F (ax==0 (mod m)).
keD(@)

For any prime p and for any integers kyn >0

(3) ' RP[p,k,n]e SF(AG) (i==1,2,3).
For arbitrary integer n>>0
{4) Kn]e SF(AG).

Prootf. It is obvious that a,=0 implies k¢ Dm(E[a]). Assunie now
that ¢, 0. Consider the group J of integers and two sequences 2,1 e Iy
given by the conditions

r=0 for {=0,1,2,.,
jr for =k,
= 1 .
0 otherwige.

Then # e E[a](3) but y ¢ E[a](T). Hence k e Dm(E[a]).

The proof of (2) is amalogous; (3) and (4) are obvious by Defini-
tiong 3.2 and 3.3. .

Remark. In conclusion of Theorem 3.7 we obtain (see the Remark
following Definition 3.4) that the only simple funetions among basic
functions are R® [p,k,n] and K[n]. Hence as basic classes (see Chapter 2,
page 229) we specify the arithmetical classes

ROp,kyn] =CLRO[p, &, n]) (i=1,2,3),
K[n]=CL(K[n]).

The set of all basic classes we denote by C. By [G| we denote, as
in Chapter 2, the smallest field over C, i. ¢., the set consisting of finite
unions of finite intersections of basic classes and their complements.
to AG. '

We set

:ﬁ(")[p,k,n]=$m[p,k,n] and  K[n]=Knl.
THEOREM 3.8. Given any integers k,1>0 with k341 and a function

FeB, we have
Vall[k,Q]nF)eB.
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Proof. Let F=F[a]. We can assume (se¢ the Remark following
Definition 3.1) that %,l e D(a). Then we easily verify that
{1) Vi(I[k,l]n Bla]) = E[a'],
where the sequence &' is given by conditions D(a’)=D(a) and -
ap=0, aj=az -+ a, a;=a; for {ieD(a')-—{k,IV.

For F =C[m;a] the procedure is analogous.
If F is a simple funection we have

VelI[k, 1 nF) = Vi I [k, ] nF =1 nF =P,

Thus the proof is completed.
THEOREM 3.9. Let G =E[<1>]. Then we have

(i) VoG vy[I[0,1]1n VoIT0,1TA @ ])=U;
(ii) if FeB, then Vv (GnF)eB.

Proof. Using the equality (1) from the proof of Theorem 3.8, we
can put the left side of the equality (i) in the form

Vo(BIK] N AL(IT0,1] ¢ BL/0,130).

Since in every group there is exactly one zero-clement, it is casy to check
that the last arithmetical function is equal to U.

Let F be a basic function. First of all assume that F= B[a]. Then
we easily check that v(#~ BEla])=E[a'], where the sequence a’ is given
by conditions

D(a’)=D(a), ag =0, a;=a; for ieD(a')—{0}.

For F=C[m;a] the procedure is analogous.
If F is a simple function we have
V(G F) =V G@A"F=UnF=F.

Thus the proof is completed.

By Theorems 3.5, 3.6, 3.8 and 3.9 the set B of hasic functions for
Abelian groups satisfies conditions (i)-(iii) and (v) of Theorem 2.18, The
proof that the set B satisfies also condition (iv) of Theorem 2.18, i e,
the whole procedure of eliminating the qualification Vy, 18 given in the
next chapter. ‘

Let us now formulate some fundamental properties of hasic fune-

tions. First of all, Definition 3.1 and Theorem 1.2 indicate the following
elementary properties of E[a] and Clm;jal:
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THEOREM 3.10. For all sequences a,b and for all integers m,n>0
we have

(i) ‘ Bla1C Clmal,

(ii) Ela]ln E[b]C E[a+b] and E[a]n E[b]CE[a—b],

(iil) Clm;aln Clm;d) C Clinsa+5] and  Clm;a]l n Clm;b] C Clm;a—0b],
(iv) Bla]n E[b]C Ela+b] and El[eln E[b]C Ela—D],

(v)  Clm;a]lnCm;b]1C Clm;a+b] and C[m;alnClm;b]C Olm;a—>b],
{vi) Ela]l=E[—a] and C[m;a]=C[m;—a],

{vii) Ela]C E[na]l and C[m;a] C C[n-m;nal,

{viii) E[nalaE[mal=E[(n,n;)a] and C[mynalnClm,ne]=C[m;(n,n)al,
{ix) Cim-n;a] CCLinyal,

{x) Cluc-nial =Clmsal~ Clusal  whenever (m,n)=1,

{xi) Clmgnal=Clmyal  whenever  (m,n)=1.

From 32.10 we can easily deduce the following five theorems:
THEOREM 3.11.
(i)  For any sequence a and for any integer n >0 we have
Eln,a)CCn;0,a].
{i1) For any sequence a and for any integers m,n >0 we have
E(na]C Clmja]l  whenever (m,n)=1.

TEEOREM 3.12. Given any integers iy, ,n, >0 and arbitrary sequences
a®, a®, we can find (effectively) sequence a, bP. D such that for d=(n,,n.)
we have

E[ny,a®1n E(n,,a®] =E[d,a] ~ E[0,b®] ~ B[0,5%],

Blny.a®)n E[ny,6®) = (E[d,a]n B[0,6®]~ E[0 ,b®]) o (E[n,,a® ]~ E[d, a]).
Proof. For some integers I,k
kg -+ kang=d.

It is easy to check that the sequences a,bm,h@ are determined in the
following way:

a = k0® -+ L,a®,
and

it b:’-l(fa“h%a(”, then b®=Iyb, bP.=k,b.
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THEOREM 3.13. Given a prime p, arbitrary integers ky,ky,li, 1l such that
0<k <k, k<ly and k,<ly, L>1,,
and any two sequences a® and a®, we have
Cp's; 9%, a@] ~ C[phyphe, a®] = O[ph; p*, a®] ~ Clp'; 0, ple—hra® — a @],
OTph; p#, a0] Gt ph, a®] = O [pi; phs, a®] o Tpk; 0, pha—iaa® — a)].
THEOREM 3.14. Given a prime p, arbitrary positive integers n,k,l,
sueh that

(1) k<l and 2520 (modpkt1),

and arbitrary sequences a and b, we can find (effectively) a sequence e
such that
En,a]n Clp!sp4 bl =Eln,a] ~ Op}0,¢l,
Bln,a)o Tlpt k6] =Bln,a]n Op40,6).
Proof. Let n=pmr where (p,r)=1.
to check that ¢ =rb—p¢—ma.
THEOREM 3.15. Given any integers k,l,m,n,r such that

kmLtlr=1,

By (1) it is m<k. It is easy

M,Nn,r>0 (m,r)=1,
we have, for any sequence a,
Olmir,a]=Clm;n,la).

Finally let us consider some relations befween the simple basic
functions.

.TH:EOREM 3.16. For any prime p, for any integers k,m,n >0, and
for i=1,2,3, we have

(1) R®p,k,m]CRO[p,k,n] and R®p,k,m] C R®[p .k, ]
whenever m > n.
For any prime p, for any integers T,n>0, and for i=1,2, we have
@) i
2) E®[p,k,n) =»R(8)[P:k:n]\-;<u (RO[p,k+1,m]n R®[p, &, n— m])

m<n
) T(i) A nl.
For any two integers m,n >0, we have e A an

(3) K[m]CK[n] whenever n=0 (mod n).
For any prime p, and for any integers k,r >0, we have

) E[p]=E[p*'r]n B®p,k+1,1] (pyr)=1.
For any prime p, and for any integers k,n,r >0, we have

= > Kk £
) Kp“r1oB®[p,k,n]=K(p*r]n E®p, k,n]  whenever (p,r)=1.

whenever
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Remark. We obtain analogous formulas for basic classes if in (1)-(3)
we replace K’ and “R” by “K” and “R*, respectively.

Proof. (1) results at once from Definition 3.2 and Theorem 1.8,
(2) tollows immediately from Theorem 1.7, (3) is obvions by Defini-
tion 3.3. (4) is implied by the form (39) (in Chapter 1) of groups of the
first kind and by Theorems 1’9 and 1.10, (3) results simply from Theo-
rems 1.11 and 1.8.

In conclusion we introduce some auxiliary functions in F(HAG)
which will be seen to be in |B].

Definition 3.17. Given a prime p and any integers k,n >0, we
define for every algebra A e AG

lmg“ whenever there are at least n different elements
= in H(p*120),
Lo

WL whenever there are at least n eclements incon-
(ii) L@)[p.l'.n}(‘)I)=| : gruent modulo p* in p—19U,
0

i) L9p,k,n] Q)
otherwise,

otherwise,

N2 whenever there are at least n elements incon-
(i) LZ®p,k,nj () = gruent modulo pk in {p*1A),
0 otherwise.
Definition 3.18. Given arbitrary integers m,n >0, we define for
every algebra A e AG
UG whenever there are at least n different elements in 3,
o
THEOREM 3.19. For every prime p and for any integers k,n>0
L(i)[psk’”]EB (¢=1,2,3).

Lim,n]

otherwise.

Proof. Let I be the integer determined by the condition p —1<<a<p’.
Then by Theorem 1.6 we have L®[p,k,n]=R®[p,k,/jeB.
THEEOREM 3.20. For any integers m,n>>0
L{m,n] < |B|.
Proof. For the time being let p be the sequence of all primes or-
dered by the relation <. Let the integer » be determined by the condition

1) Proa <<y
The integer m can be put in the form
{2) m==1]pk where s>r and ;>=0.

i<s
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We determine now an s-termed sequence & of positive integers by the
condition

(3) phit<n<ph for i=0,1,..,5—1
and we set ’
(4) t=TIpl—0
We have "
L{mn]=L[m ]~ (K[t]o K[t]) = (L{m,n]~ K{t})u (L{m,n] ~ K[t]).

But from (1)-(4) it follows that
(5) K[t]CL{m,n].

To show it we take an Abelian group U such that K[(](A)=AL. By (4)
there is in % an element o either of infinite order, or of order piitli, or
at last of a prime order ¢ >p.. It follows from (1)-(3) that in each of the
three cases the elements

me, 2(mz), ..., n(me),

of course divisible by m, are all different. Hence L[n,n](2) =AL. Thus
formula (5) is proved and therefore
Lim,n]= (Llm,n]n K[t]) v K[t].
Thus to prove that L{m,n] ¢ |B], it is sufficient to prove that
Lim,n]nK[t]e |B].

Take an Abelian group U such that L[m,n]n K[¢](A)=A*. Thus
tA =3 and 7 >n. Using the form ( 39) from Chapter 1 we have

QI ” (o (75, )

i<s o<k<kgtl TP
and then
mU =[]

P<s <k<k;+p

mA=[] ] (ga(p‘ i),

i<r o<j<k, ¥

a(py, k)
G:Fhk—h’

or, putting j==%—1;,

If m¥ is a finite group, then the cardinals a(py, ;+7) are finite and by
formula (38) from Chapter 1

a(pi, i +7) =o®[p;, i+
Hence (s, 14 ) = 0® [y, [+ 71(A)

=1 II p] @t
i<r o<j<k;
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and putting
wp= 3 Jo®{ps i+ J1021) .
0-<j ok
we get I puizean.
i<r
Trom these considerations it follows easily that

LimalnK[=U N 0O B9, L+7,1,0)].

FeQ i<r 0<i<k,

where the set @ ranges over 2ll functions f such that f(¢,j) is a non-neg-
ative integer determined for (<7 and 0<j<'k;, and that the following
two conditions are satisfied:

(6) SRR LTE
SEAS

c”

(because of (3)) and I pve>n. Since, by (6), the set () is finite, the func-
i<r

tion L{m,n]~ K [t] belougs to |B|. Thus the proof is finished.

Chapter 4. Fundamental theorems on arithmetical functions
and on arithmetical classes

In the present chapter we shall show that the set B of basie fune-
tions for Abelian groups satisfies condition (iv) of Theorem 2.18, <. e.,
that given a function F=F, such that for i=0,1,..,m—1, FieB

i<m

or F ¢ B and 0 ¢eDm(F;), we have V FelB].

Since 0 ¢ Dm(F}), the functions F; are (by Definition 2.14 and Theo-
rems 3.7 and 3.10 (vi)) of the form
1) E[n,a] or E[n,a] or Cp¥;r,b]
where 2,7 >0 and rs£0(mod p¥).

We shall start with the simplest intersections F, passing step by
step to the general case when F is an arbitrary intersection of functions
of the form (1).

In the proof we shall repeatedly use two methods; it seems con-
venient to give them some special names: ,

1° The sequence method. It is used when the inclusion

Ofp¥r,b] or

(2) FC@
is to be proved. By Definition 2.4 the condition (2) is equivalent to
e AG.

(3) FAA)C G for every group
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To prove (3) we must check the fact that for every group e AG and
for every sequence xeUy

&reF(A) e (GHA).

implies

That is the point of the sequence method.

20 The method of adjunetion. Consider an arithmetical fune-
tion F. Given an arbitrary arithmetical function &, we can (by 2.13)
decompose F by means of G:

F=(Frtd)u(FnG).

In general, given arbitrary arithmetical functions Go, Gy, Gpogs We st

GO=¢ and GP=@F for i=0,1,..,m~1

and we decompose the function. F by means of the functions Gy, Gy, ..., Gpog:

F=U (Fn6Y).
reom i<m
Assume now that F is an intersection of functions of the formy (1)
and that &, (for i =0,1,...,m—1) are basic functions. By Theorem 2.8 (iii)
we have
Vo = U Vo (F n ) GI7)
reo™ i<nr
and the problem of proving that v, e|B]| is reduced to the problem
of proving that
Vo(F N GP) ¢ | B|
i<m

for every sequence re2™. By a suitable choice of the functions G the
last problem may prove to be much easier that the original one. That
is the point of the method of adjunction.

Throughout the rest of this chapter instead of saying that the prob-
lem of proving that v ¥ e|B] is reduced to the problem of proving
that VoFy,...,VFre|B| we shall say shortly that we pass from the
Junction F to the functions F,,...,F,

Lemma 4.1. For every sequence a,

if F=E1,a], VoF ¢|Bj.
Proof. Let Ae AG, xA;. By Definition 3.1 (i) we have
zeF (A)

then

whenever g,=— Z,' G,

therefore by Definition 2.2 (iii) we have xe Vol (A) for every mey.
Hence v F'(U) =A7 for every Ae AG, that is v F= Ue|B).
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LeyMMa 4.2, For every integer n>1 and for every sequence d,

if F=E[n,a], then v ,Fe|B].

Proot. Let » =[Ip# Dbe the decomposition of » into prime factors.
i<r
By Definitions 3.1 and 3.4, and by Theorem 3.10 (x) we have

VoF =0[n;0,a) = ﬂ(’ [pi;0,ale|B].

Leyva +.3. For n>0

a®, ..., qm=9

any integers mn>1, and for any sequences

if F=(\E{n,a®], then

i-<m

vl e|Bl.

Proof. We have (by 3.10 (i)
=E[n,a®]~ [\ E[0,a® —a®],
0-<i-<m

hence by Theorems 3.7, 2.9 (i) and 2,10 we obtain

VoF =v ,Bln,a®n (O E[0,a®—a®)].

0-<iZm
Thus, by Defiiition 3.4, the problem is reduced to 5.1 or 5.2.
TEMwMA 4.4, For any integers m,n >0 and for any sequences a®,...,

v Fe|B]|.

alm—1),

if F=E[n,a®],

i<m

then

Proof. Let us consider the more difficult case when n >1. The pro-
cedure for n =1 is essentially the same, only some steps can be omitted.
We use the method of adjunction:

Let us decompose the function ¥ by means of the funections C[n;0,a®]
for i=0,1,...,m—1. Then we pass from the function F to the functions

F, =M\ (E[n,a®]n C[n;0,a0]),

i<m
,Aﬂ(E[n a®] A C[n;0,a0)n M (E[n a®]n (n;0,a®])
iem—N
for 05£NCan. (In case N=m we assume the secoud factor equal to U).
By 3.11 we have E[n,a]n C[n;0,69]=C[n;0,a0]. Hence

F,=MNCn;0,a®] and v, F,=F ¢|B|,
then o
Fy=V(E[n,a®]nC[n;0,a0])~ M
N

i€ jem—N

(I[n;0,a0],

VoFs=V, ﬂ(E[n a®]n C[1;0,a0])n M (j[n 0,a®].

{en- -N
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Sinee M C[n;0,a®] ¢ |B|, we pass from F, to the function’

iem—N
Fo= N (E[n,a®]n 0[n;0,a0]
ieN .
for 0:£N Cm. l
In turn let us decompose the function F, by means of the functions
B[0,a0—a0] for i,jeN and 1 <j. We have

En,a0] a E[n;a®]n E[O a® — a‘D] = E[n;a0]n E[0,0® — o],
hence we pass from F; to the function
G =N (E[n;a0]n C[n;0,a®]) ~n () E[0,a® —a®]
1eM ijeM
where 0 C N.
Now suppose that M consists of exactly » mteger\, and set

(1) @ =Ln,r+1]n N O[n;0,a0]~ (N E[0,a®—a].
ieM ieM

We shall prove that v,G=6".
First we shall prove, using the sequence method that v, GC@".
Let e AG and weV,G(A). Thus there is a sequence xWe Ay such that

(64}

(2) "= for i>0,

(3) C aWe Eln,a®](A) for ieM,

(4) 20 e O[n;0,a0](A)  for ie M,

(8) 2® ¢ B[0,a®—aW|(A) for 4,jeM and i<j.

Let y;= Y afr;., for ie M and consider the elements —na, and y; for

jeD(a("))
% ¢ M. It follows from (3) and (5) that they are all different, and we in-
fer from (4) that they are in (n%),. Thus by Definition 3.18

Ln,r+1](A) = AT;
hence
(6) ' : . :ceL[n.,'r—}—l](‘lI).

But by (2), (4), and (5) we also have z e O[n;0,a0](A) for i e M and
2 e B[0,a0—at?](A) for ¢,je M and i<j which together with (6) implies
by (1) that = e (). T ‘ ‘

In this way we have proved that zev,@(%) implies xeG'(%) for
every Ue AG and for every o ;. Hence v,GC @

The proof that @' CV,G is analogous. Therefore VoG =G But
from (1) it follows by 3.20 that G ¢ {Bj, which conclides the proof.
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LEMMA :4.5. For any iniegers m >0, Ngy... Nmay >0, and for any
sequences &,aW,...,at"=D, s
;

if F=E[1, a]nmE[n,,a('J]

then V,Fe|B].

Proof. By 3. 10 (vu), (1v)

VoF =V o(B[1,a]~ N E[0,a0—n;a]) =V, B[1,a1~ N B[0,00 —nya],
i<m i<m .

hence the problem is reduced to 5.1. [

LEMMA 4.6. For any integers m>0, n>1 and for any sequences
a, a(o) a,(m—l)

if F=2En, a]nﬂE[n a®],

i<m

then V,Fe|B|.

Proof. In fact v F=V,E[n,a]~ME[0, a(t)—a] and the problem

i<m
is reduced to +4.2.
LeMMA 4.7. For any integers m,n>0, for any prime p and for any
am—1
4 ’
if F=\(E[n,a®)n Blpn,pa®]), then V.,Fe|B|.
i<m
Proof. We proceed just as in 4.4, We consider the more difficult
case when n>1, decompose F by means of the functions C[n,0,a®]
and E[0,a®—a®], and using the method of adjunction we either re-
duce the problem to 4.3 or we pass from F' to the functions

G =M (E[n,a®]n E[pn,pa®] n C[n;0,a0])n N E[0, 20— a®]
ieM i,ij<5§\l
where 0£M Cm.
Let n=ypks, where k>0 and (p,s)
b_y 3.10 (i), (v), (x)

=1. Since C[n;n,0)=U, we obtain

O[n;0,a0] = C[n;n,a®] = C[p*;n,a®] ~ Gls;n a(")],

then by 3.10 (i), (xi)
Elpn,pa®] C Cls;pn,pa®) = C[s;n,a90]. 1 4
Hence ‘ .,
G =N\ (En,a9] ~ Blpn,pa®] A Clpksn, a®] ~ ) E[0,a0— a].
ieM . T feM

i<j
16%
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Let the set J consist of exactly r integers and assume for simplicity
that 0e M. Using (twice) the sequence method we can easily check (see
Definition 3.17) that
Vol =IL%p,k+1,7+1]
A O (E[0,a0—a®] 0 B[O, p(a®— a®)]n C[pk;0,a0— a®])
o<ieM i
~ Y E[0,00—aD]~C[n;0,a9],
0<i,jeM
1<
which, by Theorem 3.19, completes the proof.
Levma 4.8. For any integers m->0, and n>>1, for any (not neces-

sarily different) prime divisors py....,Pm—y 0f 0, and for any sequences
a,...,am=D, :

if F=M (E[—&,n(ﬂ]n E[n ,p,a(f)]), then Vo Fe|B].
i<m\ 1D b

Proof. The proof is by induetion with respect to the number » of
different primes among p,,...,Pm—1. If v =1, the theorem is reduced to 4.7.
Assume now that the theorem is proved for r>1 and that there are »-1
different primes among pg,...,pm—y. For simplicity let ws assume that
for some I <m itis py=p, =...=p,, =p and p; % p for i=[. Hence among
PrsyPi+1y-- 1 Pm—y there are exactly » different primes. Let ug denote their
product by ¢. Then for some integers k and I

(1) kp+lg=1.
Consider the following three functions:
=[n .
@ P 0, (B0 e,
(4) G=E[0,pa®—p;a0)].

With respect to Lemma 4.7 and to the induction hypothesis it is suffi-
cient to prove that v F=v F,ov,F,nG

We use the sequence method: Consider an arbitrary group W e AG
and let xe Vo F 0V Fyn G(A).

Then re v F, () and rev,Fy(A), and

) 2e ).
Hence there are sequences 2®,2® ¢ AL such that
(6) P =aP—w for i>0,

(7) 2 e Fy (M) and AP FL(9).
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1t follows from (4)-(6) that

(8) 2@ ¢ G(A);
from (2), (3), and (7) that

9) 2@ ¢ BEln, pa®](A),
(10) 2@ e B[n,pa®](U),

from (4), (8), and (9) that 20 ¢ Bn,pa®](A); hence by (10) and (6)

na® = ®.

{11)

Now consider the sequence ¥ e Ag determined in the following way
(see (1)):

(12) Vo=(kp)a® + (lg)(",
(13) yi=xy for i>0.

We assert that yeF (). In fact the conditions (11), (12) and (1) imply

o0
(14) E;Jo—~ Io s
(15) —;—:—yo—im?) for i=1,041,.,m—1,
(16) nye =nexy =n x;

and from the conditions (6), (7) and (13)-(16) it follows that y e F(A).
Hence by (13) we have ze v, F ().

To prove the inclusion in the opposite direction let us observe that
by (2)-(4) we have F CF,nFyn E[n,pa®)] A E[n,p;a®] CF,nF;n G; hence
it follows from Theorem 2.8 (v), (iv) that v, FCV oFinV Fen G,

As simple consequences of Lemma 4.8 we obtain the following two
lemmata: .

Levuma 4.9. For any integers m>0, n>1, for any (not necessarily
different) prime dwisors Pyy...;Pm-1 of m, and for any sequences
a,a®,...,a0"0

if F=E[n,aln (E[i,am]nE[n,p,.am]). then Vo Fe|B|.
i<m Pi

Tmwmes 4.10. For any integers m,r >0 and n>1, for any (not mec-

essarily different) prime divisors poy...;Pm—1 of n, and for any sequences

a,a®,...,a" 2,00, .. LD

if F=E[n,aln (177[11— a(i)lnE[u,p,ar(i)})nﬁﬁ[w,b“)], then v Fe|Bl.
i<m i<r

?
i
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) LEMMA 4:11. Ffrr. any integers m >0, n>1, for any (not necessarily
different) prime divisors Poy.c.,Pm—y: 0f n, and for any sequences
@,a®,... a1

if F=Bn,a]~N E[ﬁ

i<m "{Pi
lProof. We decompose F by means of the functions E[a pia®]
for i<m. Since S

i

o

,a(D], then Vo Fe|B].

T . o
E [i—_,aﬂ)J ~E[n,pa®) =E[n,p;a®],

b/y the method of adjunction we reduce the problem to +.6, 4.9 and £.10
LeMua 4.12. For any integers 1,m>0 and n>1, for a,nj (not neces-

sarily different) prime divisors for
,,’a,@,_ bl b)@p e PoyeresPr—1 0f n, and for any sequences
“ 0%,

. a7
e if. F=E[-n,a,]nﬂE[—,a(ﬂ]nﬂE[n,b(’)], then v Fe|B]|
i<t | i<m 0 Y
Proof. Obvious by 4.11. | :
LeMma 4.13. For any integer ( {
ntegers  m >0, NyMgy.ney Mg nd  for
any sequences a,a®, .., qln—D e ey =y and o

if .F:E[n,a]A_OE[ni,a(i)], then V. Fe!B|.

"Proof. We assume that:
1° Among n,...,n,_, there are exactly r i i
. : W r (r> oer N
ot divisors ot y 7 (r>0) integers which are
.. 20 If n; i a divisor of n, then n/n; i :
. : , v/ 18 a product of k; (not necessaril
different) primes. We consider 1 as a product of 0 primes. And we sesg

k=0 in the case when #; i ivisor A
We have k;>0. ™ i3 not a divisor of n. Let k=max(k) for i<m.

(]

i ?moxfg Kooy kpy there are exactly I (I>1) integers equal to k.
fourhhemg: 1efferFto vg’,rb’r’k,l ag the first, the second, the third, and the
x of F. We oar - . . R
o carry out a simultaneous induction with respect

if n =1, the problem is reduced to 4.5
et #>1 and suppose that the theo .
] rem i§ already proved for arbi-
trary r,k,1 in the case when the first i i hon (@ for bt
2, ; rst ind g ]
Al dex is less than x.
If k=0, then for i =0 i
s o 1;0 o y1yeym—1 we have m;=n and the problem
If %=1, then for i=0,1,

woym—1 we have 1 = . .
: .. ’ e N = o=/, 1
some prime divisor p, Ve W =n or n;=un/p, for

of n. Thus the problem is reduced to 411 or 4.12.

1
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Consider the case when k>1 and suppose that the theorem is al-
ready proved for arbitrary I in the case when the third index is less
than %. For simplicity let us assume that ky=Fk. Thus n=pn.s for a cer-
tain prime divisor p of » and a certain s>1. Let us decompose F by
means of the function E[png,pa®]. By the method of adjunction we
pass from F to the functions

G =E[n,a]n E[png,pa®] ~ M El1;.a®],
i<m

H=2E[n,a] Elpne;pa®~ O E[n;,a9].
) o<i<m

Consider G. We have

L G=RB[0,a—(sp)a®]n G, where G1=E[pfuo,pa(°)]n‘|’\E{;?f,a(i)],

i<<m

but the first index of Gy equals pr,<<n. Consider H. The first index of H
is equal to u, the second index — to 0. If 1=1, then the third index
of H is less then k. If 1>1, then the third index of H is equal to k, but
the fourth index of H equals 1—1. )

Finally let r>1 and assume that the theorem is already proved
for arbitrary k¥ and I in the case when the second index is less than 7.
Tor simplicity let us assume thab n, is not a divisor of #. It may be that
n, is divisible by ». In that case

F=E[0,a(ﬂ—-%a]nlf’1 where Fy,=H[n,al~ N Eln;,a®].
n o<i<m :

But the first index of F, is equal to » and the second index of F, is
equal to r—1. If n is not divisible by n, let d=(n,n,). By 3.12 there are
sequences b,e® and ¢® such that

Bn, ]~ Blng,a®) = (B[d,b]n E[0,e0]nB[0,¢®]) n(Bn,a]~ B[d,b]).

Hence _
F=(E[0,(0]nE[0,6®]nG)vH
where
G=E[d,b]1~ O Eln;,a0], H=E[n,a]n E[d,b]~n N En;,00].
o<i<m

g<i<m
(lonsider G. The first index of @ equals d<\n. Consider H. The first index
of H is equal to n, but the second index of H is equal to r—1.
Thus the proof is completed.
LEMMA +.14. For any integers m>0, 9g,...;Npny >0 and for any
sequences a®,...,am=D,
if F=0\E[n;,a®], then VvV, Fe |BI.

i<m
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Proof. TLet n be the least common multiple of 7gy...,tp_y. We as-
sume that:

1% njn; iy a product of k; primes and k=max(k;).

20 Among k,...,k,—, there are exactly 1 integers equal to %.

Let us refer to % and I as the fivst and the second index of F. We
carry oub a simultaneous induetion with respect to & and I.

If k=0, the problem is reduced to 4.4.

Su‘ppose that £>0 and assume that the theorem is already proved
for 'arbltmry L in the case when the first index is less than k. For sim-
plicity let kg =%. We decompose F by means of the function B [prg,pa®]
and by the method of adjunction we pass from F to the functions
&= Blpny,pa®] (M Bln;,a®]

i<m

and  H = Epiig,pa®~n M Eln;,a®].
0

im
& is subject to 4.18. Consider H. If I =1, then thé first index of H is less
fsha,n k. If 1>1, then the first index of H is equal to %k, but the second
index of H is equal to 71—1.

Thus the proof is completed.

Levma 4.15. For any prime p, for any integer 1>0, and for any.
sequence a .
then

if F=C[phl,a), VoFe|BI.

Proof. We have v, F=U¢|B].

Lewwma 4.16. For any prime p, for any integers k,l such that 1>k 0,
and for any sequence a, o

if F = O[p'; p%, a),
Proof. By 3.10 (ix), (iii) we have

then v, FelB]|.

F C Clp¥;p*a] C C[p%;0,a],

hence by 2.7 (ii) we obtain v, C C[pk:( i
£ O[p*;0,a]. Using the sequence method
we can show that also O[p%;0,a]C v,F. Thus Vo =C[p*0,a] ¢ |B].

. Lemwa 4.17. For any prime D, for any integers m >0, and Iyl sueh
that 1>k>0, and for any sequences ao, .., gm-1,

if F=ign(0[191‘1327",a“’]“5[21’51”‘,&")]), then v Fe|B).

(Remark. If I=1, we consider F — M 0O[p;1,a0].)
i<m
Proof. The procedure is gimilar to that used

We consider the more difficult ca, nthe roof of 4.7

se when k>0 and decompose F by

icm

Elementary properties of Abelian groups 251
means of the functions C[pla®—a®] for i<<j<m. By the method of
adjunction we pass from F to the function
@ = OV (Clp',p¥,a0) nC[pt5p%,a®] o N CLpl30,a0 — ]
ieM hLjeM
i<j

where 0= M Cm. Let the set M consist of r integers and assume for sim-
plicity that 0e 37. By the sequence method we can now show easily
(see Definition 3.17) that

Vol =LO[p,Lr+1]~ N (C[pH50,00—a®] nTp10,a®—a®)]
0<ieM

~ N Cpt0,a0—aD] ~ C[p%;0, 9],
0<i,jeM
i<j
which, by Theorem 3.19, completes the proof.
LEvnA 4.18. Given an integer m >0; let
F={\F,,
where, for i=0,1,...,m—1, F; Is either
an equality function E[n,a) or an inequality function E{n,a), wheren >0,
’ a congruence function C[php%a] or a complexr function C[p'=2;p*, a)
~C[p';p%,a], where 1>k >0.
With these assumptions v, Fe|B|.
Proof. We shall refer to n,p,k,l,a as
dealing with a special F;.
Our proof is divided into two parts. In the first part we prove the
lemma by the additional assumption that

Ny Piy ki, 0@ whenever

(1) whenever F; (i=0,1,...,m—1) is a congruence function or a complex
function and Fy (j=0,1,..,m—1) is an inequality function, then
P is a divisor of n;. .
In the second part we reduce the general case to the preceeding one.
1. The condition (1) holds. We carry out the induction with respect
to m. We shall refer to m as the length of F. For m =1 the problem is
reduced to one of lemmata 4.1, 4.2, 4.4, 415, 4.16 and 4.17. Now assume
that the lemma is already proved in the case when the length of F
is less than m and suppose that F is of the length m >1. Several cases
will be now considered. In some of them we shall combine the funda-
mental induction with respect to m with another induction <with respeet
to a variable which will be mentioned separately each time.
10 For some different non-negative integers r,s<<m, F, and F; are
equality functions.
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Let d=(n,,n;). By 415 (i) there are sequences a, »®, and b? such
that F.nF,=E[d,a]nE[0, @)~ Ef0, b®]. Hence we can easily pass
from ¥ to a function of the length m—1.
Analogous reasoning leads from F to'a funetion of the length m—1
when one of the following three conditions 29 3° and 4° is satisfied:
20 For some non-negative integers r,s<<m, F, is an equality func-
tion, ¥, is a congruence or a complex funetion and pktt is not a divisor
of n, (¢f. Theorem 3.14).

3% For somme different non-negative integers r,s<m, F, is a con-

gruence function, F is a congruence or a comiplex function and p,=p;,
ke <kgy L—k >1,—k, (cf. Theorem, 5.13).

4° For some non~negative integers r,s <m, &, and F, are complex
functions and p,=p;,, k=ks, I, 5%l (cf. again Theorem 3.13).

50 For a non-negative integer r<m, F, is a congruence function
and whenever F; (i=0,1,..,m—1) is a congruence or a - complex
function with p;=p,, then k;>k,.

Assurmne, for simplicity, that »=0 and let p,=p, ko=Fk, l,=1 and
a®=ga. Hence we have ¥,=C[p';p¥,a] and
{2) whenever F; (1=1,2,...,m—1) s a congruence or a comples function

with p;=p, then k;>k.

Since the cases 2° and 3° are already taken care of, we can also assume that

{3) whenever F; (i=1,2,...
a divisor of n;,

,m—1) is an equality function, then pk+l is

{4)

whenever F; (1=
with p;y=

1,2,...,m—1) is a congruence or & complex function
P, then Li—T;>1—k.
Now we define two sequences d and b in the following way:
{) For i=0,1,...,m—1
dy=mn; and b® =a® whenever F; is an equality
) ) or an inequality function;
di=p{f¢ and b® =a® whenever F; is a congruence

— or a complex function with p,=p;
d,=p*ph and b¥ =p*a® whenever F is a congruence

or a complex function with p;sp.

Then let for i¢=1,2,...,m—1, for every integer t>0, and for every

sequence ¢
If_J[t ,€] whenever F; is an equality function,
Gli,0]= E[t,e] whenever F is an inequality function,

Clpy;tsel

whenever F; is a congruence function,
Clpi=1;t,¢] n G[P 5%, 0]

whenever F; is a complex funection.
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+ If k==0, one:can ecasily check by the sequence method that

VoF=Vy M Gp'd;,b® —d;a].
3 : A OTi<<m
Hence (using Theorem 3.15) we can pam fmm F to a function of the
]ength m—1.
If k>1, then by (1), (2), (3), and (3) we have, for i=1,2,...,m~1,
d; =p*s for some §;>0 and one can easﬂy check by the sequence method

Vo F =V, {0p* ,1 <0>Jnc'[p,1 aln~ (1 G[s.,b‘"’l}
But
0[pk;1,<0>]nG[p’;l,a]=6’[p";0,a]ﬁ0[19’;1,0»]

hence we return to the preceding case when k=0 (in fact, 1=p°).

60 For & non-negative integer s<m, ¥, is a complex function and,
for i=0,1,...,m—1, whenever F_is a congruence function with p;=ps,
then % > k,; whenever F; is a complex function with p =p;, then ki>ks;
whenever F; is an inequality function, then p, is a divisor of ;.

Assume for simplicity that s=0 and set po=p, ko=Fk, l,=1 and
a® =q. Hence we have Fy=C[p!-1;p% a]C[p’p%a] and

m—1) is a congruence function with p;=p,
then ki>k,
,m—~1) is a complex function with p;=p,
then ki >k,
,m—l) is-an inequality function, then p*+l
is a diisor of n;.

(6) whenever F; (i=1,2,..,
(7) whenever F; (i=1,2,..

(8) whenever F; (i=1,2,...“

Since the cases 20 and 4° are already taken eare of, we can assume (3) and

(9) whenever Fy (i=1,2,...,m~—1) is a complex function with p;=p

and k; =k, then L;=1.

Let us assume for simplicity that there exists a positive integer r<m
such that the functions F; for i<:r are all complex functions with p =p,
k;=F% and L;=I. If r=um, the problem is reduced to 4.17. Suppose now
that r<m. Putting for i=0,1,...,m—1 )

] o whenever F; is an equality or an inequality function,
;=
| ok

we define ¢ as the least common multiple of €y,...,em—y. OFf course ¢ is
divisible by p*. Let e=pktie’, where (p,e')=1. We start the induetion
with respect to h. We shall refer to h as the first index of F.

whenever B is a congruence or a complexr function
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Consider the case when h=0. It follows from (3) and (6)-(9) that
(10) for i=r,r-+1,..,m--1, F; is a congruence

or a complex function with p;#p.

We assert that vV F=v,\Fiav, M F.

i<r resim

sequence mrethod. Let We AG and
eV VFinvy M Fi(A).

i<r rgilm

Then there are sequences a®,x® ¢ Ay such that

(11) P =g@=r - for >0,
(12) e T (),
i<r
(13) 2®@e (1 F:(Y).
]—Jet resi<im

(14) t=the least common multiple of pli—% for i=r,r+41,..,m—I
and (see (10)) ‘
(15) upl+vt=1.

Consider now a sequence x® defined in the following way:
(16)

(17)

2 = (up)) oD+ (ot) 2D,
@ =z, for i>0.
By (14)-(16) we have for ¢=r,r4+1,...,m—1

PFo) = pH(upod -+ pH(1— up!) o = phad-+ pl{up) (29— o)

ki@ = pki (1 —pt) 2 ki ) — b
P =p(L— o)) - pp(o1a® =pla 10l (o ) (o0~
he i k —_
nce we obtain p wg‘):pkm.(}) (mod p') and p’;im‘g”)api_‘tngn (mod p{f) for

2 =1,74+1,...,m—1, which fogether with (11)-(18) and i i
. - ; 17 S at
a® ¢ F(Y). Therefore z e v, F(A) and ) o s “'1"1

Vo ﬂFiﬁVo M F,'CVOF.

i<r r<i<m

o5 iThe Ei[nclusion in the opposite direction follows immediately from
2.8 (iv). Hence VoF=VoigFmVn M F; and the problem is reduced to

r<i<m

studying functions of the length less than m.

In the proof we use the
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Assume now that & >0 and let G= () F. We decompose ¥ by means
! r<i<m

of the functions C[pt+1;p*+t, pa®] for i=0,1,...,7—1 and by the method
of adjunction we pass from F to the functions
FO =\ (F;n ClpH+tpet,pa®]) n G,

i<r

@ = OV (Fy 0 O[pH3 95, pa®]) n () (B n ClpHtphet, pa®]) n G
ieM ier—M
for 0£M Cr. A '
By 3.10 (vii) we have

FO = () (O[pi-% %, a®] n C[pl p4+1,pa®] 0 Opte15 ph+t, pa®l) 0 G
i<r
= O[p-1;0 ’a(i)_,,,] AF®

o<i<r
where

FO - ([pi= p¥, a] ~ ) (O[ph i3, pa®] 2 CLptes phet, pa®)) n 6
i<r

It should be noticed that the length of F® equals m-+-1, bub it is
easy to check that if we proceed as in case H° we pass to a function of
the kind 6° whose length equals m and whose first index is less than k.

Let us congider F@ for a fixed M and assume for simplicity that
e M. Hence we have

FO— () (C[p,0,a0—a]nC[p71;0,pa® —pa] n F@
ier—M .
where . :
F& =) (F;n O[ptp%7% pa®)) 0 6.

ieM
Thus it is sufficient to study the function F®,
We decompose F by means of the functions C[p’;0,a®--a®] for
i,jeM and i<j. Since
Clpt3;p%,a0] ~ OLp's pa®] 0 CpH 5947, pa)
A CLpt-2pF,a] o Clp';p5,aP] N G[pl+1;pk+1,pa(j)] ~ Cp}0,a® — ai]
— Cp1;p%, 0] ~ O ph p%, a®] n CTp+2;pk+, pa®] o Cp' 0, a®— a?],

therefore we pass by the method of adjunction from F® to the funetions

F® = N (F; n C[p 1 p5, po®]) A M Cipli0,a0 —aPDin
e ijeN
for 0N C M. -
Suppose that

(18) N consists of n (different) integers,
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and- let . o b . R [T
FO=L@[p;l,n+1]~ ﬂ‘  (Op"4pk @) 0 O[p 9%, pa®])

i,jeN
i<j

A ﬁ C[p' 0, a(')-a03]nG ’ nhe e
We assert that v F®=v 01“(3) To show it we use the sequence
method. Consider an arbitrary group: e« AG and let 'Z"l)e Vi FO(Y).

Thus for some xeN; we have

(19) w=a® for >0,
(20) @ € O[p'=2p%, a0)(2) for ieN,
(21) @ e O[p!; p*, a®] () for ieN, .
(22) Te G[p’+1;p"+1,pa(’)]("21) _for ieN,
(23) zeC[p;0,a0—a](A)  for i,je N and 4<j,
(24) 2 e G(). ‘
Let .
(25) wi= Y oV, for ieN.
je D)
It follows from (37)-(40) that
(26) P*xy+w;=0 (mod pi-?) for ieXN,
prmg+wi5£0 (mod pf) . for 4eN,
(27) p* g+ pw =0 (mod p*+1)  for i:e N,
(28) wiztw; (mod p!)  for i,jeN and i<j;

therefore there exists a y ¢ AY such that k
g D(p*xo+w;) =pitiy, for ieN,
and then a 2e%) such that prm,+w;=ply; L2 ufor ;el\? ” )

(29) %=0 (mod p'-1) for ieN, |

(30) 2%=£0 (modp!) - for i€ N,

(31) par=0 for ieXN,.

(32) C =y (mod p): - for 4,je and is4§. . o

Thus from (18), (29)-(32) and Definition 3.17 (iii) we obtain

g?;l)ce A LOp,l,n+11(W) =, S

(34) 2 eLO[p,1,n+1](), L

which together with (19), (20), and (22)-(24) gives m(De\\'i‘n'%’(‘ﬂl.u"'"ﬂe-ll'ce
(35) VoF® C v, F@, 1)

o
ot
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Conversely, assume that 2@ e v F®, Then we have (19), (20
(22)-(24), and (34) for some x  Ay. If we also have (21), we immediately
conclude that a®e v FON). Thus let us assume for simplieity thab
(86) OeN,

(37) “w € O[php%, a®) ()
Assume (23). We qgam have (26)-(2 S) :mdlwe obtain from (37)
(38) prayFw,=0 (mod p'),
from (28) and (38)
prrt-w; sk 0(mod pf)  for ie N {0},
hence for some. 1,2 ¢ Ay~
(39) Prme - wi ="+ 4,
2=0 (mod pi-1), z=£0 (modp}), pz=0, and 225 zj(mod p?) for iskj.
Then we obtain (33) from (34). Thus it can easily be shown by (18)

and (36) that there must be an clement 2, ¢ A, with the following prop-

erties:
2,=0 (mod p!-1),

(40) %5 0 (mod p),

(41) p2=0,

(42) zoz=z (mod pf)  for e N—{0}.
Let

(43) 2o="pI"125.

Now we construet a sequence 2® ¢ AT as follows:

(44) 2@ = gy —p1-kz ,

(45) P=x for i>0.

We obtain from (25) and (45)

w= 2 a’go'Tj-H:
jeD(ad)

from (26)
Pr® 4w =0 (mod p'*)  for ieXN.

Then it follows from (43) and (44) that

PP 4wy =p*m,—2o+w;  for ie X,
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hence by (39) and (42) )
pra® 4w, =£0 (mod p')  for ieN-—{0}
and by (38} and (40)
PFe® 1 1p,=£0 (mod p').
Finally by (41), (43), and (44) we have p***al’ =p*"s,. Thus we obtain

2@ e G[pi=2;p%,a®@](A) for ieN,
2@ e C[pl; p¥, a®](Y) for ieN,
2@ e O[pt+1;pk+L, pa®](A)  for ieXN,

then by (28)

2@ ¢ O[p/50,a0— aW](A) iyjeN and i<y,
finally by (3) and (6)-(9) we have x® e G(¥). Hence it follows from
(19) and (43) that x®e v FO(A) and we obtain v, F®C v, F® which
together with (33) gives v, F® =V ,F®.
R In this way (see Theorem 3.19) we have reduced fthe problem to
that of studying the funetion

for

PO = () (C[pH% p, @] 0 CLpH 4 p+ o, pa®]) n .
‘€N y
But N
F@O = () O[p=1;0,a0—a®] ~ F®,
<ieN

where e

F® = O[p-1p%, a®] A () C[pHLpht pa®] n G

feN

Notice that the length of the function F® iy <m-+1. But it is easy to
check that if we proceed as in case 5° we pass to a function of the kind 5°,
whose length is <m.

7% As in 6° we assume that

Fo=0[p1;p% a) nCp, p¥ 4] x
and that (6) and (7) hold. But we do not assume (8).

Among the functions Fy,...,F,_; let there be exactly » inequality
functions F; with n; not divisible by pt+: We carry out the induction
with respect to r. We shall refer to r as the second index of F. If »=0,
the problem is reduced to the case 6% Thus let r>( and assume for
simplicity that F, is an inequality function and #,, which by (1) is di-
visible by p¥, is not divisible by p%+1. Let n=mn, and b=a®, Hence

(46)

{47) F, =E[n,b].
(48) n=pks,
where

{49) (p,s)=1.
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Then let
(50)
By (46) and (47) we have

FonF,=FynF n(Clp-tyn,b]u C[p=1n,0])
=(Fyn CLp' Y 0,0]) o (Fyn Fro Clpt=tin, b5
then from (48) we obtain
Py~ Clpi=tn, 0] =F, n([p'=1 0,0 —sal,

and we obviously have

tpl--us =1.

FonFy o C[pl=10,b]=FynFyn Clpt=4u,b1n(Cphn,blu C[pha, b))
= (Fyn C[p1=%50,b] TP 0,01y o (Fy nFy 2 CLptn ).

Finally from (49) and (50) it follows by means of Theorem 3.15 that
Fon C[pi=t0,0]nCphyn,b] = Fy o C[p=15 p¥, ub] ~ C[phpk, ub],
FynFyn Clphin, bl =FynF o Cphp* ub]
= ([p!=50 ,a—ub] n C[p}0,a— ub) n Fy n CLphpF ub].

Hence it is sufficient to consider the following three functions:

FO=Fyn (N T,

1<i<m
F& =Fy 0 (C[p!=% p, ub] 0 CLph pksub]) n Q Fi
1<i<m
Fo=([plp5ubl~n () Fy
0<i<m
But FW is of the length m—1, F® is of the length m but its second
index is equal to r—1; finally F@ is of the length s and is submitted
to case 5%
Henee case T° is settled, which together with 19-6° and Theorem 4.14
completes the proof of part I.
II. We do not assume (1). Assume that in the cardinal product
m = m there ave exactly r pairs -i,j> which satisfy the following con-
dition: F; is a congruence or a complex function, F; is an inequality
function, pk is not a divisor of u;.
We carry out the induction with respect to r. We shall refer to r
as the third index of F. If r=0, the problem is reduced to I. Assnme
now that r>0 and let, for simplicity, F, be a congruence funection,

Fo=C[php5,al

(the proof in the case when ¥, is a complex function is analogous), ¥, —
an inequality function, F;=E[n,b], and p* not a divisor of n. Let » =pds,
Fundamenta Mathematicae. T. XLIL 17


GUEST


260

W. Szmielew

where (p,s)=1. We cleamly have d-<k. Then, by Theorem 3.14, there is
a sequence ¢ such that
FonFy=FynF,n(B[p*s,p*=2b]u E[p*s,p*=9b])
=(C[p;0,6] ~ E[pks, pk=4b] n Fy) u (Fy 0 E[p*s, p=9b]).

Thus the problem is reduced to studying two functions

FO=H8pks,p~b]~ (N F; and F,=F,n E[pts,p=]

o<i<m

N F
1<i<m
Dboth having the third index less than ».

LEMMA 4.19. Given an integer m >0, let

-Nr,

i<m

where, for 1=0,1,..,m—1, F is either

(1) an equality function Bln,a] or an inequality function E{n,a),where n >0,
or ’

(2) @ congruence function C[pt;pk,al or an incongruence function Tt pk,al,
where 1 >k>0.

With these assumptions

(3) VOFE|B!.

Proof. It is convenient to prove an apparently more general state-
ment:

Given an integer m >0, let F'= (F;, where, for i=0,1,
i<m

F; is either (1), or (2), or a complex function C[pi~1;p* a]nC[p';pk,al,
where [ >k > 0. With these assumptions (3) holds.

We shall refer to n,p,k,l,a as n;,p;,k,l;,e® whenever
with a special F;.

Assume that there are exactlv r incongruence functions among ¥;
(i=0,1,...,m—1); for simplicity let #,,...,F,_; be those functions. Let
s be the minimum of all differences I,—k; for i<r. We carry out the
double induetion with respect to » and s. We shall refer to r and s as
the first and the second index of ¥, respectively. If »=0, then the prob-
lem is reduced to 4.18. Let r >0 and suppose that the theorem is al-
ready proved for arbitrary s in the case when the first index equals r~1.
F, is an incongruence function mow. Let p=p,, k=%, =1y, a=a®
and assume for simplicity that s=1—%. We have

Lm—1,

dealing

Ot p% ] =(CLp'=2 p%,a] n Tk p*,a]) o CLpi=1; pk, al,
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therefore the problem is reduced to studying two functions
FO = C[p'=p¥,a] n Cph pk, ala () I
0<i<<m
The function F® has the first index equal to »—1. In twrn consider the
function F®. If §=1, then I—1=% and we obtain
F®=C[pi-1;0,a1~n N Fy.
0<i<m

but the function M F; has the first index equal'to r—1. If s>1, then

and F@ =C[p-1;pkaln M Fi.
o<i<m

the function F<‘~’;)l‘}{§s'" the first index equal to r, but the second index
equal to s—1.

From Lemma 4.19 follows at once (by means of Theorem 3.10 (xi))

THEOREM 4.20. Given a seqience <Fy, ..., Fpy_y such that for i=0,1,...
voom—1, Fie B or Fie B and 0 e Dm(F;), we have

\./(,ﬁF,- € IBI.
i<m

By Theorems 3.5, 3.6, 3.8, 3.9, and 4.20 the set B of basic functions
for Abelian groups satisfies the condifions (i)-(v) of Theorem 2.18. Thus
the following two theorems hold

THEOREM 4.21 (Fundamental theorem on arithmetical fune-
tions).

AF(AG) =|B].
TEEOREM 4.22 (Fundamental theorem on arithmetical clas-
ses) ).
AC(HG) = C|.

(The set |C| is determined in the Remark following Theorem 3.7.)

Thus we have arrived at a complete description of all arithmetical
classes of Abelian groups: Every arithmetical class in AG can be rep-
resented as a union of intersections of basic arithmetical classes and
complements of basic ‘arithmetical classes. Of course, this representation
is not unique and the problem arises when two unions of intersections
ot arithmetical classes and complements of arithmetical elasses are iden-
tical. It is easy to see that this problem is reducible to the problem of
finding a necessary and sufficient condition for

(1) U N 8y=AG

i<mj<n
where for i =0,1,...,m—1 and j=0,1,...,5—1, either §;;¢C or S;eC.
In this form the problem is very important from a meta-mathematical
point of view; this will be considered at the end of Chapter 6.

16) Thiz theorem is formulated (without proof) in [7].
17%
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Of course, instead of (1), we can study the equalities of the form

U N 8y;=0,

i<mj<n;
hence the problem is reduced to finding a necessary and sufficient con-
dition for (M 8;=0 where for j=0,1,..,n—1, either S;eC or SeC.

i<n

This condition is easily found, yet rather involved in formulation; for
these veasons we shall not state it explicitly. We only observe that by
Theorem 3.16 we can easily reduce the problem which involves arbitrary
intersections to that of studying intersections of a certain standard form,
which are empty only if they contain two complementary factors §
and S, since otherwise, in each particular case, an Abelian group (in
fact, a cardinal product of certain among groups R,, G,, and &) which
belongs to this intersection can be found.

Chapter 5. Fundamental theorem on arithmetical types of Abelian groups

As an immediate consequence of Definition 2.16 and Fundamental
theorem on arithmretical clagses we obtain the following condition suf-
ficient for two Abelian groups to be arithmetically equivalent.

THEOREM H.1. Two Abelian groups U and B are given.

If for every
basic arithmetical class 8 (S e Q) '

either A, BeS or A,BéX,

then ArnB.

THEOREM 5.2 (Fundamental theorem on arithmetical equiv-
alence). Two algebras N, B e AG are given. For
A~ B
it is necessary and sufficient that the following two conditions be satisfied:

(I)  For every prime p and for every integer k>0
9O[p, k() = ¢®[p, 1)(B) (i=1,2,3),

W and B are either both of the first or both of the second kind.
Proof. Suppose that A~B. By Definition 2.16 (i) for an arbitrary
prime p, for an arbitrary integer k>0, and for {=1,2,3, three eventnal-
ities are possible:

1 U B¢ Rp, 1,1,
hence

(I

o®Lp  FJ(A) = o0 p k] (B) =0.
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20 There is an integer # such that
A, B ROp,k,n] and A, B e RO[p,k,n+1],
oO[p, K} WU) = o@p, k](B) =n.
30 For every n >0 we have
AB e ROp,k,n],
¢®p, k(2 = o@Lp , k)(B) = oo

Then either for some n >0 we have %,B ¢ K[n], hence A and B
are both of the first kind, or for every n >0 we have %, ¢ K[n], hence
A and B are both of the second kind.

Conversely, assume (I) and (II). By a procedure similar to that nsed
above we obtain, for every prime p and for every integers k,n>0,

(1) Ae RO[p,k,n] it and only if Be RO[p,k,n] (i=1,2,3).

hence

hence

Now we distingnish two cases:

1° The groups A and B are both of the first kind. Using the form (39)
for groups of the first kind together with formmula (38) (in Chapter 1)
wwe infer by means of Theorem 1.11 and condition (I) that for arbitrary n >0

a0 =73 if and only it 28B=3,
hence for arbitrary #>0
(2) Ae Kn] it and only if BeK[nl.

20 The groups U and B are both of the second kind; hence
A, B ¢ K[n]
Thus in both cases condition (2) holds for every n>0, what together
with (1) implies by means of Theorem 5.1 that A~ B.
TEEOREM 5.3 (Fundamental theorem on arithmetical types).
Let Q be the set of all triples

¢ ={gW,¢@,¢®;

where gW,¢®,¢® ¢ (o+ {oo})F*N are functions which satisfy the condition

(1) ¢®(p,k)=¢2p,k+1)+¢@(p,k)

for every n>0.

jor every peP and k>0
(1=1,2);

and let
89— F (e00p, IO =¢0(p,k) and 8P = F (@, K1) =g (p k)
neAG, AeAGo

(equalities in parentheses should hold for every prime p, for every integer
>0 and for i=1,2,3).
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The arithmetical types of Abelian groups arve identical with the non
-empty sets 8L and 8& jor p e Q.

Remark. By Theorem 1.12 we have Sﬁ?’;éo for every ¢ €@, and
by Theorems 1.11 and 1.12 we have 8’0 if and only if for i =1,2,3,
¢D(p, k)70 for at most finitely many couples <p,k>.

Proof. Suppose that 8« AT(AG). By Definition 2.16 therc is an
algebra B ¢ AG such that

2) 8=T(B).
We define three functions ¢®,e®,e® as follows:
oD (p,k)=¢P[p,k](B) for every peP and k>0 (1=1,2,3).
Hence by Theorem 1.7 the condition (1) is satistied.
It follows from (2) that, for an arbitrary Abelian group A,
el if and only if AxDB.

Hence by Theorem 3.2

8=8 in case BeAG, and S=82 in case BeAG..

The proof in the opposite direction is similar.

Thus we have a complete description of all arithmetical types of
Abelian groups. It remains to characterize those arithmotical types which
are at the same time arithmetical classes.

TEEOREM 5.4. For every group W e AG
T eAC if and only if U is finite.

Proof. It is known from the general theory of avithmetical clas-
ses ") that T(A) ¢ AC whenever % is a finite Abelian group. It remains
to prove that T(U)¢ AC whenever U is an infinite Abelian group.

Assume — on the contrary — that there exists an infinite Abelian
group A such that

(1) T« AC.

Therefore by 4.22 we have T(U)=\J&; for some r>0, where cacl
i<r

an intersection of basic arithmefical classe

arithmetical classes. It is clear that

1 Si is
8 and complements of hasie

(2) Ael,

1) See [12], p. 713, remark following Theorem 26.
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for some d, 0 <<d<r. Now
(3) Se=N1

i<s
where s >0 and each T;is a basic arithmetical class or the complement
of a basic arithmetical class.
Let us consider first the case when

(4) T,=K[m] for i=0,1,..,s—1 and for every m>0.
There is, of course, a prime ¢ such that for every k,n>0
7R q k0] and T #=Rq, k0] (i=0,1,...,s—1; §=1,2,3)
and for every m >0
T, =K [qm] (i=0,1,...,8=1).
Now we define three functions ¢®,¢®,¢® as follows:
¢®(p,k)=0@[p,k](A)  whenever pz=q or E>1 (i=1,2,3),

© 0 whenever o®[g,17(A) =oco
4 (%1):19(3)[%1](@[)“{_1 otherwise,

o o [9®(g,2) whenever g®(g,1)=0 (i==1,2).
9”()(%])'[9(0[4,1](91)4—1 otherwise ) 2

We can easily check that

(3) ¢®(p,k)=¢D(p,k+1)+¢®(p,k) for p eP and k>0 (i=1,2)
hence from 1.12 e obtain the existence of a group B¢ AG such that
(6) o®[p k](B)=¢@(p,k) for peP and k>0 (i=1,2,3).
But the way in which the prime g has been chosen guarantees that
(7) Be Ny

which implies

(8) BeTA);
on the other hand o®[q,1](B)# ¢®[g,11(A), therefore it follows from
Theorem 5.2 that B non ~A, which contradicts (8). Hence our assump-
tion (4) proves to be false, and therefore for some e <s and for some m >0mM
. T, =K[m].
Let m :Hq{.‘f (k;>0) be a decomposition of m into prime factors.
From (2) andi T%t) we obtain now that m% =3, and since A is infinite we

have
0®[gn, 1] (A) =00
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for some h» and [ such that 0 <A<t and 0 <<I<k, (see formulas (38) and

(39) from Chapter 1). Put ¢, =g¢. It is clear that there is an integer % >

such that ' -
T =g, 1]

Ty=R(q, kyn] implies n<u (1=0,1,..,s—1, k=1,2

goyeae

implies n<u (i=0,1,..,5-1),

aly j::' )2)-

ow we define three functions ¢®,¢®,¢® in the following manner:

e@(p, k) =p@[p,k](N)  whenever pztq¢ or k> (i=1,2,3)
! L)y
® (g & :{ o for k=1
PGR =\ gorg, 110 for k<l
PO(g,k) =g@(q,1+1)+ ¥ ¢@(g,5)  for k<l (i=1,2)
k<i<i o

Again we can easily check that condition (5) holds; hence there is a group
B e AG which satisfies (6). Turthermore, we have (7) and (8), but

e®[g,11(B) 5 ¢®[g,11(W),

thus we again get a contradiction. Hence our assumption (1) proves to
be wrong and therefore T'() ¢ AC, which completes the proot.

Chapter 6. Applications

By Imeans of the results obtained in Chapters 4 and 5, which con-
cern exclusively the class G of Abelian groups, we are ajble to solve
some problems concerning not only the class AG but also the class G
ofr all groups and the class & of all algebras with one binary operation
We §ha11 also mention some known results whenever they ‘cml now b(;
f)btval'ned by Aessentially simpler proofs. The problems \v'hich we have
in md consist in stating whether certain important Cl&%&(‘ﬁ‘ of mlj'ei
are arithmetical, or at least arithmetically closed o e

We start with the following preliminary o
.,I>OT;S${?§[“6;;."£ a class 8 e AC(AG) '16 such that for every integer

e ime p >n such that 8 contains a group N of order p, then
8 contains also the (additive ) group R of rational numbers " |
gEth:iri)V;)tfﬁ f;: ;lzil].)r; aw;fhal]elzt‘l;ls }?bsel"ve that the clags S contains, to-
S e T By 1o s algebras isomorphic to U (since =B im-

(1) for every n>0 there is a prime p>n  such that Ce S,

%) See [12], p. 712, Theorem 22 (i).
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Then by theorem 4.22 we have for a certain integer »>0
S=U8,
i<r
where each §; is an intersection of basic arithmetical classes and com-
plements of basic arithmetical classes. Since & is a finite union of S,
therefore, by (1), there must be an integer d, 0< d<r, such that

(2) for esery n>0 there is a prime p>n such that €y € Sq.

The clags Sg is an intersection: Sy= M T;, where s>0 and each T
i<8

is a basic arithmetical class or the complement of a basic arithmetical
clags. Consider an arbitrary class T; (i=0,1,...,s—1). Since 8;CT;,
it follows from (2) that

for every n>0 there is a prime p>n such that Gy e 1.
Hence
T, K[m] for every m>0,
T, 2R[p,k,n] for peP and k,n>0 (j=1,2,3)

(see Theorem 1.9) and therefore each T; is the complement of a basic
arithmetical class. Thus, it is easy to see that R e T, for i=0,1,...,8—1,
hence ReS,, which implies that ReS.

From Theorem 6.1 we derive at once many inferesting consequences:

COROLLARY 6.2. The following two classes of algebras are not arihi-
melical: :

1. The dass AG~F of dll finite Abelian groups.

2. The class AGn S of all simple Abelian groups.

(Recall that the only simple Abelian groups are those of prime
orders.)

Corollary 6.2 is also an immediate conclusion from a general law
(of the theory of arithmetical classes) which gives a necessary (and suf-
ficient) condition for a class of finite algebras to be arithmetical ). But
the proof of this law is based essentially on the compactness theorem for
arithmetical classes ), while by means of the Fundamental theorem
on arithmetical classes of Abelian groups we have obtained Corollary 6.2
using only finitary methods.

Since the class AG is arithmetical, Corollary 6.2 can be general-
ized to

1) See [12], p. 711, Theorem 20 {i).
20) See [12]. p. 711, Theorems 17-19, and [5].
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COROLLARY 6.3. For an arbitrary class TCA, if AGCT, then the
cdass T & of all finite algebras in T and the class T nd of all simple al-
gebras in T are not arithmetical. ’

In particular the following classes of algebras are not arithmetical:

1. The class Gn & of all finite groups.

2. The class F of all finite algebras in A.

3. The class Gnd of all simple groups.

4. The class S of all simple algebras in K.

The first two statements concerning the classes Gn & and & can
De derived also from the general law mentioned above ).

To complete the discussion let ws observe that & is in AC,, hence
also the classes AGNF and Gn&F. Thus the classes AGNE, Gn T,
and & ave arithmetically closed. Then we have

AGnS = UP(.%Qh A,),
vE

therefore the class AGNS is in AC, and hence the class AGH S is
arithmetically closed ).

-(JOROLLAR.Y 6.4. The class of all torsion-free (i. e., without elements
of finite order) Abelian groups is not arithmetical.
) In fact, if the class of all torsion-free Abelian groups were arithmet-
%cal, then also its complement to HAG would be arithmetical which is
impossible by Theorem 6.1.

From Corollary 6.4 we immediately obtain

CoroLLARY 6.5. The class of all torsion-free groups is not arithmetical.
) To complete the discussion let us observe that the class of all tor-
..s1o.n~free groups (therefore also the class of all torsion-free Abelian groups)
is in AC;, hence it is arithmetically closed. In fact, for arbitrary n >0, let

S,,=ME='%g(f0r every xeW,, nae=0 implies x=0).

Of course every class S, is arithmetical and the class of all torsion-free
groups is identical with the intersection (M Su4q.

_ ) . new
‘ *\0“. we are going to give some examples of classes which are not
arithmetically closed.

‘We start with the following preliminary
THEOREM 6.6. For every group e AG

if AeAG,, then

A~ xR.

#) The class Gn& (and therefore also the cla i o
See [12], p. 717, footnste 17. ss &) is not arithmetically closed.
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Proof. In fact, by Theorems 1.9 and 1.10, for every prime p and
or every integer k>0 ‘

0®[p  K](A) = ¢@[p, k](AX R) (i=1,2,3);

furthermore, the group AX R is always of the second kind. Hence it
follows from Theorem 5.2 that AxAXR.

From Theorem 6.6 we derive at once many interesting consequences:

COROLLARY 6.7. The following classes of algebras are not arithmetically
closed:

1. The class AG T of all indecomposable Abelian groups.

2. The class AG A of all Abelian groups with n generators (for
arbitrary n>0).

Remark. Notice that AG~ AL is identical with the class of all
cyclic groups.

Since the class AG is arithmetical, Corollary 6.7 can be generalized to

C'OROLLARY 6.8. For an arbitrary class TCH, if AGC T, then the
class TrnJ of all indecomposable algebras in T and the class T A® of all
algebras with n generators in T' are not arithmetically closed. In particular,
the following classes of algebras are not arithmetically closed:

1. The class GnJ of all indecomposable groups.

2. The class I of all indecomposable algebras in A.

3. The class Gn A  of all groups with n generalors.

4. The class A of all algebras with n generators in A.

COROLIARY 6.9. The class of all torsion (i. e., with each element of
finite order) Abelian groups is not arithmetically closed.

From Corollary 6.8 we immediately obtain

COROLLARY 6.10. The class of all torsion groups is not arithmetically
closed.

Tt should be observed that all the results of this section which in-
volve A can be extended to the class of all algebras in which at least
one operation has the rank not less than two.

The concluding remarks will be devoted to the discussion of the
meta-mathematical aspect of our work. As was pointed out in the in-
troduction, the original aim of our study was to establish a decision
procedure for the elementary theory of Abelian groups. The aim has
actually been achieved, also — owing to the mathematical form which
we have chosen to present our results — this point has not been, per-
haps, made entirely clear to the reader and requires some explanation.
As is well known, the decision procedure for a mathematical theory is
a method which permits us to decide in each particular case whether
or'not a given sentence (formulated in the language of the theory) can
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be derived from the axioms. In application to the elementary theory
of Abelian groups this procedure can be described as follows: We choose
certain special sentences which are denoted by @%[p,k,n] (i=1, 2,3)
and ¥[n]. Bach of these sentences expresses the fact that the Abelian
group under discussion belongs to the corresponding basic arithmetical
class KPp,k,n] and K[n] (see Definitions 3.2, 3,3, and the Remark
following Theorem 3.7); the sentences Qi(i)[p,l7,71] and ¥[n] (for any
particular values of p,k,n) are expressed in the langnage of the elemen-
tary theory of Abelian groups. These sentences and their negations are
referred to as Dasic sentences, a sentence which is a disjunction of con-
junetions of basic sentences is said to be of normal form. Given now
an arbitrary sentence X of the elementary theory of Abelian groups,
we can construet a sentence X' of normal form which is provably equiv-
alent to X (in the sense that the sentence stating the equivalence of
2 and X2 is derivable from the axioms). The existence of such a sen-
tence X’ is an immediate consequence of the Fundamental theorem on
arithmetical classes in its meta-mathematical interpretation; and the
proof of thiy theorem and of the theorems and lemmata upon which
it is based provides a method of constructing X’. Thus the problem is
reduced to finding a decision procedure for sentences of normal form.
This meta-mathematical problem is equivalent to the mathematical
problem of finding a necessary and sufficient condition for a union of
intersections of basic arithmetical classes to be identical with the class AG;
the remarks at the end of Chapter 4 give, we hope, an adequate idea
how this can be carried through.

The results obtained in this work have also some further meta-
-mathematical implications. The elementary theory of Abelian groups is
clearly incomplete, i. ¢., there are sentences X formulated in the langunage
of this theory such that neither X nor the negation of X is derivable
from the axioms of the theory. Hence the problem arises how the axiom
system can be extended so as to form a basis for a complete and con-
sistent theory (without changing the logical framework or introdueing
new undefined constants). This meta-mathematical problem is essentially
equivalent to the mathematical problem of describing all arithmetical
types of Abelian groups, and hence the Fundamental theorem on arith-
metical types provides a full solution of the problem. We see from this
theorem that there are continuously many ways of extending the ele-
mentary theory of Abelian groups to a complete and consistent theory.
In contrast to the original theory, however, most of those extensions
are based upon infinite axiom systems. Theorem 3.4 implies that the
only complete and consistent extensions which are finitelv‘axiomatiznvble
are those whose models are finite Abelian groups. . .
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