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We admit in this scheme only those formulae & in which each quantifier
bounds a variable of the lowest type. Other axioms ave the familiar ones.

A relation g is said to be definable in a system if there exists in this
system a theorem of the form («) such that the expression 2(...X,Y,7 you)
is a possible definiens of the relation ¢ 7. e. of...#,y,2,...) if and only it
iy Yy 2, ... satisfy the formmla Z.

From this definition it follows that a relation is definable in § it
and only if it is elementarily definable. Hence from Theorem 3.3 it fol-
lows that the existence of a non Borelian set is unprovable in the sy-
stem S. But the general question, whether the class D constitutes the
model of the systenmr 8 remaing open, because we cannot decide whether
the axiom of extensionality is satisfied in the domain @. There remaing
algo another task: to verify whether the theory of continuous functions
can be deduced in 8. Perhapy this theory can be obtained in § without
the use of the axiom of extensionalitiy.
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On uniformization of functions (I)

by
R. Sikorski and K. Zarankiewicz (Warszawa)

Let I be the unit interval 0 <z <1, and let ¥ be the class of all con-
tinuous mappings f of I into itself such that f(0)=0 and f(1) =1. If f,p €&,
then fp e too. The symbol fp denotes always the superposition of f and ¢.

‘We shall prove the following

TaEOREM 11). If f1,fss. fn el are functions such that

(o) for each i=1,2,...,n, there is a sequence 0 =uy<w;<@p<l...<r
such that f; is either non-decreasing or mon-increasing in every interval
Bjmgy By =1,2,...,7,

then there exist functions gy,@s,...,¢ney Ssuch that

1) hor=Fee=... =fa@a-

Theorem I has the following simple interpretation. There are =
paths which are going to the top of a mountain. The paths need not
always go upwards, some segments of the paths may be directed down-
wards. On each of the paths a tourist is climbing. Theorem I asserts
that the tourists can climb to the top of the mountain in such a way
that, at every moment, all of them are on the same level (of course, it
may happen that, in some time intervals, some of the tourists must
return from the previously covered segments of the paths). To make
it clear, let us suppose that the paths are the curves

Du@)s o), ey Do),
where p;(z) (j=1,2,...,n) is a mapping of I into the three-dimensional
space. Let f;(@) be the height (the third coordinate) of the point p;(a).

Yy K. Zarankiewiez, Un théoréme sur Duniformisalion de fonctions continues et
son application & la démonstration du théoréme de F. J. Dyson sur les transformations
de la surface sphérique, Bull. Acad. Pol. Sc. (1. IIT 2 (1954), p.117-120.

During the print of this paper the authors found out that a theorem similar
to Theorems I and II was proved by T. Homma, A theorem on continuous
functions, Kodai Math. Sem. Reports 1 (1952), p. 13-18.

Homma’'s hypothesis about fi,fa,....Jn is other than that in this paper. The
example on p. 340 is also given in Homma’s paper.
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340 R.Sikorski and K. Zarankiewiecz
Let us suppose that the equations of the movements of the tourists ave
respectively

=), &= py(t), ) &= (1),

t. e, that the j-th tourist is at the point p j(qzj(t)) in the moment ¢ If the
functions ¢;,@,,...,¢, satisfy the condition (1), then all the tourists ave
on the same level at every moment.

The proof of Theorem I is topological. The method of proof makes
it possible to obtain a theorem stronger than Theotem I (see Theorvem TI
helow). Condition (a) can be weakened. However, some additional hypoth-
eses about fi,fy,...,f, are necessary. Theovem I is false (even in the
case n=2) if we assume only the continnity of f,,%,...,/u.

For instance, let x,=1/2—1/tn for n=1,2,.., let
1 (=1 At
Med=g= g h0=0, A3 hw=1,

and let f; he linear in all remaining intervals. Let

M=, h(5)=z=rl) am=,

and let f, be linear in all remaining intervals. Then there exist no func-
tions @y, @, ¢ § such that fip, =7p,. In fact, let us suppose that F1000 = fotpus
PuyPe €F. Let {8} he an increasing sequence of points such that iy =qy(t),
and ¢,=limt,. We have

\ 1 (-1
Folptta)] == palt)) = Ftan) = — (2L

Hence fg(%(t,,)) >1/2forn=1,3,5,... and j, (¢2(t,,))<'1 2100 n=2L,6,...
Consequently gyt,)>1/2 for n=1,3,3,... and @a(ta)<<1/4 for n 4,6,

The function ¢, €§ is not continuous in the point t, which contradicts
the definition of §.

. The proof of Theorent I is by induction with respect to n. Let us
first consider the case n=2,

1o

' Let fi,f2 & We are to prove that, under some additional Lhypoth-
eses z}bout firfs (e. g. that f,f, satisfy the condition (@), there exist
functions @,,@,¢F such that
(2) Fipy = 1aps.

The pair of functions ¢,,¢, can be geometrically interpreted as a plane
curve [ v
(3) & =),

The condition that

¥ =gst), tel.

(1) Cisys el

icm
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means geometrically that the curve [I' lies in the unit square @ =Ix I,
and that the origin of I" and the end point of I" are respectively the points

pe=1(0,0) and  p,=(1,1).
The condition (2) means that the curve I' lies in the set
(3) A =F (flx) =1n)CO-
(€X9]

Thus we arve to prove that (under additional hypotheses about f
and f,) the compact set 4 is arcwise connected between the points py,ped.
The example given above shows that additional hypotheses about f;
and f, are necessary, i. e. that the set A is not always arcwise connected
between p, and p;.

On the other hand:

(i) For arbitrary functions fi,f, €§ the set 4 defined by (5) is connected

between p, and Py, i. e. py and py lie in the same component 44 of A.

Lot To=Ix(0), [ =Ix (1), I=(0)x I and I'==(1)> I be the sides
of @, and let @(z,y)=7F(r)—F(y). Obviously

A=F®x,y)=0.
&)

Suppose that A is not connected between py and p,. Then there

exists an are I'y, with end points ¢, and g, such that

g e I, 10, Id =0.

It (a,y) € [4--1', then H(z,y)>0. In fact, either y=0 or r=1. In
the first case fy(x)>>0 and fy(y) =0; in the second f,(r)=1 and fs(y)<1.

Analogously, if (z,y)eI°+I;, then &(z,y)<0.

Consequently @(¢,)>0 and P(g,) <0. This imples that D(g,)=0 for
a point ¢, € I'y, which contradicts the hypothesis that T4 =0. Lemma (i)
is proved.

By (i) the point p, and p, are in a component A4, of 4. Now it is
obvious that the additional hypotheses about f, and f, should imply
the local connectness of 4,..In fact, 4, is then arcwise connected be-
tween p, and p,, and there exist functions gi,¢; e® satisfying (2).

Let W be a dense subset of I and let Fu be the class of all functions
fe® such that

(a) the set f7H(W) is dense in I;

(b) if y ¢ W, then the set F (y) contains only a finite number of
components, i. e. f*(y) is the sum of a finite number of closed intervals
and of isolated points.

Obviously the condition (a) ean be replaced by the following cquiv-
alent one:

eI+ 1, and

22%
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342 R. Sikorski and X, Zarankicwicz

a’) it the set f73y) contains an interval, then ye W (i e if
. ? .

f(z) =gy,=rconst in an interval {a,,ay CI, then y, e W).
(i) If f1sfae Fw, then each component of the set A defined by (3) is locally
connected.
The proof is based on the following simple lemna, where Lg and L7
denote the straight lines
L5=E(1l‘:5)ﬂ

[€2Y]

I'=F (y=n.

Gy

(i) Let Ty and Vy be two dense subsets of 1 and let X De a compuct st
contained i Q. If, for every & eV, and eV, the sets XLg and XL7
have « finite number of components, then each component of X s
locally connected.

Let X’ be a component of X, and (w7, ¢ A7, e2-0. Let

By —e< & <wg<&E,<®y-tg, Eel, or &¢I (i==1,2)
Yo— e<m<yo<N<UYo+ &, meV, ov oél (f=1,2)

let @, :;;:E)(élg 2< & and 1, <y <) and let Sy be the boundary of .
W) )

The set X'S; has a finite number of components, and consequently the
set o X" has also a finite number ‘of components since each component
of 9,X" has a non empty intersection with the set 8, The eomponent
T . . . . . .
X" of QX' which contains the point (w,,%,) is a connected neighbour-
h00f1 of {(2g,y,) relatively to X', and X"'CQ,. Since ¢, X* and (w,,y,) are
arbitrary, Lemma (iii) is proved.
To prove (ii) it suffices to put in (iii)
=4,  Vi=fi(W)

and V=1, ().

Theorem I can be generalized as follows. .
THEOR.EL? IL If fisfasersfne®w (where W ois a dense subset of 1),
then there exist fundtions gr,@y,...,0n € such that
(6) f1q71=f2¢2="':fn¢n egW-

The proof i3 by induetion on n. The cage n =1 is trivial. Consider
now the case n=2.
o .By (1) aufi (ii) there is a simple arc I B=qy(t), y==qy(t), tel
joining the points p, and p, and lying in the set A. Thus we have

fer=fw,  and

It y eV, the set
(7) T <

P .
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has a finite number of components, which are isolated points, rectangles
or segments. More exactly, the set (7) contains a segment or a rectangle
if and only if one of the sets f™*(y) or f~'(y) contains a segment. Since the
number of such y’s is at most enumerable, there is a finite or enumerable
sequence Fy,F,... of disjoint segments and rectangles ~whieh contains
all the components (of all the sets (7)) possessing more than one point.

Consequently, we can suppose additionally that

(¢) the intersection of I' with any of components of the sets (7) is
either a segment, or & point, or empty.

If not, we can modify, by induetion on n, the functions ¢; and g,
in some disjoint subintervals of I in such a way that I'F, is either a seg-
ment, or a point, or empty for n=1,2,...

Now we shall prove that the function

f =f1 F1=lags

belongs to Fw.

Suppose that y,=7(z) =f(p(@)) =liga(2)) for m<e<a, (n<e). If
74 (y,) contains an interval, them yoeW Dy (a’). Suppose that fi*(y)
containg no interval. Then () = const for r; <z <w,. Since I' is a simple
are, the function ¢, is either increasing or decreasing in the interval
Ly, 2.y, Consequently fuf) =y,=-const for ¢ belonging to the interval
7o <&y, 5 ). Therefore, by (a'), y, ¢ W. Hence the function f satisfies the
condition (a').

Now let y e W. We have

1) =E (o), pa)) € 0% 7)),

By (c) the set I'-{j(y)x fa*(y)) is the sum of a finite number of
sugments and points. Consequently the set F(y) is the sum of finite
number of segments and points, i. e. f has the property (b).

Consequently feFw, which completes the proof in the case n=2.

Suppose now that Theorem IT is true for an integer n—1>1. We
shall prove it for the number n.

Let fy.fay..-sfueFw. By the
HHOD] Py @aseresPrz € F such that

induction hypothesis there exist fune-

f = fl@ =f2¢z T e *-"‘jn—l‘?’n—l € 8W~

Apply now Theorem IT (the proved ease of n=2) to the funetions
f,ineFuw. We infer that there arve funetions ¢,¢ne§F such that

.T'f :fnqnéfL?Ws

F18: = Foad = oo =Fro1Pnor® =[ufn-
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344 R. Sikorski and K. Zarankiewicz

Setting ¢; =@ for i=1,2,...,n—1, we obtain (6), (. e. d.

Theorem I follows immediately from Theorem 11 where W -/,
More generally, we infer that the condition () in Theorem 1 can he re-
placed by any of the following conditions:

() f7y) has a finite nwmber of components for erery iy el and
i=1,2,..,n;

(o) the Functions f; (i=1,2,..,n) are ukf bownded earviation and, for
every y el, the set ™' (y) contains no interval;

(o) the fanctions f; (i=1,2,
=Yyy=const in an interval .z <.
number of components.

n) are of bounded variation; if f;(x)
ryy then the sets [7'(yy) have a [inite

The case () follows from Theorem II where W/,
If f; is of bounded variation, then the set:

Y~ >

o
has measure zero. To obtain the case () it suffices to set in Theorem 1T
W=I—(¥;+Y,+...4+Y,). To obtain the case (ag) it suffices to set in
Theorem 11 W =I—(¥Y,+¥,+...¥,)+Y where ¥ is the (at most onu-
merable) set of all numbers y such that, for an integer 7--1
the set 77 (y) contains an interval.

Notice that, if f,,f, e Fw, the set 4 need not he conneeted or locally
conneeted. In fact, let x,=3/4 —1/4n. Let .

*)
V2,

fl(o)“‘oa

s =g=h(3).  mm=1,

11
fl(-l'zk—l):E —i‘ﬁ’ Pl i

and let f; De linear in all remaining intervals. Analogously let

HO=0. he =3 gp Hew=g=i(3) -1,
and let f, be linear in all remaining intervals. All the points (
are isolated points of A, and f,,f, e §y where W =1 —(1/2).

The proof of Theorem II is simpler if we restrict move the clags of
functions under consideration. In particular, the proof ix very simple in
the case where the interval I can be divided into subintervals in each
of which the functions are linear,

Lok "'zj)
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On uniformization of functions (II)
by
R. Sikorski (Warszawa)

I shall give another proof of Theorems I and I from the paper of
R.Sikorski and K. Zarankiewicz, On uniformization of functionz (I) ).
Both proofs are hased on a connectedness property of the set

E (jl(‘rl) =faoliry) = ... rf,,(‘r,‘,,))
(XpperesX)

(see Lemmas (i) and (i’)). Theorem III (see p. 349), which seems to be
interesting in itself, gemeralizes this property to the ease of mappings
Frsfas-sfa Of the k-dimensional cube @ into itself, the mappings being
the identity on the houndary of Q.

The gecond proof makes no use of the principle of induction. It con-
sists in the direct applieation of the method, used in the first part for
the case of two functions, to the general case of n functions. However,
this kind of proof requires more advanced topological means.

The second proof is based on the following lemmas which are gener-
alizations of (i) and (ii) respectively. "

(i) If fi:fay-esTnels, then the set

(8) 4= F (fl(l’ﬁ)'—”f«z(mz):'--:.fn(vl’n)} ®
(XganXn)
is connected between the poinis py=(0,0,...,0) and p=(1,1,..,1)
of the n-dimensional Fuclidean space.

(i') If fiyfossfaeBw (where W is a dense subset of 1), then each com-
ponent of the set A defined by (8) is locally connected.

Tn fact, by (i) the points p, and p, lie in a component 4, of 4.
By (ii') A, is locally connected. Therefore there exists an arc I’
&Ly == @n(t), tel

By =gt m=ga(t), -y

1} R. Sikorski and K. Zarankiewiez, On the uniformizalion n']‘ funclim{s (1),
this volume, p. 339-344. See p. 339 and p. 342. The knowledge of this paper is here

assumed.
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