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Remark. None of the constructions on the sphere which we have
described above can be done in this way on the plane, because there
exists no free group of isometries of the plane with more then one ge-
nerator. It follows that for each pair a,b of similarities of the plane the
following relation holds:

(x) abta~2 bR a PP e TR =11,
‘We shall prove a certain generalization of the relation (x).

Let us take the notation (a,b)=aba™*b™* — it is the so called com-
mutator of the elements a and b. We have the following assertion:

(Ty) For each four similarities of the plane @,p,x,n the following rela-
tion holds:
() (22 =1.

(For example the relation (x) follows by the substitution gp=a, py=17,
2=b7" n=a).

Proof. Let ¢ be a similarity of the plane with a complex coordinate z.
Then 2 is a similarity without reflexion (preservihg orientation), s. e.

(34) Bir)=apz+be,
where g and b are complex numbers uniquely defined by ¢ (50 ag#0).
Thus we have also
(35) fpa =,
a2

From (34) and (35) it follows that for each two similarities ¢ and =
13116 s.im:ila,rity (0% %) is of the form 24-b (where b is a complex number),
%.¢e. it is a translation. The produet of translations is commutative; this
proves (T,), because the commutator of commutative elements vanishes.
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Introduction

We shall denote by w(h) functions defined and never assuming zero
for k>0, monotonic, non-decreasing and tending to zero for h—0: In ad-
dition we shall suppose that
{1) lim A(h) <co  where A(h)= sup —t-

> t0 o<r<n ©(F)

As regards funetions denoted in the sequel by f(z) we shall always
suppose that they are continuous, defined and bounded in the interval
{—o00, +o0).

Let H, denote the class of functions which for every x and every h?)
satisfy the generalized condition of Holder

2) . [fa+ 1) —f(2)] < Maw(|h]),

where M denotes a constant dependent only on f(x). We shall suppose thai
w(h) satisfies the condition (1)2).
1) If condition (2) is satistied for every h where |[hj<<a for a cerfain positive con-

stant a, then f(x) will belong to class Ho.
?) In the case of lim A(h)=oo only constant functions would belong to class H,.
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In the case of the inequality w,(h)<wy(h), satisfied for 0 <h<q
with a certain constant «, we have H, CH,,. This leads to the classi-
fication of functions f(x) with regard to w(h). For example, taking in (2)
w(h)="H|log k| we obtain a logarithmic-power scale of the classification
of functions f(#), which for y==0 becomes a power scale. The meaning
of this type of classification iy clear, if only from the classical Jackson
and Bernstein Theorems on the approximation continnous functiong
by polynomials.

Independently of the classification of functions with regard to (2),
i. e. to their degree of continuity, they can be classified with regard to
the singularities which they display.

We shall denote by Hg the class of functions f(w) satisfying the
condition v
) i@t b —f(a)

k=0 w(lhl)

for every x. We shall suppose that w(h) satisfies condition (1)8).

‘We not.e that Hy CC—H,, where ¢ denotes the set of all conti-
nuous fuz{ct.lons f(x), and that in the case of the inequality w,(h)< wy( )
being satisfied for 0 <h<a with a certain constant a we shall have
H. DOH.,.

-It could Dbe asked what is the necessary and sufficient condition
which w,(h) and wy(h) must satisty in order that there exist a function

flx) belonging to both H,, and H;,. W. Orlicz gives this condition in
the following form:

= 0o

(4) . lim @y(R) -

ok Ay (h)=0.
I? })a,ra,gra,phs 2, 3 and 4 we use the results obtained by W. Orlicz [5]
giving them a more simplified form. ,

In this paper we examine functions (o) i
: of type O, by which we
understand functions of the following form: ype U, by W W

(2]
f(.’ﬂ) = Zan(p(bn%))
where =t
[=~]
a, >0, 0 <b, < byya, Zdn<oo

n=1

by->o0,

and where (@) is defined for ever
ere . Y &, non-constant, periodic with peri
and satisfies Lipschitz’s condition. ’ ) periodie il period 1

*) This supposition, in the case of contin

every z, is explained in Remark 3, § 4. tous functions f(s) satistying (3) for

icm
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We also take into account functions of type W, i.e. functions of
type O for which a,=a", b,=1" where 0<a<1, ab>1.

Classes H, and H are subjected to closer analysis and the suffi-
cient conditions under which a function f(x) of type O belongs to those
classes are established.

For classes H, and H in the logarithmic-power classification, . e.
in the case of

w(h)= 1’ |log h[?,

symbols H(é,y) and H™(6,%) respectively are used. Having fixed the
range of validity of the scale (the range of the values of the parameters
& and y) for the classes H(§,yp), who are proper parts of one another
for different values of pairs of the parameters, we establish for the coeffi-
cients a,,b, the conditions under which a function f(x) of type O belongs
simultaneously to classes H(d;,y,) and H™(8,,y,). These conditions per-
mit the construction of various examples, and also of the universal
example of a function f(z;6,y) of type 0. For the values of the para-
meters d,,y, arbitrarily chosen from the whole range of the logarithmic-
-power scale this function belongs simultaneously to classes H(d;,»;) and
H>®(3,,y,) for any 8, satisfying the inequality d,>4;, and in the case of
8,=20, for any y, satisfying the inequality y,<y,. Thus, belonging to
class H(d,,y,), this function does not simultaneously belong to any class
of that scale which is a proper part of eclass H{d,, ).

Dealing with funections of type O we shall, in certain cases, impose
upon the function () an additional condition, which we shall call con-
dition T.

Function g(x) salisfies condition T if there exists, for every z, such
a number h, of constant (independent of @) absolute value h* that the
inequality

|+ he) —gl2)} > d >0

is satisfied for every x with a certain constant d.

Lemmata 2, 3 give the sufficient conditions under which the con-
tinnous and periodic funetion g(x) satisfies condition T.

Condition T permits the effective use of a general method for the
construction of examples of functions showing for a given degree of con-
tinuity (belonging to H,) a certain degree of singularity (belonging to
H;). The efficiency of the method is obvious when we apply it to the
case of continuous functions nowhere possessing a derivative ¢). Results
can be obtained in this way by a general method without a detailed
analysis of function ¢(z).

4) Many results in this field are quoted by Knopp [4].
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Besides the notation introduced above:
flz), e@), (k) A(h), Ha, H::ca H(3,y), Hw(57?)7

we Tepeatedly use in this paper the following symbols:

ayyb, coefficients used in the definition of a function of type O,

a,b  coefficients used in the definition of a function of type W,

K Lipschitz’s constant of function ¢(zx),

D oscillation of funection ¢(z) in the interval 0 <z <1, where [ ig the
period of function ¢(w),

d,k* constants appearing with condition T for the function which sa-
tisfies it,

r,s  constants whose meaning has been defined in Lemma 1 (§ 1) for
function g(u). In the next paragraphs they retain that meaning
for funetions ¢(x).

§ 1. Lemmata

LEmmA 1. Let g(u) be a continuous function, periodic with period 1,
but non-constant, defined for every value w. For the function g(w) we can
determine two nwmbers r,s, satisfying the inequality

0<r<s<ly,
with the following property: for every w there exisis a number hy,, satisfying
r<|h] <s,
such that
gt hy) — g(u)| > 22

H

where Dy is the oscillation of funetion g(w) in the interval <0,1).
Pr‘oof.-We shall denote by wmin ymax ym gl]l those points in <0,%>
for which g(u) takes, respectively, the following values:

Yminy — min g(u); max) — .
g(umin) KKIog( ) glwme) gi%oﬂ(%):

1
g(um)=7{max g(u) + min .
( 2(o<u<tgg( )+o<u<tog(u,))

We shall denotfs by E™, B™* and E™ the sets of all points amin,
wm2x gnd ?Itnm respectively; we shall denote by &’ and 6” the distance from
the set E™ of the sets E™ and E™™ respectively.

‘We assume that

7==min (8',6").

Continwous funclions in the logarithmic-power classification 15

We shall denote by F, the set of those values of » in <0,l,> for which
g(u) <g(um), and by F, the set of those values of » in <0,l,> for which
g(u) >g(um). Denoting by &, the upper bound of the distances of points
of the set B, from the set ™, and by J, the upper bound of the dis-
tances of points of the set K, from the set E™®, we take

§=max (dy, ).
If
glu) <g{wm) < g(we),

then, denoting by u§"* the point of E™* nearest to the point u, we write
hy=ug** —u,

and if
g(w) > g(um) > glumin),

then, denoting by 3™ the point of E™® nearest to the point u, we write
hy= uf,”i“ —u.

It is easy to verify that all the conditions of the Lemma are satis-
fied in this manner; thus Lemma 1 is proved.

LEMMA 2. Let g(u) be a continuous function, periodic with period 1,
but non-constant, defined for every u, and let it have a derivative which s
not defined or becomes zero at most ot a finite number of points. We shall
suppose that the derivative g’'(u) salisfies the following condilions:

1. In the interval 0,l,> there exist (n+1) points u (k=1,2,...,n+1)
in whose one-side neighbourhoods the function |g'(u)| is monotonic: namely
it is non-decreasing in the right-hand neighbourhood of the point uy, Aug
(whose length will be denoted by duil ), and non-increasing in the left-hand
netghbourhood, Aug, (whose length will be denoted by dux ). Let u,=0;
Unp1=ly.

9. Let the closed interval Ay (of the length &F) adjoining the right-
-hand neighbourhood Auif on the right and the closed interval Ay (of the
length 6% ) adjoining the -left-hand neighbourhood Auy on the left be such
that the values which the function |g'(u)| assumes in them are mot smaller
than the values of that function in the neighbourhoods adjoining those intervals.

Let us suppose that dui <% and duy <5%.

Suppose further that the above mentioned intervals and neighbourhoods
have no common points other than, at most, the boundary points of intervals
Aif, Ay, and that their sum together with the set of all points uy completely
covers the interval (0,1>. )

3. We shall suppose that g'(u) becomes zero at most at points u, and
that it is undefined al most at points ux or ab most at the boundary poinis
which are simullaneously common o AF and Ay,
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Under these conditions the function g(u) satisfies condition T since for
every 1 we can choose such an h, with a constant absolute value h* for each u
that we shall have )

lg(u+ hy) —g(u)| > gh* = d.

Numbers *, ¢ can be chosen as follows:
Let 2* be an arbitrary positive number satistying the inequality

(3) W<k

)

min (8w + 675 dug + 6%).
k=12,.,n

Having chosen the values of 7* we determine g. We decrease the
neighbourhoods of points u, (mentioned in 1 and in 2) so that the length
of each does not exceed h*, thus increasing simultaneously the adjoining
intervals. For these new neighbourhoods and intervals we retain the
former notation. Inequality (5) remains valid. We take

©) = min g+ 8 ) — gluy)| ,g(11k~61.!;)—g(?4k)[)5)
k=1,2,0n Sui ! our ’

For such #* and ¢ and the newly defined neighbourhoods and inter-
vals we shall prove Lemma 2.

Proof. For the proof we shall consider Au;, the right-hand neigh-
bourhood of w, of the length duf, and the adjoining closed interval A5,
of the length 67, in which g'(u) satisfies the conditions of the agsumption
and, as follows from those conditions, has the same sign. We shall have

Sup < k% ST h% suf 46 > one,

We shall show that, for w, and for every point u contained in
Auf + 47, we can choose such an b, that [h]="* and that

@ o gt R —g(u) | gt duid) — gui)|
hy dui

Let us consider the following cases:

1° u=w; and duf =7h*. Here we take hy=k*=6uf. In this case
inequality (7) is obviously satisfied.

2 we<u <+ Suf. Here we take h,=*,

a. We note that

oug

¥) For k=1 the left-hand neighbourhood of point u, and its adjoining interval
should :oe replaced by the respective neighbourhood of point u, , =1 and the adjoining
interval. ' i

Conlinuous funetions in the logarithmic-power dlassification 17
has a value intermediate between

g =90 _ iy apa I8 —g(w)

U — Up (U4 dufy—u

=¢'(72),

where 1, <#,. In view of the function |¢'(u)| being monotonic it follows
hence that
G+ Sui)y —glu)

(up+ 57,{2') —u

glur+ duid) — glux)
duif

(8)
b. Let us now consider three points satisfying the inequality

U< U+ OUT <+ Ry
We note that
glu+hy) — g(u)
hy

has a value intermediate between

g(u+ ) = glrug+ dui

glugt+ du) —glu)
(u+ hy) — (up+ Suil)

(et 61{2’) —U%
where 5y <+ ouy <n,. Hence |¢'(73)| <|g'(n,)] and thus

glug=+ Sug) —g(w) < k g(u+ hy) — glu)
(U Su) —u by

If we join the above inequality with inequality (8), inequality (7) is
proved for case 2°.

3° y=u; and duy < h*. We then take h,=h*. This case can ob-
viously be reduced to part b of case 2° which we have already con-
gidered. .
4° gt du <u <ug+ ouf +0,—h*. We then take kh,=h* In this
case we obtain

) =9'(n4);

=¢'(7s) and

G M) =009 | g )| = 200 — g(0s)

b oug
congidering that 1 < wx-+ duy < <up-+ dui + o8 .
B g+ Sup + 6F — W <u <up+ ouf +07. We take h,=—h*
In view of
W Ry > U+ SUg+ 08 —2k* >uy,
we can reduce this case to one of those considered above, chapging only

the roles of points w and w4 h.
Fundamenta Mathematicae. T. XLIL 2
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Tn this manner we have exhausted all the possible cases and in-

equality (7) is thus fully proved. )
Tf we applied similar reasoning to the left-hand neighbourhood

of u; and the adjoining interval Ay, we should obtain

glu-h,) —g(u) l S l gt — Ouy ) — g(u)
T = Sux

From the above inequa,ijty and from inequality (7) follows the truth
of Lemma 2.

We note that the conditions of the assumption of Lemma 2 are
satisfied by every periodic funetion g(w) whose graph is a continuous
polygonal line, composed of a finite number of segments none of which
is parallel to axis u. In the case of such a function we can take as u
the abscissa of every second vertex of the polygonal line. If we denote
the lengths of the projections of these segments on axis u by §; and the
absolute values of their angular coefficients by g;, it is sufficient to take

|| =*= ;m_in 6;  and

3 g=ming;.

In any case it is immediately obvious that every such function
satisfies condition T.

LeMMA 3. If o periodic function g(u) (with a period ly) has conti-
nuous first and second derivatives, and these derivatives have a finite number
of zero places in the interval {0,l,> then the function g(u) satisfies con-
dition T. :

Proof: We denote the zero places of the function ¢'(u) by u
(k=1,2,...,m+1) ordered so that u, <u,<...<uUpyy and =0, Upy1=1,.

From the conditions of the assumption it follows that there exist
a certain right-hand neighbourhood of points u; in which |g'(#)| increases
and a left-hand neighbourhood in which |g'(u)| decreases. Let us take
any h*>0 provided it satisfies the inequality

h*<l min (uk+1~uk).
3 k=1,2mn

Having deleted from intervals (u,uz4+1) the above mentioned one-side
neighbourhoods of points ug,ux.:, we obtain closed intervals A, in which
the function |g'(»)] assumes a certain minimum value M, not equal to zero.
‘We shall now decrease the left-hand neighbourhoods of .y and the
right-hand neighbourhoods of u; so that

a) the value of function |g'(#)| in each of these neighbourhoods will
not exceed the number My,

icm
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b) the length of each of these neighbourhoods will not exceed k>,
and thus the length of the interval 4; will not be smaller than A*.

Denoting the boundary points of the newly obtained right-hand
neighbourhood of the points w by uz+ oui and of the left-hand neigh-
bourhood by ux—duy, let us define ¢ as in (6).

For numbers h* and ¢ thus defined all the eonditions of Lemma 2
are satisfied, ¢. ¢. Lemma 3 is proved,

Let it be noted that Lemmata 1, 2 and-3 will be applied in the
sequel to the function ¢(u) defined in the Introduction. In that case
the symbols g(u), Dy, I, used in the Lemmata should be replaced by the
symbols @{u), D, 1. :

8§ 2. Sufficient conditions under which a function f(») of type O belongs
to class Hy

TeEEOREM 1. If the coefficients a,,b, of a function f(z) of type O sa-
tisfy the condition

(9) S aubad (i) <oo,

n=1 bn
the function f(x) belongs to class H,.
Proof. Let us write

bah  [b,h]
‘r'[z]-“

" and suppose that h>0. We find that

'qo(b,.(erh))—qo(bnm) Jz’tp(b,,m—i—l())——qa(b,,m). /] ’ 19

() 0 W) | <" awy

In the case of 0 <h<1/b, we shall have 16=>,h, and therefore

19 1
<045
and in the case h>1/b, we shall have

Zf((’—mi—(i%—)@m(b_’").

In both cases, i. e. for every k>0, we obtain

(ba(@+ 1) —9(Ba0)|
w([R])

1
<KbnA (b_)

2%
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Since the above inequality remains valid also for % <0 (which is obvious
if we substitute £—h for x in it), therefore Theorem 1 is proved.
Remark. We note that in view of the inequality

bA(l)>—l—>1

b 1
“\e,
true for n>N, from condition (9) follows the convergency of the se-
o0
Ties D ay.
n=1

THEOREM 2. If the coefficients ay,b, of a fumction f(z) of type O sa-
tisfy, for every m>N, the inequality

(10) ()2‘a,b+ (

i=n+1

2 a<C
n+1)

with certain positive constants a,C independent of n, then f(z) belongs to
class H,.

Proof. In the ease of a/bua<|b| <afb, (n >N) the following inequa-
lities are true

o(bi(@+h)—p(bz) b
Za,bi b,h .a)(]hl \_KA( )Za; iy
S Jofoath) o) D
P wwzn < S
(bn+1) o

And in the case of > afby, we have
et h) —f@)| __o,

ELI—)

If we join the two cases, the theorem is proved.

§ 3. Sufficient conditions under which a function f(x) of type 0 belongs
to class HY

THEOREM 3. If a function f(x) is of type O and its coefficients a,,b,
satisfy the: following conditions:

(11) L Tm—m o,

Continuous functions in the logarithmic-power classification 21

n—1
1 < D
) i 2 <05
J=1

(13) lim

where 0<0<1, then f(x) belongs to class Hy.
* Proof. We shall carry out the proof applying Lemma 1 to the fune-
tion p(u), symbols g(u), Iy, Dy being replaced by ¢(u), I, D. We substitute
U= by, hy="bphs.

On the basis of Lemma 1 we can find two numbers r,s, satisfying the
inequality 0< r<s<1, such that for a certain fixed n there exists for
every & a number.k, for which, with every =, the following two condi-
tions are satisfied:

r 8

E < Ihx! < E:

(14) lq)( x+h) @(bn x)[ —?

Hence we obtain the inequality

b w+hx)) pbnr)| D an

and moreover the inequalities

= [ ( {2+ hx )) o(b; .7})‘ b; lhxl Ks nrt

(16) Za,- i o < (b)za, 1

i=1 i=1

. ) ..
(o i=§1a‘ o([ha) w(b )1=%r‘1 "

Considering the last three inequalities we obtain

ag  Matn) 1)) a»)(D (b) 5 (3)2 §a>

> 5 .
(‘)(!hxl) '_9_ 2 w ) n ™ j=nt1-
@ b . bﬁ b"'
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Since the above inequality is true for every » and a suitably cho-
sen h,, therefore, conditions (11), (12) and (13) being satisfied, the func-
tion f(x) will belong to class Hg. :

THEOREM 4. If the function p(x) satisfies condition T, and the fuwe-
tion f(x) is of type O and its coefficients a,,b, satisfy the following econ-
ditions: )

a

(19) | lim 7 = oo,
()

_— 1 -1 d N
20 lim Do B —
(20) wsco O é @b <0 7

— 1 d
(21) Iim = < (1— L

o0 Oy i___%‘la" <( O)D’

where 0<0 <1, then the function f(z) belongs to class Hy.

- Pr09f.. The proof immediately results from the proof of Theorem 3.
It is suffm}ent, for this end, to take r=s="5* and to replace expression
Df2 by d in (14) and (15) and consequently in (18). .

TeEOREM 5. Suppose that ¢(«) satisfies T, and function f(z) is of
fiype W, where ab>1. If condition (19), in which a,=a", by=1", and con-
itions

(22 1 g4
) =1 <z
9 a d
(23) o <1-03,

where 0<0<1, are satisfied, then f(x) belongs to H.
The above Theorem immediately results from Theorem 4.

A particular case of Theorem 5 is obtained i
when, applyin, 3
or 3, we choose h* in such a manner that ) Appiying Lemm 2

h* =%z,
where m,k are gatuml‘numbers and b is a multiple of number %. In this
c]::;se, the }e‘ft side q.f inequality (17) becomes zero. In connection with
this, condition (23) is omitted and in (22) we can take §—1 Thus
can formulate the theorem as.follows: ‘ e
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THEOREM 5*. Let the function ¢(z) satisfy T and let

B* = f'kl 1,
where m,k arve natural numbers. If the funciion f(z) is periodic, of type W,
where ab>1, b is a multiple of k and conditions (19) and ’

1 d
(24) e ¢

are satisfied, then the function f(z) belongs to class H;.

§ 4. The necessary and sufficient condition of the existence of a function
f(z) belonging simultaneously to classes Hml and Hz

THEEOREM 6. If a function f(x) belongs to class Ha, and the condition

wy(h)

W A (h) >0,

(25) lim
h=>+0

is satisfied, then f(x) belongs simulianeously to class Heg®).

Remark. If we take wy(h)=h in Theorem 6, the following con-
clusion results:

The necessary condition under which class H,, is not contained in
class H(1,0) (that is, in the class of functions satisfying Lipschite’s con-
dition) 1is that

. h
hliI—El wy(h) =0

TasorEM 7. If condition (4) is satisfied, then, with the function ()
givén beforehand, we can so choose the coefficients an,by of @ function flw)
of type O that this function will belong simultaneously to Ha and HE,.

Proof. For the proof it is sufficient, (applying Theorems 1 and 3)
to choose, with a given g(x), the coefticients a,,b,, in such a way that
for w(h)=w,(h) condition (9) is satisfied, and for w(h)= wa(h) conditions
(11), (12), (13) are satistied. Tt will be seen that for b, we can also choose
an integer, so that the function f(z) might be periodic. )

Instead of the above-mentioned conditions we ghall consider the
following

{26) Z'anb,,/ll(-bl—)<oo,

n=1

s) The proof of this theorem can be found on p. 22 of [5].
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(27) lim "'"l =00,
N0
o (5)
- . P _b.n 1 n—1
(28) m—p= - - @:b;=0,
'l—)oowz (E) nvn j=1
o (5)
2\ 7T ©
(29) ) Jin 0o/ | L S a=0.
"'mcuz(bL) Oy S
Let us write
Fym—2n

and let, for example, & =1, b;=2. Defining by induction, let us assume
that we have already defined the coefficients %;,b; for s<<n. Let us choose
kn 80 that )

1 n—1 1
Eé' a/,‘bg<ﬁ and  k,>n
and let b,>b,.; and b,>mn.
In view of
4
()

n—=1
) 1 I\ 1
N aky 2 <5 (b_) 0
Wy b_,. i=1

not only eondition (27), but also condition (28) is satisfied.
Suppose that b, satisfies the additional inequality

l 1
el <

n bn—l

It is obvious that condition (29) is satisfied and that the function
f(®) is of type O.

Thus, Withf)u(:, using condition (4), we have constructed a function
of type O (periodie, when &, is an integer), which, in accordance with
Theorem 3, belongs to H.

Now.r let us suppose that condition (4) is satisfied. According to (4),
there exists a number hy>0 so small that the inequality '

(31) @alho) 4 gy L1
hy 1(hy) 75 ]
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is satisfied, and so small that if we take

1
bn: [’;a)] +1 ?
the relations b, >, b,>b,_, and (30) are satisfied. Moreover, if we take

0 < hy<1/2, then, in view of

h—l<-f<b amd e
T e € 1 h,’

AT ! L (hy)
(E) w, (b—) A, (b—) <2 .-—“’ZI(LO ) Ay(hy).

Joining the above inequality with inequality (31) we obtain

1 1
a, b,, 4’11 (b—n) <F.

we obtain

Z

Thus condition (26) is satisfied, 4. e., the Theorem is proved.

From joining Theorems 6 and 7 it follows that condition (4) is the
necessary and sufficient condition of the existence of a function f{x)
(of type O), belonging simultaneously to classes H, and H,.

Remark 1. Since in constructing the coefficients a,,b, in such a way
that conditions (27), (28) and (29) be satisfied and the function f(z) be
of type O we have not used condition (4), therefore it follows hence,
in view of the contents of Theorem 3, that none of the classes Hy is
empty as it is possible to construct for each of them (the function ¢(x)
being given beforehand) a function of type O belonging to that class?).

Remark 2. Suppose that class H,, does not belong to class H(1,0):
referring to the remark concerning Theorem 6, we obtain lim A,(h)=0.

Taking in turn w,(h)="7% we see that condition (4) is sa,tist}'lie&? Hence ‘it
follows that in each class H, not contained in H(1,0) there exists a func-
tion f(z) of type O which belongs to H*(1,0) and thus has nowhere a fi-
nite derivative.

Remark 3. If we assumed that lim A(h)=co then the function

h—++0
defined as f(z)=|z| for 0<a<l,, f(w)=Ffa+1) (l,>0) for the rema-
ining #, would already belong to class HY,-i. e. it would have a singu-
larity -defined by formula (3) for every 2. That is why we have made
assumption (1) also in the classification of funetions according to con-
dition (3). ‘

7) Examples of a function belonging to class H, were given by Fab'er ((2]and [3])-
also by Auerbach and Banach [1], by Ruziewicz [6]. In the example given by Ruzie-
wicz the function is of type O, where p(z)=co8 x.
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§ 5. The logarithmic-power scale

Suppose that wy(h)<ey(h) for 0<h<a with a certain a; in that
case H,,CH,,. Now, if w(h) and w,(h) satistied condition (4), then class

H,, would be a proper part of class H,,. If, on the other hand, w(h)"

and wy(h) did not satisfy (4), then, in view of Theorem 6, classes H,,
and H,, would coincide. Hence is it obvious that (4) can be used to
establish the scale of classification of functions f(z).

Suppose that a function w(h;§,y), with fixed values of the para-
meters 6,y, has the same properties as the function w(h). Moreover, let
classes Hygspn 804 Hoggs,p be proper parts of one another according to
whether 3, >y, OF p;<%s, and also let classes Hogpsyp a0d Haps,y, be
proper parts of one another independently of the values of y, and y,
and according to whether 6,>6, or &, <J,. In that case we shall say
that we have established the seale of classes H,, according to the functions
olh;d,y).

Now let

w(h)=h|loghf  (3>0, and for 6=0, y<0)

for 0 <h<a. In this interval, with a suitable choice of number a, the
function o(h) is increasing; for k> a let us define it in such a way that
it be monotonic, non-decreasing 8). The consideration of condition (4) in
the case of function w(h) defined in this way leads to the establishment
of a logarithmic-power scale, and in the case of y=0 to the establish-
ment of a power scale.

For classes H, and H;, obtained in this manner we use the symbols
H(s,y) and H™(4,y). Class H(d,,y,) is a proper part of class H(d;,7:)
if 8;<d,, and in the case of d,=4, if y;>y,. Thus parameters 6,y can
assume the following values: 0<6<1; y>0 if 6=1, y<0 if 6=0, arbi-
trary y if 0<éd<1.

Applying (9) and (10) in the case of a logarithmic-power scale we
obtain, on the basis of Theorems 1 and 2, the following theorem:

THEOREM 8. A function f(x) of type O belongs to class H(8,y) if the
coefficients ay,,b, of that function satisfy one of the following two inequalities:

(32)
or for every n>N
(33) Kb;"—l(log bn)—vz a:bi—l—Dbi’,H(log bprr)™” gw <0,

i=1 i<nt1
where C is a constant independent of n.

Z anbi(IOg bn) - <co 9)
n=1

8 For t]us pﬁrpose it is sufficient to take a=e"""® in the case of y>0and to take
e g. a=1/2 in the case of y<0; in both cases w(k)=w(a) for h>a.
%) For simplicity of notation we ghall continue to assume b,=1.
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Before formulating Theorem 3 in application to the logarithmic-
-power scale, we note that in the case of that seale, 4. e. if o(h)= K'|log A",
function h/w(h) is increasing for sufficiently small b (h>0). Hence, for
sufficiently large n, we can replace w(r/b,), appearing on the right side
of inequality (16), by (s/bs), and consequently we can do the same in
condition (12), simplifying it in this manner. After this remark, taking
into account conditions (11) and (13), we formulate the Theorem as
follows:

TearoBEM 9. In order that a function f(x) of type O belongs to class
H>®(3,y) 4 s sufficient that the coefficients ay,b, of that function satisfy
the following relations:

(34) Tim a,b% (log b,) ™" =00,
n—00
13 D
(35) b g“ibi T
) < 1—6 [\
(36) im — > a<—— (i) ,
n>o0 Qn j=ntl & §

_ where 0<0<1.

We shall mention the following particular cases of Theorem 9:
a. Condition (35) in the theorem can be replaced in particular by
condition

b
(37) Tnmilazl g

lim ~
n“n

Condition (36) can be replaced in particular by condition

.
lim =2t =0.
n—»oo an

(38)

b. If the function @(«) satisfies condition T, then relations (35) and
(36) in Theorem 9 can be replaced by (20) and (21) respectively.

¢c. If the function f(») is of type W, where ab>1, then relations
(34), (35), (36) in Theorem 9 take the following form:

(39) (ab®)" (nlog b) ™" —oc0,

1 D
(40) ab——1<62sK’

a 1-—6 [r\¢
(41) 1—:6<T(§)'

d. If the function ¢(x) satisfies condition T and the function f(x)
is of type W, where ab>1, then (34), (35), (36) in Theorem 9 can be re-
placed by (39), (22), (23) respectively. : .
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It h*=mijk and b is a multiple of %, then, in view of Theorem 5%,
conditions (22) and (23) are reduced to one condition (24).

Tn the relations of Theorem 9 let us replace in (34), (36) or in (39),
(41) the symbols 8,y by b1,71. Applying simultaneously Theorems 8 and 9
and, if necessary, particular cases of the latter, we obtain the sufficient
conditions under which a funetion f(z) of type O belongs simultaneously
to classes FL(8,y) and H™(d;,7,). We shall use them in the case where
f(z) is of type W..

TamorEM 10. If a function f(z) is of type W, then it belongs to one
of the classes H(3,0), where >0 and where

a. in the case of ab>1, 6 is defined by the formula:

(42) ab*=1,

b. in the case of ab=1, f(x) belongs to class H(l,1).
Proof. Let us apply condition (33) of Theorem 3 and take in it
ay=1a", by="1".
a. If y=0, ab’=1, ab>1, we obtain
Kbnd—l i (n+1)3 i
(@) + D10 3 ol <Koy g
i=1 i=n+1 ) .
b. If 6=1, y=1, ab=1, we obtain
K D 1
Togh T T—a)logs nri~C:

In both cases condition (33) is satisfied and thus the theorem is
proved.

THEOREM 11. Given a function () and any 6, where 0 <<d <1, we
can choose the coefficients a,b for a function f(x) of type W in such a way

that it will belong simultaneously to class H(5,0) and to each of the classes
H>(8,y), where y<0.

~ Proof. Let us consider the particular case ¢ of Theorem 9. We choose
any 8 and take ab’=1. For y <0 condition (39) is satisfied.
We note that we can always choose a,b in such a way that, with
a chosen number H(0<6<1), conditions (42), (40), (41) will be satisfied.
Let us denote the expressions on the right side of (40) or (41) by 4 and B
respectively. Conditions (42), (40) and (41) can be replaced by condi-
tions (42) and by the conditions
13- 14+ A B
b > T y a << ].—-{——B

whose realization, through a suitable choice of the coefficients a,b is
always possible.
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1t we also take into account Theorem 10, Theorem 11 is comple-
tely proved.

It will be noted that for b we can also choose an integer, 5o that
fl) will be periodic.

Remark. Theorems 8 and 9 permit the construction of a function
flz) of type W, belonging simultaneously to classes H(d,y), H™(8,71)
only in the case of 6<1 and y; < y=0. For this reason, the construction
of a function of type W for other values of the parameters &,y hag still
to be explained.

§ 6. Examples

A number of works induced by Weierstrass’s example of & conti-
nuous non-differentiable function dealt in the first place with the con-
struction of various examples of continuous functions for which in every
point of the interval under consideration at least one of the derived num-
bers is different from the remaining ones or at least one of them is in-
finite. } -t
Tn later examples, of both analytical and geometrical form, atten-
tion was paid to the question of obtaining the widest possible range of
values of the coefficients @, b for which a function has the required kind
of singularities 19), with the retention of the simplest possible form of
the function), e. g. the form given by Weierstrass or the simplified
form of Faber’s function !?). More general methods were' also applied,
and their efficiency was examined on classical examples, 4. e. in a parti-
cular cage. According to the generality of the method more or less sharp
results 18) are obtained in this way.

G. Faber has given an example of a function that has a singularity
of a higher order than its non-differentiability; since it belongs, aceording
to the clagsification which we have defined, to-class H®(6,0) for every 6
satisfying the inequality 0<d<l. Further works aim at constructing
examples of functions with a generalized singularity according to func-
tion w(h), expressed by condition (3)7).

1) Since the singularity required in this paper is expressed by condition (3) for
every «, the method applied here limits @ priori the range of the coefficients to the
condition ab> 1.

1) To the simplest examples of this type belongs the example given by van der
Waerden [7]. . .

1) Both functions are considered in examples 1 and 2.
type W. ‘

1) W, Orlicz, on the basis of the general method which he applies, obtains, for
example, for the coefficients of Weierstrass’s function the conditions ab>1+ 37/2,
4<1/13 ([5], p- 35, Remarque).

They are functions of
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The generalization of Hélder’s condition permits the classification
of functions with regard to their degree of continuity, the classification
of functions according to the logarithmic-power scale having found appli-
cation in the first place. The results of Orlicz’s [5] work, in which he
has given the necessary and sufficient condition of the existence of a fune-
tion satisfying simultaneousty conditions (2) and (3), make it actually

possible to analyse this classification more exactly and, in consequence,
" to analyse some of the known examples.

The examples given below directly result from the application of
the general method and concern exclusively the logarithmic-power scale.
By imposing condition T on the function ¢(x) we obtain by the general
method results even better than the classical results, obtained by the
use of the individual method. A closer analysis of the function under
consideration improves the results even more 't). The examination itself
is greatly simplified. The examined function is classified with regard
to both its ‘““degree of continuity” and its “degree of singularity” by
indicating the classes H(,y) and H™(8,p,) to which it simultaneously
belongs. If this is so for every y, satisfying y,<<y, then class H(d,y) is
the “narrowest’ class in the logarithmic-power scale to which the exa-
mined function belongs. In this manner the results obtained become
more complete. From this aspect we analyse some more of the later
examples, obtaining generalized and sharpened results 15).

On the ground of the method applied, the construction of a wuni-
versal example, mentioned in the Introduction, for classification accor-
ding to the logarithmic-power scale becomes possible 18),

For the construction of each of the examples given below we can

take integer values for b,, i. e. the construction concerns in particular
periodic functions with the required properties.

Examere 1. Taking g(x)=cos 2 we choose the values of the coeffi-
cients a,b of a function f(z) of type W in such a way that f(z) belongs:
simultaneously to classes H(§,0) and H™(3,y), where 0<d<l, y<O.

In particular every such function will belong to class H™(1,0) and
thus its derived numbers will nowhere be all finite. k ‘

a. For the function cos» we obtain K =1 and on the basis of Lemma 1:
r=mx/2 s=x, D=2. Let us apply Theorem 9 (case c), substituting d=1,.
y=0in (39), (40), (41) and taking 6=2/3. We obtain the inequalities

1

3
@>1tzm,  a<iy

4) See Examples 1 and 2.
) See Examples 3 and 4.
*) See Examples 5 and 6.
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which constitute a sufficient ‘condition for the eoeﬁ?ic'ients q,b ‘nn(liger
which f(z) belongs to H*(1,0) and thus nowhere has a finite demva’?lve_ )-
The result obtained is weaker than that demanded at the beginning.

b. To obtain the result demanded at the beginning .1et us use Lem-
mata 2 and 3 and note that the function cosz satisfies condition T.
Using the notation of Lemmata 2 and 3, we can take

3 1
h*——-%, 1=75 (l=qh*:§.

Let us apply Theorem 9I (case d) and take 6=2/3. Considering (39), (22),
(23) and Theorem 10, we obtain

1 5
ab>1-4m, a<3 ab’=1 '

as a sufficient condition under which the function f(z) belongs simulta-
neously to classes H(3,0) and HY(8,y), where y <0, 00 <1. ]
Now let us take for b an integer of the form b=6n. In .t]'als case
K*=1/6, and conditions (22) and (23) can be replaced by one condition (24).
- 1
In view of this we obtain‘ .

2
ab>1+ gn, ab’=1"1)

as a sufficient condition under which the funetion f{z) has the properties
demanded at the beginning. ] .

¢. The above results have been obtained by using ge,neral_’ m.et‘lc}{odi
without an individual examination of the function cos z. An mglw ui_
examination enables 1s to obtain the most advantageous values for c{? .
stant d,k*, 4. e. values for which the quotients d/h*? d/D have the greates

ossible values. . ' '
! To determine the constant h*=|h, for which the mequa,hty‘
|cos (@4 hx) — €08 z|>d>0

is satisfied for every x (condition T), we convert this inequality into
the following

h, d
sin (m—}—%"\) > =7
- 2|sin

It is easy to see that, in order that the above inequality be satisfied for
every x, we must have : V'é
5

0<g<

: 1+ 3n/4,
) The conditions given by Weierstrass are a8 follows: 0<a<1, ab>1+37]
b an odd integer. )
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where, according to g, we can take for h* one of the values satisfying
the inequality )
(43) 2.aresing <h* < z—2arcsing.

The greatest values for d/h* are obtained with gz‘VE/Z, h=m/2, i.e.
with d=1. Then the relation d¢/D will also have the greatest possible
value. Choosing 6§=15/6 we now obtain the following relations for the
coefficients a,b

3 1
ab>1+—5-n, a<I§, aba;zl.
Let us now suppose that b is an integer and a multiple of num-

ber .k, with
(44).

where m,k are natural numbers. In this case, in'view of Theorem 5%,
it is sufficient that the coefficients a,b satisfy conditions (24) and (42),
4. e. that .

*
(45) ab >1+% and  ab’=1.
In this case the function f(x) ‘will be periodic and will belong simulta-
neously to classes H(§,0) and H*(5,y), where 0 <d<1, y<O0.

From (43) it .follows that the values which can be chosen for i*
must be smaller than x, and in order to obtain the smallest possible h*/d,
it is neeessary to choose

gzsmﬁ i <z and Y i 2
5 <3 g_sm(z —2-) if & >5-
In both cases the smaller [k*—x/2| we take, the smaller value we shall
obtain for h*/d; it will be smallest when h*=gx/2.

It is easy to verify that for k>4, if we choose in (44) the number m
for a given & so as to obtain the smallest possible values for |h*—m/2|,
then the largest of those smallest possible values will be obtained for

k=6 if B*<#/2 and for k=7 if h*>x/2. Listing the respective values
we obtain

% 4 6 7
1 1 2
E4 24 27
LA
h* w2z 4 v
a2 3 T &m<w
7sin -
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Thus if the coefficients a,b satisfy the econditions

(46) ab>1+§ﬂ, ab’=1,
where b is an arbitrary integer not smaller than 4, then the function f(x)
is periodic and belongs simultaneously to classes H(5,0), H®(3,y), where
0<o<l, y<O.
In the case of b=4n, conditions (46) can be replaced by the fol-
lowing
ab >1+%7r, ab’=11).

From conditions (45) follows the inequality

B\
(47) 7)

b >(1+
and thus, if we increase 6, we must increase b so as to satisfy the above
inequality. Thus, for example, for §=1/2 the smallest possible integer b
satistying (47) is 8. However, it is easy to calculate, considering (46),
that it suffices to take 0<4<1/3 in order that f(z) belong to class H(J,0)
and to all classes H®(6,y) (where y <0) for every integer b>4 and a sui-
tably chosen value of a.

Tt will be noted that, on the basis of the above method, we cannot
construct a function of type W satisfying the conditions of our example
if the value of the coefficient b is 3. In that case we must take

4
k=1, m=1, h’*___i%n’ d=§, %:V—é%—>2;

thus condition (47) would not be satisfied for any 4, where 0<6<C1.
ExXAMPLE 2. Suppose that f(x) is of type W and that

@(z)=min |z—p,
p

where p assumes arbitrary integer values. We choose such values of the
coefficients a,b of f(x) that f(z) belongs simultaneously to classes H(0,0)
and H>™(8,7), where 0<d<1, y<0.

‘We note that the function g(x) satisfies condition T and that K=1,
1=1. When b is an integer and b>4 we can take

1 h*
7z*=z, d=h*, Ti—:l.

1) Tt will be noted that taking for example b=4, a=3/4, we can, by applying
the above method, show directly in a comparatively simple manner that the corres-
ponding function f(x) of type W has nowhere a finite derivative.

Fundamenta Mathematicae. T. XLIL 3
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Let us consider Theorems 9 (case d) and 10, 4. e. conditions (39),
(24) and (42). We shall obtain conditions (45) for the coefficients a,b,
and thus in the case of the example in question

ab’=1.

They are sufficient in order that f(z) belong simultaneously to classes
H(3,0), H(J,y), where 0 <d<1, y<0 and thus in particular that its
derived numbers be nowhere all finite 1?).

From these conditions it follows that b>>2Y"~% and hence that
with suitably small 8 we must choose suitably large b. It is, however,
sufficient to take 0<<d<1/2 in order that, for every integer b >4 and
a suitably chosen value of a, the function f(z) belong simultaneously to
classes H(s,0), H*(,y), where 0 <d<1, ¥ <0.

It will be noted that on the basis of the above method we cannot
construet a function of type W satisfying the conditions of our exam-
ples for b=3. In the latter case we have A*=1/3, d=1/6, h*/d=2, and
thus conditions (45) cannot be simultaneously satisfied for any 6.

ExampLE 3. G. Faber has given the following example of a function:

ab>2,

o]
=2 107"p(2"x),
n=1

where ¢(x)=min |z—p| (p integer), and shown that it belongs to class

r
H=(5,0) for 6>07).
This result can be generalized for an arbltrary function ¢(x) satis-
fying condition T for which
d_1
ﬁ>§-
‘With this supposition f(z) belongs even to H(0,y) for every y<0 (thus
it does not belong to any of the classes of the logarithmic-power scale
H(é,7)), as in this case conditions (34), (37) and (21) of Theorem 9 (case b)
are satisfied for =0, y <0 (in (21) we take §=0).
In Faber’s case D=1/2, and we can take d=1/4, so that /D >1/9.
ExamrrE 420). We shall examine a function of type O

Z' (0" )
in the following two cases:

2. O<a<l, ab>1, a=0.

. %) The conditions given by Knopp ([4], p. 18) are as follows: 0< o<1, ab>4,
even.

#%) This example, in a slightly less general form, was examined by O
d s rlicz ([5 33,
34 and 38). The results obtained there have been extended here. v e
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Tn this case the funetion f(z), independently of the choice of g(2), be-
longs simultaneously to classes H(8,0) and H™(8,y) for every y, where
y <0, and for é satistying at’=1 (0<<d<1).

b, O<a<l, ab=1, a>0.
In this case, if

. s K 1/a

b> (1 4 T)
(and thus for every b, provided we choose a suitably large a) the func-
tion f(z) belongs simultaneously to classes H({d,0) and H>(1,y) for every
o and y, where 0 <8 <1, y=>0.

Case a. We notice that conditions (33), (34), (3
we should take a,=a™, b,=0", are satisfied.

Condition (33) is satisfied since

7) and (38), in which

5-1 K D
Kb Z,‘a b,+Db,,+1' %Ha <1 b5_1+1 =
The fulfilment of the other conditions is obvious.

Therefore the function f(z) belongs simultaneously to both of the
above-mentioned classes.

Case b. We notice that conditions (32), (35), (38) and (34) ar
satisfied; in the first of them we should take y= O 111 the last 6=1 and
in all of them a,=a"™, by="b""+",

Condition (35) is satisfied by (48) since

lim 20, T 1<

n>00 Aplp ;o q

D
28K’

(in (35) we can take §=1). The fulfilment of the other conditions is
obvious.

Therefore the function f(x) belongs simultaneously to both of the
above-mentioned classes. )

ExAmprr 5. We give an example of a function f(«) of type O, which,
according to the values of the parameters §,y, belongs simultaneously
to classes H(8,y), H®(d,7) (where 9, <y) in the whole range of the loga-
rithmie-power scale. The definition of the coefficients of the functions
does not depend of the choice of the function p(x). The coefficients Ay, by
of f(z) are defined as follows:

=520 iy L
a,=A - 27 g ]

24
n2 =4,

where 4 >1, A(n)=n2 In the case of 0<d<1 we can also take A(n)=
3%
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has the required properties, we apply
), (37) and (38); in (34)

In order to verify that f(z)
Theorems 8 and 9 and examine conditions (32), (34
y should be replaced by y;.

Condition (32) is satisfied since

oo
1
2“" (log b,)™ ,é;ﬁ (log 4)7% <oo.
Condition (34) is satisfied since
b2 (log by) 1= 2K, % (log 4)™"~o0.

Condition (37) is satisfied since

Ay bn-jl_
by

_ A—u—ﬁ)(zi(")—z“"—l)),9~y(z(n)—z(n—1))( i )2—>0
- - n—1 ’

Condition (38) is satisfied since

Angs _ g ~oedD-22) oy Ginrn—a00) (_ 7\ g
@, - 7+ 1 )

We notice that the supposition A(n)=n? is used only to prove con-
dition (37) for =1 and to prove condition (38) for 6=0.

If we take for A an integer, then f(x) is periodic.

‘We note that for =1 we can choose y (y>0) arbitrarily near zero,
obtaining in that manner an example of a function of class H(1,y) which
is arbitrarily near the Lipschitz class, i. e. the class H(1,0), and in spite
of this belongs to H™(1,0), i. e. its derived numbers are nowhere all
finite.

On the other hand, for 6= 0 and y <0 we have an example of a func-
tion belonging to H(0,y) and, simultaneously to H*(0,v,), where y, <y.
This function does not, therefore, belong in particular to any of the
classes H(d,0) of the power scale.

Therefore this example is universal for the logarithmic-power scale.

ExAMPIE 6. Giving the coefficients a,,b, the form

w1
[A(n)]e?

where >0, A>1, Ai(n)=n!, we also obtain an example of a function ()
of type O belonging, in the range of the logarithmic- -power gcale with
an arbitrarily chosen ¢(z), simultaneously to classes H(d,y) and H™(6 » Y1)y

where y; <y, 0<8<1. This is self-evident if we consider the conditions
mentioned in example 5.

—~ 32 0
(49) a,=A4770. =47

icm
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Moreover, the function f(x) thus defined constitutes in the ecase of
y=0, 6=0, an example of a function of type O which belongs to each
of the classes H™(0,y,), where »,<<0 (in particular, it does mot belong
to any of the classes H(d,y) of the logarithmic-power scale). Since in
this case conditions (34) (in which y should be replaced by y, <0), (37)
and (38) are satisfied, as can be seen from the examination of the con-
ditions in Example 5.

Thus the function defined above constitutes another, still wider,
universal example of a function of type O, comprising also the case
6=0, y=0.
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