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Introduction

In 1937 Banach and Mazur proposed a definition of computable
functionals and computable real functions!). This definition is synthe-
tic in a eertain sense. On the other hand, it is very natural to give an
inductive definition of computable functionals, analogical to the inductive
definition of the class of computable (general recursive) functions in the
arithmetic of integers. Such a definition is considered in this paper.
I prove some general properties and indicate some applications to the
analysis. An other notion of computable functional was introduced by
Kleene in [5].

§ 1 contains the definitions and some general remarks, in § 2 I prove
some properties used in §§ 3 and 4. The aim of this paper is to prove
the Uniformity Theorem contained in § 3. In § 4 I establish some con-
sequences of the Uniformity Theorem in the computable analysis, 4. e.
the theorems stating that: the computable real functions are uniformly
computable continuous in any segment, the maxima are computable
numbers and the converse function to the one-one computable function
is computable.

§ 1. Definition

The notion of computable functionals will be introduced by means
of an inductive definition. Let S be the set of natural numbers (non
negative integers). Let § be the set of functions of one argument; defined

*) See § 2, Property 8. Cf. Mazur [7].
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over the set N and assuming the values of N. We shall consider the
funetionals

D fryesfn (X5 )=y
on n arguments of the class § and % arguments of the class N assuming

the values of the class' SN?). The class K of computable functionals is
the least class of functionals of this type that satisfies the following
conditions:
A. K contains as the initial functionals
1. the identity functional
Ufo(e)=fla),
2. the constant functionals
—f (.t*,y)=—<w,y>:rr*y:{.rn” ]é
T«L'f'=(-l‘r,j/)=T(l‘,‘7/):‘§y,
S{f:x) =8 (r)=r-1.
B. K is closed under the following operations:
1. The operation of substitution. If @,% ¢ K and

£l

£,

A f!!]l I 79!"('1“1 IRETET Y STRTI 55 ERIPPR o 2% SN 7."'m)
== (I)T ('I'l 5oy 11y III";!J'I yeeenft (?l; Ve ’!'m1:".l+1’ b 7'”") N

then xe K.

2. The operation of identification of the variables representing
numbers and representing functions. If e. g. @ ¢ K and

PoF oty y M1y = DTy e Tty By gy ey Lty 5
z -fl: an—l ; (J"] H '“7'rk)‘—‘:®<j19“' 7f1'7'“7.{n—1*fj ('rn"- 5"‘1()1

then ¥,y c K.

3. The operation of effective minimum. If @ ¢ K and the following
condition is satisfied:
(1) ”fl ,,,,, fy.€5~nmy..-,ukez7v 2x€5\f¢‘§jl) oy Ta @ty )= 0

then to the class &K belongs the functional ¥ defined as follows:

ity ooy faltlyy oy ttg) = (B[P fry ooy fur (g Uy ooy ) = 0],

2) For the sake of formal convenience in the formulation of some theorems we
shall often write the function-arguments in different parentheses { > from those used
for the number-arguments. Cf. properties 6 and 12 in § 2. To shorten the uotatiop we
shall often use gothic characters as abbreviations of complexes of variables: fis an
abreviation of fi,...,7,, x is an abreviation of @,...,%,, ete.
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where
the smalest = ¢ N such that A(f,...,u,...,x)

if such an 2z exists,

() [A(fy ey Uy ey ®)] =
0 if there are no such x that A(f,...,%,...,z).

The second possibility is excluded by econdition (1). Hence condi-
tion (1) will be called the condition of effectiveness of the operation of
MINTMUM.

If we cancel in this definition the condition of effectiveness of the
minimum operation, we obtain the definition of the class of elementary
definable functionals (see [2]). Hence all computable functionals are ele-
mentary definable.

Similarly by means of operations 1-3 we can define the class of com-
putable functionals of any higher type. The operation of identifying the
variables must be extended to the higher types of variables.

The extension of the notion of computability to a higher type has
several applications. We shall mention some of them.

a. The extension of the notion of recursive realizability to the higher
types. S. C. Kleene and D. Nelson have introduced the concept of real-
izability of an elementary formula3). This concept can be exfended to
the set of all formulae of the simple theory of types. Hence some theo-
rems concerning the intuitionistic elementary number theory can be
extended to the intuitionistic number theory containing the simple theory
of types.

b. The classification of the elementary definable sets of integers
can be extended to the sets of higher types%). The definitions are ana-
logical. For example a set of funetions A is recursively denumeradle if

there exists a functional @ ¢ K such that
fed=1,ew®P<{fr(0)=0.

£

A set or a relation is computable if there exists a functional @ ¢ &K such that
AP =0r=0 or Alf,g,2,9,..)=0,0>(@®,9,...)=0.
It is evident that the class of computable sets constitutes the Boolean
field of sets:
(a=0 and b=0) ET(a,T(—(a,a),b))an”= 0, (a30)=(0"=0).

The classes of sets of higher degrees constitute rings of sels 5). The proofs
of all properties are the same as in the case of the sets of integers. H. g.

3) See Kleene [4] or [5] and Nelson [9].
4) Beé Kleene [3] and Mostowski [8].
5) Cf. the classification of Mostowski [8] and of Kleene [3].

icm

Computable funciionals 171

if the set 4 and its complement — A4 are recursively

denumers e
the set 4 is computable 8). Indeed if gmerable, then

fed E_}th.WQ(f;(m)z 0,
fe—4 E_Yxeng<f/(1’)=01
4. e. the following condition is satisfied:
[Treg Sxear (DS (x) =0V (S () =0)
(this is the condition of effectiveness of minimﬁum), then the functional
1< = (um) [Bf (@) = 0V Pif () = 0]
is computable and the set 4 is also computable because
fe A=BPr(5<f2)=0.

c. It is possible to define the subclasses of the class &K in the same
way as the well known subclasses of the class of computable functions.
E. g. the class R of primiiive recursive functionals is the smallest clags
of functionals that contains the same initial funetionals as the class K
and is closed under the operations: 1. of substitution, 2. of identification
of the function and number variables, 8. of simple induction: i.e. if
D, ¥eR and

. 2<EA0, 1) =B<r),

< @+1,9)=¥D ey, 2P, y),

then y e R. The class & of elementary recursive functionals is the smallest
class of functionals that contains the same initial functionals ag the
class K and is closed under the operations: 1. of substitution, 2. of iden-
tification of function and number variables, 3. of limited induction:
i.e if @, ¥,QcE and

20,9 =8 (v),
(3) 2D (@41,9) =D (0,5,25 (=,9),
24D (@,y) < Q<D (=,9),

then y ¢&. The class &° of functionals is the smallest class of functio-
nals that contains the same initial functionals as the class K except-
ing the functional T (»,y)=2? and closed under the same operations
ag the class of elementary recursive functionals (ef. [1]).

%) It is the theorem proved by Kleene for the set of integers (see [3]), and by
Post [12].
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It is evident that &CSEC&R. The proof that RCK is the same
as for the computable functions. We shall show some properties of these
classes in the sequel.

d. The applications to computable analysis will be considered in
some detail in the following sections.

§ 2. Basic properties

1. For each computable function f(&y,...,xx) there exists a consiani
functional @ < I equal lo f, 1. €. .

Hoyesgues5PLGrs - Fyy s @)

The class Com of computable functions is the least class of funetions,
that contains the functions z—y, 2*, #-+1 and is closed under the same
operations as the class K (cf. Robinson [13]).

2. The class K is closed under the scheme (2)

First we introduce the following computable functions and relations:

1Gn> @y 5oy Bi)=

of simple induction.

e<y=a-y=0,
r=y=r<YrY <z,

ooy =(u)[2°=(2%],

@ y=(u2)[2F =27 27,

Fra E
H (w2 (2+ 1) >avy=0],

aly=y+x- [—]WO

prime (w}zx-,—f:(]/\m#l/\w=(/Az)[mzovx:lv(2>1/\:]$)],

exp (z,y) = (u2)[y=1Vy =0V ~(y=|z)],
Pri(z)= (,uy)[ma(prime (z))v(y >1Aexp (¥,2)=2Az= (,uv)[prime (v)
A (y <2Vvexp (y,(,uu) [prime (u)Au> z‘])-#exp (y,0)+ l)])] .

From the last definition it follows that

0 when ~ (prime (z)),
22.38.58. |

Pri(z)= l

-2*t% when z=p, (the 2th prime number);
hence S
== (/.az)[prime () Aexp (Pri(z),z):x+2 .
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Now let us suppose that the functional y is defined by means of
scheme (2) of the preceding section, and @,¥ « K. Thus

%6 ()= exp () [exp (2, 2)=

= (pu)[exD (2, Tus) 7 PF> (1,9, exp (2, ;cu\)]] 7,»,,)
and therefore y e K. Henee the class &K is closed under the operation
of limited induction (3), and KCK.

3. The classes & &, R, K are closed under the operation of limited
minimum. The relations of the classes &, &, R, K are closed under the
operations of propositional caleulus and liinited quantifiers. .

The operation (un<2)[R<F(@,u)]=(ur)z <zAR{P(z,u)] of limited
mintmum can be defined by means of limited induction:

(pr <O)[R<PH(@yu))= 0,

DFo(y)

(wr <)[R..] it (e <[R...] %0
or R{fy(0,u) or N(R(f}(z—i-l,u}),
+1 if R(T) +1,u) and (pp<z)[R..]=0

|
(ur <z+ )[R (x,u)] !l

[ and ~{R{H0,u)),
(ur <2)[ B¢, )] <2+ 1.

The operation of limited quantifier can be expressed by means of
limited minimum:

e Ric2.) =R (2 <2)[ R )] )

Let us now introduce some functions necessary in the sequel.
Pa(z,y)=(z+y2+z, [Vz]l=(ua)(z+1)>2],
Piz=a=([J2]), - Scz=[Jz] = Biz.

Pa, Pi, Se are pairing funclions. I. e. thej safﬁisfy the conditions:
W)=e,  SelPa(z,y)=y,

a if a>b,
b if b>a,

Pa(Fiz, Ses)=2,  Fi(Pa(e

max[a,b] :{

Max B> (u,s) for s <z = (uy)[ Deaxty =B (1,8)
. ATecx @35 8) w;
4. Each functional @ ¢ K can be presented in the aanm@(mljom(
B¢ () =B (ua) [, )= 0)) A
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where Bx="TFix or Ex is any other consiant function that assumes any numi-
ber infinitely many times, and Ve & and ¥ satisfies the condition of
effeciiveness 7).

The proof is the same as in the case of computable functions.

5. If ®e K and for given g,f,

]7)(1,...,15,,59\’Q)<g> (-Z’] 3 .“,T,,) =

then f is computable in g.

A funetion f is said to be computable in g¢,,...,gx if  belongs to the
smallest class of functions that contains the initial functions: gy,...,4,
«=y, #*, x+1, and is closed under the operations of substitution, of
dentification of the number variables and of effective minimum (cf.
e. g. Kleene [5]).

The proof of property 5 is inductive. If @ is one of the initial fune-
tionals of the class &K then f4 is the initial funetion of the class of func-
tions computable in g;,...,¢. If ¥ and 2 possess property 5 and @ is
obtained from ¥ and £ by one of the operations 1, 2, 3, then f, is ob-
tained in the class of functions eomputable in g;,...,5; by means of the
same operation.

Hayy...

1 %n) s

6. The class &K is closed under the operation of functional substitution.
I.e if 0,%e¢K and

(4)
(5)

DL (2) = B<(x,2),
2<Fa0(x,9)= P{g 7¢<f>1>(1))1

then 3 € K, and similarly if y is obtained by means of the substitution of
the function ®<F> for more than one function variable g, ...,g, in the func-
tional ¥, then xeg(

This stronger formulation is necessary for the sake of the following
inductive proof. If y is an initial functional, then it is interesting to
verify the theorem when y=TU:

UDH D) =B ()=

Now let us suppose that x ¢ K and that the equations (4) and (5)
are satistied. Let the functional Q be obtained from ¥ by substitution.
E. g. e and

D (x,Yy)

0B, ,95(9,1)= o<B> (1, ¥, 4> ))-

N Itis the analogue of Post-Markov Theorem. Cf, Grzegorezyk [1], Markov Tﬁ]
Kleene [5].
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Computable functionals
Hence (5) implies that
Q<h8: PP )= 0¢h> (u, ¥Lg, B¢F (1)

= a<B>u, 24H, 8> (x,)).

Thus the functional substitution can be reduced to the number-argument
substitution. In other cases of substitution the proof is similar.
If Q is obtained from ¥ by means of the minimum operation:

248,97 (9)=(u2)[¥<g, 9> (,2)=0],
then, according to (5),
240, PLEr ) = () [P g, D<o (g, 2) = 0]

={m)[2<f1 0> (x,9,2)=0].
The case is similar, if the functional &<y, is substituted for more fune-
tion variables in the functional Q.

If 2 is obtained from ¥ by means of the operation of identification
of the funection-variables, then our property is obviously satisfied by @
because the inductive hypothesis has a stronger form. The operation of
identification of the number-variables also presents no difficulties.

7. For each @ e K there ewists y ¢ K such that if

Fuly)=F(w,y) and flo)=F(Fiz, Sex)
then
(6) ¢<gu Pl CIPR = 248, 1(8, 21500y ).
Let us set
V<f>(w,y)=V<f>x(y)=f(Pa(r,y>);
hence

(Fl(Pa( ,y)),SePa(w,y)):F(w,y):Fx(y).
From property 6 it follows that there exists a functional y ¢ K such that,
according to (7),
248, IO (@21, ey 20) = DG, T Ox 0215 e s 2)
=0Lg, Fy> (21,0 y20)-
8. The functional @ is said to be computable in the Banach- Mazur8)

sense provided that if Gy,..., Gy are computable functions and Gi{y)= G;(x,y),
then the funmction
DG gy G

F(@yy oy Baey Yry ey Y0} = e (Yny e Y1)

is computable. The functionals of the class K are compuiable in the sense
of Banach-Mazur.

8) See Mazur [7].
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From property 7 it follows that there exists y ¢ K such that putting

¢i'r)=Q/Fix, Sex)
we obtain

. d7<(;111v'-~~’szk>(y17-“1y1)=1<gn-“’ﬂk, (Pry ey Ty Yay ey Ua) -

Hence the function f is computable in g,,...,q (Property 6). If
(Iy;...,G e Com then g,,...,gx ¢ Com and fe Com.

9. For each functional @ e K there cwists. another functional Qg e K
such that for any fi,...yfay G1yeeerGny %

(8) o gilu)=Ti(u) U< Qo lfryey (%),
then Dfyyeeisfur(2)=DPLgy, ...y n> (3).

Proof by induetion. If @ is the initial identity functional U,
then we have

if - glu)=f(u)
henee Qp=x. For the constant initial functionals it is obvious that
.Q_Z.QT:..QS:O.

If @ is obtained by means of the operation of substitution from
the functionals @, ¢ &K, then the inductive hypothesis implies that

for

for u<z, then Uf(x)={(z)=glz)=TUlg>(2),

(9) gilu)=Filu) for u<.Q¢:<)‘l,..t,f,,B(ml,...,a"k_l,(D’%f,,H,...,f,\(y],...,y,)),
then q)’(j“...,f,,j‘»(ml,...,a'k_l,cﬁ"<]’,,+1,...,f{>(y1,...,g/;))
=0 s o> (1 s Tt B gy ey TO Wy o 1)
on the other hand, we have
(10) giluy=Fi(u)  for u<Qor{fursyes [O(Y1yyU1),
then @ {fusas ey Wy s ¥ =P Gntrs oo 1 G Wy o s 3i2)
Thus, if we set
Qo vy ey IO (@15 ey @hn s Y1y -y 1)
=max [ Qo (i, ooy ) @1y oy Tty O g oy o (W0 1)),
!-)qx"ffn—l-lv--,fr'f/(yl»w,?/l):l
then from (9) and (10) it follows that

if gdu)=fi{u) for
then ¢/<f1,...,f,f,>(:l’1,...,a"k_l,‘p"(f,,+1,...,;fg\(;l/l,...,[ljg))

= dy{”ls*--:gn,\"(mls“-:Tk-:u@”(gn'}lawa!]t\'(ylama:‘/l))-

U< Qq,
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If &' is obtained from ¢ e K by means of the operation of identifi-
cation of the variables, then Qg is obviously obtained from Qg by means
of the same operation.

If @' is obtained from @ ¢ & by means of the operation of effective
minimum

(11) D' fryeesfad(@yy ey Bpg) = (l‘f‘/)[¢<f1;--;vfn:’(x1;---ka—lsy): 0],
(12) [I-\f.-«-.xk_l€9V:ye3/(b<f17 ""fll>(mli'“ ’wk—-lyy) =0
then
(13) Qordfyyeees fur @y ooy Thy) =Max Qo lfryuesf ad(@yy ey Tre1,8)
for s <QI(:.fls .. 1jn>(ff”1 yuee g Tpen1)
Indeed if
(14) g,(u)z}'.(’u) for u<~Qd>'<f17'"Jn‘/\(mn"'rrk—l)s

then from (13) by the influetive hypothesis it follows that
U S
(15) iy <Dy @y ey Tpa),
then qj(fli"‘!jn>(ml1'“7‘Tk-15y):"—'¢<gl)"‘7gn>(m17"'!‘Tk—l’y)'

Formulae (11), (12), (15) imply that

(16)  BLgyyeers g (@ryeney a1y ) F0  fOr  Y<O' Ly, oy Fud(@ry ey )
and
(17) DLGryeee s G (ml; cor s Th1y ®'<f17"-’fn>(1’17~--ymk~1)) =0,

but (16) and (17) mean that
V ¢’<f17"'5fn>(mls'")Tk—l)
= (U [Py o190 D@1y sTa1,9)=01=D' (G150 s 0 3( @1y oe s L)

which completes the proof.
Let us set

@ =("0 0 23

A(m) (#) = Ap(z)=exp(m~+1,p.),

ALy (n)=( [] p{®) =1.
k<n
10. Each functional @ ¢ K can be presented in the form
(A) D1y s far(x)=Hm Q(A‘(fl)(m)y"') A(fn)('m);x)7
7. e.

¢<f1 yaos yfn>(x) = (/‘y) [ZIEWI.—IM?I g(A<f1>(m)? ’A<f">(m)’ ;): ll]

where g e Com.
Fundamenta Mathematicae. T. XLII. 12
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From property 9 and from the definition of I" it follows that for
M>Q¢{f1:*-~7fn>(x)
(18) DLfryeee s fud (2)= DL fr 2 (M) ey T fd (1) 3(2).

From property 8 it follows that ‘there exists a function ge Com
such that

(19) 91y Yy X) = PLAY1 5 ey AYa>(2) -

On the other hand, the definitions of I',4,4 imply that

(20) A{ AL ) (@)= Tf>(m) ().
From (18), (19), and (20) we find that for m>02s7f1,...,f>(%)
(AL M)y ey AL (M) 7) = By oves T (E),

which completes the proof.
11. There ewists a functional ¥ which can be presented in the form (A)
and which is not computable in the Banach-Mazur sense. Hence ¥ ¢ K.

We put

g00)=0,  gnt+1)=1,  ¥f=limg(A>(m)).

The funetional ¥ is well defined for any function:
if [leerf(2)=0 then [Inearg(A>(m))=0
i Sreorf(2) 70 then  Sieor[Tumeg(A<fr(m)) =1 and P70,

Hence it is true that

and  P{f>=0,

(21)

Mazur [7] has pointed out that the functionals which satisfy the

condition (21) are not computable in the Banach-Mazur sense. Thus
from 8 it follows that ¥é¢ K.

The functionals of Banach and Mazur possess property 10 for
fis-sfne @om. It i3 & very interesting question whether any functional
defined for all functions by means of the form (A) and computable in
the sense of Banach and Mazur belongs to the clags K.

Let us put

3= B [[xewngl2) <f)],

for #<z then qﬁ(gl,...,g,,)(xl,...,a:k)zfﬁ(hl,...,h,,>(m1,..;,m,,.)].
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12. The class K is closed under the following scheme of junctional

induction: if x,¥,xe K, J 18 a functional not necessarily computable and
(a) Do) =1 {f>(x),

(b)  PLonia(z)=PLD{ (1),

(e) D alm) <JILfH(w),

(@) »ed (@) <xlf(w) for any | and =,

then @ ¢ K.

Indeed, according to (d), we have
[oeacrn> PLg> (@)= PLIG (<f> () ()5

hence in conformity with the definitions of I', 4,4,

(22)
(23) Maexcscry Paa)=#{a{ 4o <tz o).

Condition (c) implies that for any f e, D<fone 3T D).
from (23) and (b) it follows that

Hence

@) e llexn®Punntol= (4 AGD uihr(o)) (o)

Let us put
EXP (mim)= €xp (m:px) .

It is evident that the following condition is true:
(25)  [res [Tnxeaw Zmeav,
A [lisenl0 <t=Exp [m,Pa(0,8)) - 1= 1<)+ 1),

B. nr,r,xsm{0<t=EXP (m,Pa,('r—l—l,s))

—>t=1+'}’<A(( I Q:fxp(m’m"o)q);l)>(s)},

i<a(f)s)
C. lrssm [licane {0 <t=Exp (m,Pa(r+1,s))

—Exp (m,Pa,(r,i))>0},
D. Exp(m,Pa(n,x))>0.

Condition (25) can be considered as a condition of effectiveness,
hence the following functional ¥’ is computable:

Py (n,a)=(um)[A. B. C. D. (m,n,2,])].
We shall prove by induction that
(26)  [Tirsmwrcrsinm 0 <t=Bxp(P'(f(n, @), Palr,s)) - t=B(s) + 1.

12*
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Condition (26) is obvious for r=0 and for any s,? according to A
and (a). Now let us suppose that condition (26) is satisfied for + and for

any s and .
From (26) and C it follows that
21) 0 Exp (¥7</ Y, Pa(r) )1 — ABS >(x<f>(8))-'~1,
I<KHE) -

4) it follows that
if 0<t t:Exp(W'<f>(n,w),Pzﬁ(a~+1,3)),
then  t=1-+ PLA[ AP (<1 (8)(6) t=0rpals),

which completes the inductive proof.
Thus, aceording to condition D, the functional @ can be defined
as follows:

hence from (27), B and (2
and

" and

B(ful)=Bxp (P <f>(n, ), Pan, o)) =1

The problem whether the general scheme of functional induction
(4. e. the conditions (a) and (b)) leads oub of the class K remains open.

83

Tor the applications to the analysis the following Uniformity Theo-
rem is very important:

UniroRMITY THEOBEM. For each jfunctional @ e K there ewists
a functional wge K such that for any xe N and f eF the following con-
dition 1s satisfied:

Uniformity Theorem

(D) Hopsitetnercry 3T glu)="nw) for u<ws(f:(x)
) then @<gs,.,gn0(x)= PRy, hup(3)
where 3<¢f> is the set of all functions g ¢ dominated by f:

g€3<f> nxci‘N.q ‘T)<f

Proof. To symplify the proof let us suppose that n=1, i. e. that @
is a functional of one function-argument. The proof is topological. We
define & mapping a(g) of the set 3J<f> of functions upon the closed
gegment [0,1]:

g(1)

o C)) 9(0)
0 dp=F—T - E +
S QUe+1) A0+ i0)+1){f1)+1)
Let us put
(2) va=§[“=1 or  Syexna=a(g)].
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From these definitions it follows that there are two cases:

(«) The function f assumes the values f(n;)>0 only for a finite
number of arguments ng,...,n; e N. Then the set Ty is finite.

(B) The function .f assumes the values f(n)>0 for infinitely many
n e N. Then Ty is the closed segment Tr=[0,1].

In any case T contains two numbers, 0 and 1. Obviously TyC[o,1].

There are two kinds of numbers of the set T: rational numbers
in f and irrational numbers in f.

The number @ is irrational in f provided that there exists a function
ga € 3<f> such that a=a(g,) and 0 <g,(n)<f(n) for infinitely many » e K.
In the contrary case the number a e Ty is said to be rational in 7. It is
evident that the set T is finite if and only if all elements of the set Ty
are rational in f. If @ is irrationcl in f, then f(n)>0 for infinitely many
n € N, henco Tr=[0,1]. If Ty=[0,1], then the set of rationals in f is
denumerable and if 15 a0 is a rational number in f, then there exist
two functions g, 4 € 3{f> and an integer %k, e N such that a=a(g,)=
=a(gs) and

g() for =<k,

(3) ga(@) ={g;'(w);1 for =Ko,
f(x) for x>k,

galx) for @<k,

(#). ga(@) =\ ga(w)+1  for a=k,,
0 for z>Fk,.

If‘a,'is irrational in f, thén there exists exactly one g, e 3<¢f, such
that a= a(g.).

Now we shall show that there are two functionals ¥, %" ¢ K such
that if T,=[0,1] then for each 15£a£0 if @ is rational in f then there
exists such n ¢ N that, for ¥ ()= ¥{fH(n,x),

a=a(W'{fr)=a(P"<fn) and  G=¥<w,  ga=¥"{Pn .

The definitions of the functionals ¥’ and ¥’ are recursive: -

D, f2(0,k,2)=0,

6 b [0 if @ f5(n,k,0)=

(n+1,k,00= floy,

@ <{fx(n,k,0)+1 in the contrary case.

[ Do, kot 1) i 241<k

and  Y.x @i {f3(n,k,2)
- Oy ke 1)1 i 2+ 1<k,

¢1<f/(lb+1,lf,ﬂ+ 1)— ¢1<f>(n,70,1’+1)<f(m+1)

o ond [Loasrlfoin,k,2)=1(2),

=f(z).

< f(2),

l 0if a+1>k or [licenn®@i{fi(n,k,2)
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D fr(n,kym) it w<k and SecaanPilfD(0,k,2) -0,

©) Bupln, )= SE AL o= Wl BP0
f@) if >k or o<k and [[icck®i <D0, k,2)=

(7) o) =2 [{f+1).

(8) D)= (u2) [ < Py{f>(2+1)]

T’<f>(ﬂ,w)=@2<f>(n*¢a<f>(¢¢<f>('n))7@4<f>(n),a),
P f(,0) = By (0= o (B (m)), PPy (), )

It is easy to show that the class &K is closed under the operation of
double induction used in the definition of the functional &,?). Hence
VP e K.

From (5) it follows that each number of the form n4/(f(0)--1) for
0<ny<f(0) can be presented in the form o(®,{f ,0) Where D,{f>,i(z)=
=0 {f>(n,k,r). Similarly each number of the form

o My

o1t (fo)+1)(r) +1)

can be presented as a(®;(f>ny) for 0<m<(f(0)+1)+(f(0)+1)(f(.1)+1).
In general let the numbers of tLe form

- d 1 ’
a ]é'gj(f 1] an a<

be called the numbers of k-order. Each number of k-order can be pre-
sented in the form a(¢1<f mx) Tor some m e N such that 0<m < Dy(Fo(k
Hence according to (7)-(9) this number can be presented as o EP‘"(}‘,,,

where n=m-+ ®,{f>( k) and ¥'<{foum)="P"{f>(n,2), because from (7)-(9)
it follows that
Dy (m+- D fr(R)) =k and  n=B(fr(k)=m

b
hence

WS> (m+ ot k), 3) = Di(f> (m ).

Each number rational in f can also be presented as a(¥'"'{fra) for some

neN.

?) The functional @, is deﬁued by means of a double recursion without entangle-
ments. This seh can be r d to the sch of simple recursion. Cf. Peter [10], [11].

#

icm
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If the set Iy is finite then for a number 1s£a ¢ Tr there exists such
we N that a=a(P'<f>) and ¥'(f,=g2 but a(P" () Ea(P<P) and
Y >uFga- Namely, the number «(¥'<f>,) iz the immediate predecessor
of the number a(¥"'{f),). Indeed, according to (), if Ty is finite then
there exists sueh a k, that

(10) kv= () [1esof(2) =

If k=0, then the set Tr contains only one function f and for all x « 9,
f(x)=0, hence the set T contains only two numbers: 0 and 1. If k>0
then the set Ty contains more than two points. Namely, it is trae that

Tr=1+ [ (f()+1).

i<ky

The numbers of the set Ty can be presented in the form

(11) rm where O<i<i gl(j(i)+1).

ihky

From the definitions of the functionals ¥’ and ¥ it follows that

(12) it a#0 and =a(P"(f>,) then a_1=a(P ),
and
(13) if a#0  and a=a(¥P'<{f>.) then g =¥"{f>n.

If Ty=[0,1], then it is evident that, according to (6), if & can be
presented as a(®P;{fdmz) then a can also be presented as a(Pelfdmk)
where By(fma(o) = OuCh(m k), and honce Go=Oums= ' <Pimsoxrs:

Tt is obvious that in any case a(¥''{f>)=

Hence we can define a sequence 7, of all rationals in f:

Tui1= (¥ {on)-

We have r,=1, r,=0. Each rational number in f appears in this sequence
infinitely many times.

Now for each number 7, rational in f we find an open nelghbourhood 0.,
and an integer s(r,) such that

(14) ro=1,

(A8) [lgnescrs i alg), a(h) €O, and glu)y=h(u) for u<s(r),
then @{g)(x) =Ry (3).
We set
(16) Qi< io(x) = () [[Tgecry H glu)=7J(u) for u<s,
then @) (x)=DLg>(x)],
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8'(ra) = Q3<F, P <fr (%),
amn 8" (1) =05, ¥ -0 (3),
8(7'11): ma‘X[s,(Tn); S”(Tn)] .
1
=0,=['11> e ‘her = 0% x
0,=0,, [ [ >a> i (f(i)—|—1)] where s,=0Q5{f,f>(x),

i<so

_ .1

IRCES

<s'(ry)

1
Yt —=———— for 1 PEIR
<yt ” (f({) _}_])] or E

i<s'(r,)

It is evident that the set O, is open in the segment [0,1] and 7, e 0,,.
Now let us suppose that he 3¢f)> and

(19) a(h) € 0,,;
from (5)-(9) and (16)-(18) it follows that for r,=41

(200 i a(h)>r, then h(u)=Y"{fayu) for w<s'(r),
(21) if a(h)<r, then  M{u)=V'{f),_ys(u)

Indeed, r,= a(T"<f>,,,;) according to (14), and V' {fon1=g,. accor-
ding to the definition of ¥"’; hence if (19) and a(h)>7, then

for w<s'(ry).

1

[T (1) +1)

<570

< alh) <+ h(u)=gr(w)="P"{f o (u)

for u<s"(r,).

In order to prove (21) we shall distinguish two cases:

() The set T is finite. Suppose that (10)-(13) and that r,=a, and
t#0. (For r,=0, (21) is vacuuosly satisfied.) Let us consider two cases:
s'(r) >k and s'(r)<k,. I s'(r)>k then‘gI;] )(f(i)—l— 1)= g (@) +1);

I T, i<ky
hence, according to (11) and (12), it follows that there are no numbers
ae Ty such that a0, and @ <r,. Then (21) is vacuuosly satisfied. If s'(r,)
<k, then we define the function *: f*(s)= (@) for & <k, and f*(a-4k;-+1)
=0; hence thereare two functions g, g7, Which satisty (3) and (4) with re-
spectto /¥, and 7,=a(gr)=a(gs, ). The numbers a(h) € Ty such that

—d .
[T (f6)+1)

<)

ry>a(h) >r,—

icm
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have the following property:

(22) Mu)=g; (u) for u <8 (r,).

On the other hand, (12) and (13) imply that

(23) (W)=Y fa(u)  for u<k.

Now if s'(r,) <Fk; then from (22) and (23) it followsk that
R(uy="P"{f>p s (u)

(B) Ty=1[0,1]. Then W fona=¢;, for n>1. Hence it is evident that
it a(h)eO,, and a(h)<r,, i. c. it

for u<s'(ry).

1
IT (fi)+1)’

i<s'(ry)

7n > alh) >r,—

then h(u)== gy, (u)="PY"<frn_a(u) for uw<s'(r,).
Now in order to prove (15) we set
Fog= () [ <Foner (w) = W' <f ) py (w)
and we consider two cases: &, >s(r,) or kp <s(r,).

If Fp > s(ra) then P7<f2noa(u)=¥"{foar(u) for u<s(r,); hence from
(16) and (17) it follows that s'(r,)=s"(r,)=s'(r,). Thus if afh),a(g) € Or,,
then, according to (18), h(u)=¥""{f u-s(u)=g(u) for u<s(r,) and by {(16)

DRy (x) = DL {fons) (x)= DG Hx).-

If ky<s(ry) and a(h),a(g) € O,, and h(u)=g(u) for u<s(r,), then,
according to (20) and (21), it is possible only if e(h)>r, and olg)>7,
or a(k)<r, and a{y)<r,. In the first case (20) implies that h{u)=
=W ua(u)=g(u) for w<s"(r,) and by (16)

DR (1) = DL umr) (x) =Py (3).

In the second case (21) implies that A{u)= ' ma(u)=g(u) for
u<<s'(r,) and by (16)

DLy (x) = DL frua(x) =P (%)

Condition (15) is also proved for 1sr,#0.

For r,=1 it is evident that if a(h),a(y) € O, then h(u)=f(u)=g{u)
for u <sy; hence by (16)

D (x) = B () = BLYA3).

For r,=0 it is also evident that if a(h),a(y) € O, then, according

to (17), (5) and (9), h(u)= P {f>e(u)=g(u)=0 for u <s"(r,). Then by (16)

DRy (x)=PLP" (o0 (x)=PLgo (%)

for u<z]
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Now we shall prove that the sequence of open sets O,

segment [0,1]. Let us distinguish two cases, («) and (B).
(a) The set Ty is finite. Then for a number r,= a, it follows from (10)

that if s"(7,) > ky, then 17 (f i)+1) = n (f(i)+1); on the other hand, it

<57 (ry)

covers the

key>s"(r,), then [] (ff )+1) < 1 (m)+1). Similarly for s'(r,). Hence for
i<ky

each r, = |
1<s[(ll,.)( ) :gl (f( ) }— 1) l<!’(7r“) (f(1)+ 1) .

Thus by.(11) and (18) it follows that, for 147,520,

Floia<a<en4]CO,,

and

Fl0<a<a]lC0,, Fllza>1—a]C0,.

Also according to (11) the sets O, cover the segment [0,1].

(B) T¥=[0,1]. Then it suffices to show that for each number b
irrational in f there exists such an n ¢ ¥ that b € O,,. Indeed, let b= a(g)
and ky=023{g>(x). It is evident that there exists a number a=7,, irra-
tional in f, such that according to (3)-(9)

(24) ga{u)=P"{fyna(u)=Ig>(ks) (w).

Now we prove that b e (,. From (24) and (16) it follows that
(25) ga ()= " {fona(u)=g(u)
(26) [rew it R(u)=g(u) for u<k;, then @h)(x)=D{)(x).

Formulae (25) and (26) imply thajt

¢<g) ¢<Y/”<f>n—-l> 1{),
(27) it follows that

for <k,

(27)
from (23), (26) and
(28) [Jaez it B{u)=

P f uea(w) for w <, then G (x)=BE" f3-d(1),

according to (16) and (17); from (28) it follows that k;>s(r,) and hence
by (25)
(29) gu)=Y"{oaau)  for w<s(r).
TFormulae (29) and (1) imply that
\ 1
(30) ot < ——
+1
iQ’l:{r,‘)(ﬂt) ’ )

icm
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The number b is irrational in f, hence

) 1

(31) b—r
T (fo+1)
<)

from (30), (31) and (18) it follows that b e O,

From the compactness of the segment [0,1] it follows by means
of the Borel-Lebesgue theorem that for any ¥« 9 and for each function f
there exists such a veSN that the finite set of open neighbourhoods
{Ory;...,0r} covers the segment [0,1]. This statement has the form of
a condition of effectivity of the minimum operation

(32) [res [Tzew 3y {Oryy ey 0} cover [0,1].
Now we shall prove that thé relation
(33) B(f,2,») ={0p,...,0,} cover [0,1]

is computable, and hence the minimal » such that R(f,x,»)is given by
means of a computable functional.

The first step is to show that the functional QF is computable. From
property 9 of § 2 it follows that for the functional @« K there exists
a functional Qg ¢ K such that

(34) [gew if g(u)=j(u) for u<Oufi(x), then BH(x)=BH(x).
Formulae (16) and (34) imply that
(35) Q31 () <LaGN3).
Hence the functional £% can be defined as follows:
Qi) = (s <Qo)[[Incacrap 1 {lucap 1(m,u) <flu)}

and  {[JucsAm{w)=j(u)}, then Q?(Am.\(x):@(j)(l)]

where Qp=04(x).

The minimum operation znd the quantifiers contained in this de-
finition arc limited, hence £ ¢ K.

The second step is to show that the relation r,=0 is computable.
Indeed, from (5) it follosws that @,{f>(n,k,x)=0 for z>k. Hence accord-
ing to (9) W'{frn,x)=0 for >P(f(n). Also by (14) we have the
equivalences

Pp== 0z anWlII”<f>n—1 () =0= Hx<¢’4(f)(n)l[ﬂ’<f:’n—1 (x)=0.

The relation 7,= 0, defined by means of limited quantifier, is computablf-
The third step is to show that the relation “Q, intersects O,
computable. Indeed the endpoints of the ne1ghbourhoods 0,, are mtlonals
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and the “less than’’ relation between rationals is computable. Namecly,
according to the above mentioned property, according to which

P n,e)=0 for x>DLf>(n),

we can limit the operation of summation in (1). Hence

DD i1 g,

i<x

Putting
' LRGP ERO0)

()
D)= 3 () [](H)+1),

x=0 f=x+1

frm= [ (fi)+1),
i<Pa(f Y :
we find that
D5 (n)
P Py

Hence for r,#051y,, r,7%1#r, it is true that

0,, intersects O,

_Pfin—1) L 1 P(pym—1) 1
T @Hn—1 ] > &, 1 h
o< (n—1) .= s;‘1/]%)(;‘@) + 1) o) (m—1) f@’flr,,)(ﬂ i) +1)
Beifpn—1) 1 _ Pl (m—1) 1
Peyn—1) I (fi)+1)" eDm—1) 1 (f5)+1)
i<s’(ry) [ (]

From the fact that Q7 K it follows that this relation is computable.
If r, or 1, is 0, or 1, then we can define the relation “0,, intersects 0,
in a similar way. Hence this relation is computable for any r, and r,.
Now we must define the permutations of the first %1 numbers:
0,1,2,...,n. Such & permutation can be represented by a number m such
that the following condition Per(m,n) is satistied: '
Per(m ,n)=m <yn A [Jica{dm(i) <nv} A Hi’_ig;,{dm(i)= A () —>i=7}.
Now it is easy to verify that
{Orys.-,0,} cover [0,1]={{v>1A0,, intersects 0}
V{o> 1A Sy Snco Per(m, 0) A [Ticn (Fayn 7 0 A Ao(i) 0}
A0y, intersects OpA[licu{i<n—>Op intersects Om}
A{Op  intersects O, }}}
where 17 =74,0.
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Hence the relation R defined in (33) is computable and, aecording
to (32), the following functional @, is computable:

(36) B (@) = (o) [{Onyy...,0,}  cover [0,13].

It is evident that for each finite set; of rational numbers {ry,r,,..., 7.}
gueh that rg==1, ;=0 the function: the least difference d=min (Jri—7j
for j,i<m if 7;77;) can be expressed as a computable function. Hence
the following functional @, is computable: :

——-17—— < the least diameter of the
[1{1ti)+1)

i

(37) 21 o) = ()|

non empty common parts 0,{\0,,,;/:0 for i,;isédi,(f‘}(x)].
Similarly the following functionals are éomputa,hle:
(38) Dy(f3()=Maxs(r) for i< (),
(39) waf>(2)=max[Pef} (2), Pyl f ()]

The functional wge K defined above satisfies the condition (U)
of the theorem. Indeed, suppose that g¢,he 3<f> and glu)="n{u) for

U< wolfH(x).
From (39), (37) and (36) it follows that there exists such an i <&, that

(40) a(g), alk) € Oy,
From (39) and (38) it follows that
(41) g(u)="nu) for U <s(ry).
From (15), (40) and (41) it follows that
BLg>(x)=D<ho(x),

which completes the Iiroof 10y,

COROLLARY 1. The functional vo defined by property 12 of section 2
18 compuiable.

Proof. From the definition of the functional v, follows the Uni-
formity Theorem and )

1olf>(x) <wolf>().

1) During the print the author has constructed a funetional computable in the
sense of Kleene and Mazur but not satisfying the Uniformity Theorem.
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Hence the functional v, can be defined as follows:

ol ()= (18 <wa) [[Jmmpmysni<dsyag)
if ”M<M¢{A Miy% <f /\/I "'i:'“) <f
and ]],,@{A,,,,(u)———/],,l(u)},
' then  P{Amyy ey A d(8) =D, o0y 4 D(2)],
where wg= walf>(2).
The minimum operation and the quantifiers contained in this de-
finition are limited, hence »p : K.
FUNCTIONAL INDUCTION THEOREM. If y,V,J ¢ K and

(8) ®<f>n($) = y{f(z),
(h) ¢<f>n+l‘(w) = T<¢<f>n>('ﬂ) )
(e) Do) <IH(@),

for any feF and xeN, then the functional

BLFo(n,2) = DL ynl)
| 18 computable.
Proof. If J ¢ K then, according to the Corollary and to property 6
(§ 2), the functional
# o) = rulJ<{FH) (@)
is computable and satisfies condition (d) of property 12 (§ 2). Hence,
according to property 12, @ ¢ K.

§ 4. Applieations to the computable analysis

There are many consequences of the Uniformity Theorem in the
computable analysis. In the computable analysis we consider computable
real numbers, real scquences and real functions. We assume the following
definitions:

A real number a is computable (a € K) if there exists a function f ¢ om
such that for all ne N

& —

)| _ 1
»ﬂ‘i@ﬁm

A real sequence {az} is computable ({a;} ¢ K) if there exigts a function
f e @om such that for el n e N :

flk,n)
w41

1
n+41

QU —

for any ke V.

Computable funetionals 191

A real function ¢ is computable (p ¢ K) if there exists a functional
@ ¢ K such that for any f ¢F and a e Z:

. _ Jn) | 1
(1) it |a .71v+1]<~——” 7 forany nedy,
D>
then l'p(a)~% ”Jlrl for any ne,

provided that the function ¢ is defined on the numbers of the set Z.

Computable numbers, sequences and functions defined in such 4 man-
ner are always non-negative. Functions are defined over non- -negative
real numbers. In order to define all computable numbers (sequences
and functions), we shall replace in the above definitions the functions
f(n)(f(k ,n)) by the differences of two functions f’(n)——f”,(n)(f’(k ,n)——j"(k,n)},
and similarly the functional ®¢f>(n) by the difference of two functionals
D f>(n)—D"{f>(n). Or we can extend the notion of computability
to the functions and functionals defined over the set of all integers.
The following theorems can be interpreted in both manners.

In order to construet the computable analysis it seems very natural
to consider the class §§’ of functions defined over the set ¥ and assuming
the values of the set SN’ of all integers. For these functions and for the
computable functionals defined over the functions of the class ¥ the
Uniformity Theorem has the following form:

For each functional @ e K there exists a functional wee K such that
for any x e N and f1,f, «§', the following condition is satisfied:
() Hm ----- ety 4 gi(u)=hi(n)
for u<welfi,fod(@), ue N, then @gy,...,gu0(2)=Dhy,..., (),
where
he 3'<frafod =[keafr(k) < hik) < fo(k).
THEOREM 1. If g e K then @ is computable in the Banach- Mazur sense.
Proof. A rcal function ¢ is computable in the Banach-Mazur sense
(see Mazur [7]) provided that for each computable sequence {a;} the

sequence of values of ¢,br=¢(az), is computable in the above-mentioned
sense. Hence if {a;} ¢ &K then there exists a function fe§ such that

fk(") 14” .
“ard <n+1 for any neSN.

According to (1) we also have

B (n)
@(ar) — e

1
n+41



GUEST


192 A, Grzegorezyk

According to property 8 the functional @ € K iz coraputable in the
Banach-Mazur sense. ,I' e. for g(k,n)=®fi>(n) if f e Com, then g e Con.
Thus

__.q(k)'”')
n+41

and also {p(az)} € K according to the definition.
To shorten the proofs we set

1
_
R

plax)

1
Tn4-1°

f(n)
n+41
‘We shall apply the Uniformity Theorem in the above form to prove
the following
THEOREM 2. If ¢ ¢ K then @ is computably uniformly continuous in
any segment. 1. e. for g e K there exists a functional m, e K such that if
Aag,fi), Alas,T,), then for any veal b,e:

A(a,f)—?nn!w!a—

1 2

@) i a<be<a and [b—c|< then lg(b) = ple) < 725

“0plf1y For () + v

Proof. If p ¢ K then there exists a functional P ¢ K such that con-
dition (1) is satisfied. For the functional @ there exists, according to
the Uniformity Theorem; a functional we ¢ K such that condition (U’)
is satisfied for any f,,f, ¢ §'. Let the function ¢ be defined in the segment
[a,b]. We set '

(3) wlf1sfod(n) = wolf1, f3d ().

Let f,,fs be two functions such that A(a,f,), A(a,f,). If a,<b, c<ay
and

1 wglfy far(n)+ 17

then there exist two functions gs,g.¢F’ such that
4) A(b,95), Alfe,g0),
(5) glu)=gdu) for u<walf,fed(n),
(6) Io59c € 3' <y fad -

From condition (U’), (5) and (6) it follows that
(M DLgoy(n)=Dge>(n).

From (1) and (4) it follows that

_Bgyn)| 1 _Bgom)| 1

(®) o) -T2 ot - 282 L

(12)
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From (7) and (8) we obtain
, 2
i‘p\b) _ﬁﬁ)] <m.

THEOREM 3. The mazimum of a function @« K in a segment is a com-
putable function of the endpoinis of the segment. I.e. if pe K and
p(a,b)=max ¢(c), then ¥e K. )

a<e<<h

Proof. The definition of a computable real function of two argu-
ments is similar to the definition of a function ¢f cne argument. Namely,
y e K if there exists a runetional ¥ e K such that
(9 i Ale,fy) and  AQD,fy) then A(w(a,b), Py, 1))

We set

(10) W(’I’~l)("):(f““’)nn_£:1*§—%3 <?—?:]}’
(11) Fhsfad (1) =Max ST [z, walhy, fad () ()

for zeS such that f, ‘(ﬁ"di(fl;fz){%)) <z <fz(m¢<fnfz>(m)v

where @ ¢ K and ¢ satisfy condition (1) and o, satisties {U). ¥ e XK,
then ¥’ e K, according to properties 2 and 5. We shall prove that ¥
and ¥ satisfy condition (9). Indeed, let us suppose that Afa,f;), A(B,f),
a<b, o(n)=wsf;,f>(n); hence

Lot 1 {b fz*(ﬂ"'(n))! 1

- o(n)+1°

o{n)+1’ w(n)+1
We ‘consider the partition of the segment [a,b], by numbers of the form

5
(13) o(n)+17
where
(14) fil(m) <o <fifw(n) .

Let d be such a number of the segment [a,b] that
(15) ¢(d) = p(a,b) =max gc).
ae<h

Thus from (12) it follows that there exists a number x ¢ N’, which
satisfies (13) and (14), such that

@ 1
(16) ]'l—m1<m'

Fundamenta Mathematicae, T. XLII. _ 13
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TFrom the fact that o satisfies (U’) and & satisfies (1) it follows
that g,we satisfy (2); hence by Theorem 2, according to (2) and (16),

we have
@
o 0=+ (a573) | <
From (10) and (1) it follows that

@ LW (@, w(n))>(n)
“P(m(n+ 1)) - 1 <

Formulae (11) and (14) imply that
P'hr fad(m) > DLW (o, o(m) D (n).

Let 2 e SN’ be such a number that z satisfies (14) and
B s > ()= DCW g, (n)) ().

From (1) and (20) it follows that

2
n+1"

1
n41

(18)

(19)

(20)

(& \ Plipm)|_ 1

(21) Plom)+1) - nF1 '<ﬂ+1'
Formula (15) implies that

(22) ¢(d)>¢(w(n§+ 1)'

From (17) and (18) it follows that

¢<W(m,w(n>)><n)‘ 3
—_— <

n+1

(@3) T

pld)—

~ From (21) it follows that

2\ ¥<nfon)—1
¢ (w‘(n)-}— 1) = nt+1 ’

Formulae (19) and (24) imply that

(24)

z

q’(w(n)+1)
From (22) and (23) it follows that

- @(W(m, w(n))}(n) -1 .

(25) n+1

6) ¢<W(m,m<n))>(m+3> ( 2 )

n+1 ¢ o(n)+ 1)

icm
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From (25) and (26) we obtain

LW [z, () > (n) [ 3

(27) A kbl V4SO DOU
n+1 <w,+1'

( 2
? w(n)+1') -
Formulae (21) and (27) give
V' fan) _ PKW (@, w(n)))(n)
n4+1 n+1
From (28) and (23) it follows that

o(d)— T'ifl_a}_le}(ﬂ)

4

f+1"

(28)

(20) |<t

n41"

Now we put
(30) Wifusfo = [ Lol O 13+ gl

14
Formula (29) implies that

‘rp((l)_‘f”(ﬁ Jor(1dn+ 13)’ 7 .

(31). =
14n+14 14n4+-14  2(n+1)°
Hence :
P'{frs for(14n413) 1 1
T4(n 1) TN TR AL
and
W N . \ ‘
(32) [ <f1,fz/](i4ﬂ+ 13) +%]<¥’<fnfz>l(i4w-rl3) +%
<+ 1)p(d)+1.
On the other hand, from (31) it follows that
1 P f1sfo>(14n 4 13) 1 .
. #(d) 1z.+1< 14(n+1) T n+1)°
hence
(33) (n-+1)p(d)—1< T’<f1,f2>1(i4%+13)\—%
Vfy,for(14n+13) 1
< [‘"‘“‘1?—“ +“]

From (30), (32) and (33) it follows that

(n+1)p(@) =1 <Py, fp>() <(n+1)g(d)+ 1.
This means that

(p(d)_‘l’dx,fy(n)l( 1

nt+1 n-41’
which completes the proof.
13*
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TEEOREM 4. If the funclion p e K is defined over the segment [a,b],
Aa, ), A(b,fq) and d is the unique number of the segment [a,b] such that
@(d)=max g(c), then d is computable wm fy,fa-

a<e<b

Proof. We consider the partition of the segment [a,b] by numbers
of the form

(34) El(_ﬂ%’ ‘where w,(n) = welfy, fd(n)+n+1
and
(35) fu(m(m) <@ < fafwy(n)-

Trom Theorem 2 it follows that for any de[a,b] there exists an
z ¢« ¥ which satisfies (35) and

oz
lold) ~ ol —————
|ro-rlamia)
Suppose that p(d)=max ¢(c); hence according to Theorem 3 there
a<c<h

exists a functional ¥ e K such that A(¢(d),W<f1,f2>), hence according
to (36) '

2

1 |Putote)_

x < 3
i1 "’(m,(n)+1 1

On the other hand, from (1) it follows that

A (fp (W?%ﬁ)’ @ <W (e, wl(n))>).

Thus according to (37) we obtain the following condition:

(38) Mnesw Sxeawe ©  satisties (35)
Wiy, fom) HWmom))n)| 4
and n+21 — ATl <uTT

The following functional iz also computable:

(39) E(n)= (uo)[fo(n(n)) < @ < fofwr(n)

A1 () = LT (1, 0x(m) ()| <4].

If ¢(d) is the unique maximum of the funection ¢ in the segment
[@,b], then the following condition is satisfied:

icm
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(40) ke Snevon(n)+1>6(k+1) and  [], ceor

it filon(n) <@,y <folor(n)
and  |¥<fy, f)(n) — B W (o, (W) (n)] <4
and |y, fa)(n) — LW (g, an(m))>(m)] <4,

then eyl _ 1 i
wy{n)+1 "6(k+1)

Let é‘.(k)=tyhe smallest »n such that % and » satisfy condition {40).
The function { is computable in f,,f, under the suppositions of the theo-
rem. Now we put

90k = (u2) H P —ch(éigil ‘ <s@r 1)]'

We shall prove that A(d,g). Indeed, from {41) we have

e ,‘<3(kil>'

(41)

9k) _
(“2) lk+1 o)) +1

From (34) and (35) it follows that there exists such an x ¢ N’ that

(43) 1o (onfem) < o < fafenferi)
44 A 1
) o 0]+ 1 1<w1(ak))+1

Hence according to (37), (38) and Theorem 3
(45) 1 Py fo> (E()) —¢<W(m, @, (cm))) (k) | <4.

From (41), (39), (40), (43) and (45) it follows that

(46) o1 (£(8)) +1>6(k+ 1),
lo—sm)| 1
(47 oy (c(k)) +1 <E+ 1)

Formulae (46), (44) and (47) imply that

(c®)
oy (¢(R)) +1

1

(48) ST

—dl<
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From (42) and-(48) we obtain

which completes the proof.

THEOREM 5. The computable real numbers constitute the field of num-
bers algebraically closed in the field of real numbers.

Proof. It is very easy to verify that the functions -+, —, -, :, are
computable functions of two arguments. Hence the set of computable

numbers is a field of numbers, and any polynemial z(z) with computable

coefficients is a computable function. Similarly the function — |z(z)] is
also computable and satisfies the conditions of Theorem 4. Hence —|n(z)|
assumes all maxima in computable points. But — |=(x)| assumes a maxi-
mum if and only if m{z)=0; thus the real roots of the polynomial = are
computable 1),

THEOREM 6. If ¢ ¢ K and @ is strictly monotonic in the segment [a,b]
and A(a,f), A(b,f,), then the function @~ is computable in fi,f,.

Proof. The proof is similar to the proof of Theorem 4. First we
consider the partition of the segment [a, b] by numbers satisfying (34)
and (35). Similarly to (39) we set

(39) &@(m)= () [fu(wn(n)) <@ < fofor(m) A|g(n) —

the functional & is computable because the operation of minimum is
limited. From the fact that the function ¢ is strictly monotonic it fol-
lows that:

W (2, 0,(n)) ()| < 4];

(40’) ng?'”ksWZnewal +1>6(k‘|’1) and Hx,yetN
i fifeun) <o,y <plen) and o) —BW (m, 0 n)>(n)]| <4
— 1 1
and ig(m)—@(W(y,wﬂn)})(n)]<4, then Efﬁ)—% <6(T+T)'

Let {{g>(k) be the smallest ne N such that g,k,n ,sa,tlsfy condition (40').
Thus e K.

Now we put
z &g (e k)) 2 ]
23 “)1(5(9/( ))+1 3(k+1)]°
We shall prove that if A(e,g), then A{p™(c),87(g)) for a.<p=(c) <.
Indeed, suppose that
(42')

(417)

g (k)= () [

A(c,g)y a<g~(e) <D.
1) Another proof of Theorem 5 is in Mazur [71.

icm
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Hence there exists.such an z ¢ N’ that

(43) (o (£ m)) <o <h(onfecor000),
(44) IO FRp— — !
N N ) E S AR 277
From (44'), by Theorem 2, it follows that
(45')

x ] 2
o<
l RO EFSUNECESN
. Formulae (42'), (45') and (1) imply that ‘
960 ®) =@ (W [z, [0 (sca>0) | <.
On the other hand, from (39) it follows that

fe (o (e@> ) < 5<o> 0> ®) < (e[ 0> ),
(48) ] (t<g>(m) ¢<W (&o (), wl(cm(k)))}(ag,a(k}j]<4,

wl(i(g‘)(k))+1>6\(k+l). .
; (43'), (46'), (47') and (48') it follows that
m—5<y>(€<g>(k))i< 1
oy [y (R) +1 | 6+T)’
), (49”) and (50’) imply that
HRG)! 1< 1
o, (C<gy(R) +11 " 3(k+1)°
) weqobtafm

o7 gk )‘ 1

PR R I

(46")

(41

From (40

(50)

Formulae (

(51 {«p—lm -

From (41') and (51

\40“ (6)—

which completes the proof.
THEOREM 7. There exists a function y e K which is not differentiable
at any point.

Proof. Let us put
(1) @(a)=the smaller of two numbers: {a—[a],[a+1]—a},

nt+l
(@) 2‘1’ (10 a)

= 10n+1
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Both functions, ¢ and y, are computable.. Indeed, let us consider

the computable functionals

(3) ()= (uz)[f(n) — (2 1) (n+1)|
=i~z (n+ 1| <|f(n)—(@—=1) - (n4+1)|],
(4) B m)=|PlfH(n) + (n+1) —f(n)].

We shall prove that it A(a,f), then Alpla), <f5).
Let us suppose that )

5) '—rf—(—% <ﬂ_}_——~—I for any neN.
From (3) and (5) it follows that
it S o4l then e =tal+1,
©) o :
if n_}_1<[a]+9, then  @,{f>(n)=[a].
Hence from (4) and (6) we obtain
(7) %@ = the smaller of two numbers
(|2 - o], [rat - L .
Now let us distinguish 6 cases:
_ ]‘(u)
A a= P
From (7) and (1) it follows that (b(fj_(f =ga).
B. a:[a]+§.
If n is odd, then a——ﬂ?ﬂ i. ¢. the case A, if n ig ;
s =npqr ¢ the case A, if n is even, then
fo) 11 fr(n) 1
n+1 a{ —E(n-|- 1) and N1 _‘P(“’)l =31y
: f(n) fim)
C. a<[u]+ <n—|—1 (or a>[a]l+s >Ti)
fm) 1
Hence 7L ]+ =gy and a—[a]+ = '
¢<fv>(n) L1 1 13
nrl TipFT) Ty thus ,iq’(“) S ’ (

n-i—l)

1

2(n--1)"
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D. a /7f(4r')1\[a}—{—3 (or[a]<f )<a<[]+)

1
S (O} P(n) D ( 1
tence  J0 g 1 2DO L] <y
A (n) )
E. ;{+l1>[a']+‘) (or [a]+1>7f(+n)1>a>{a]+%).
. " f(n Dfy(n) D (n 1
Hence P h[ a41]— ——_- ) and ‘ P —(p((l)g<-——~n i
)
I ﬁ—l—\[aj—-a, '
mee |1, }_ L ‘ Pr(n) _ 1
Hence P | [a] "(n—}—l) and Py -m,
P (m)]
then ola)— a1 l 9(”+1)
From (1), (5),(6) and (7) we also find that in any case
I¢<f> |1

| 1 ‘F(a)]<my
which proves that peK.

It is evident that if ¢ ¢ K then y e K, because (10" a)<1; thus
it is easy to compute the value of y(a) with any estimation. The fune-
tion yx is well known to be non-differentiable at any point.

There remain some interesting problems coneerning the computable
real functions. E.g. whether the maximum of a computable function
is always obtained in a computable point, whether the derived function
of a differentiable computable function is computable, a similar problem
concerning integration and others 2).

%) During the print 8. Mazur and the author have remarked that the class K of
computable real functions of § 4 can he defined without use of computable functio-
nals in a manner similar to the definition of recursive real function formulated by
E. Specker in [14]. Namely @ e K if and only if there exist the functions f,g,k,j ¢ €om
such that:

1. @ is continuous;

2. ¢ (plg)=lim (Mp.qm)fitp.sm))s

<3 n,m > (%), then |k (p,g, n)fi(p,0-m)—Mp. 0 m)fi(p,gm) | <1/(h+1)5
4 it tu< plg<ris <vjw, and |pjg—r/s| < 1/g(tw,v,w,k), then|h(p,q,n)/i(p,q,n)—
~h(r,8,n)/j(r,8,n)| < 1/(k+1). :
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Continuous mappings of a certain family
by
J. de Groot (Laren, Holland)

1. We shall prove as a main result, using the axiom of choice (c de-
notes the potency of the system of real numbers):

THEOREM I. There exists a family of 2¢ subsets of the plane such that
no set of the family can be mapped continuously (degenerate maps excepted))
i (or on) another set of the family.

This theorem is known if the “continuous maps in” are replaced
by “topological maps in” or “continuous maps on’ or even “continuous
maps in, with ¢ image-points” 2). While these theorems are true and
have been proved in any complete separable space, this is clearly not
the case with theorem I. In the discontinuum of Cantor D for example
any subset of D having dimension 0 may be mapped continuously and
non-degenerately in any subset of D, consisting of more than one point.
Moreover it is clear that the family of theorem I must in any case con-
sist of connected sets comtaining mo ares. On the other hand the other
theorems are true both for (suifably selected) families of connected or
not connected sets and (except in one case) for families containing arcg
Or no arcs.

From these considerations one might expect that a proof of theo-
rem I might be rather difficult. This is, however, not the case if we add
some topological features to the proof of a general set-theoretic theorem
of Kuratowski?). Our proof parallels therefore to a great extent the
proof of Kuratowski, which enables him to establish the mentioned theo-
rem in the case of “continuous maps in with ¢ image-points”. On the
other hand this proof is only an existence-proof using the axiom of choice.
It is easy e. g. to define effectively two sets neither of which can be map-

) A map is called degenerale it the image consists of one point. Henceforth all
maps considered will be non-degenerate. .

?) Comp. C. Kuratowski, Topologie I, Waxrszawa 1952, p. 330-341. Associated
with the theorems stated are the names of Kuratowski, Sierpifiski, Lindenbaum,
Waraszkiewicz.

%) 0. c., p. 332, Théordme auxiliaire.
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