A. Grzegorezyk

References

[1] A. Grzegorczyk, Some classes of recursive fumctions, Rozprawy Matema.-
tyczne 4, Warszawa 1953.

[2] — Elementarily definable amalysis, Fundamenta Mathematicae 41 (1954),
p. 311-338.

[3] 8. C. Kleene, Recursive predicates and quantifiers, Trans. Am. Math. Soc. 53
(1943), p. 41-73.

[4] — On the interpretation of intuitionistic number theory, Journ. Symb. Log. 10
(1945), p. 109-124.

[5] — Imtroduction to Metamathematics, Amsterdam 1952.

[6] A. A. MapkoB, O npedemasienuu pexypeuswnx dywxyuii, Hss. Axan. Hayk
CCCP, cepust MaT. 13 (1949), p. 417-424.

[71 8. Mazur, Introduction to the to appear.

[8] A. Mostowski, On definable sets of positive integers, Fundamenta Mathema-
ticae 34 (1947), p. 81-112.

[9] D. Nelson, Recursive functions and intuitiondstic number theory, Trans. Am,
Math. Soc. 61 (1947), p. 307-368.

[10] R. Peter, [ber den Zu. hang der ver
Funktion, Math. Annalen 110 (1935), p. 612-632.

[11] — Rekursive Funkiionen, Budapest 1951.

[12] E. L. Post, Recursively enumerable sets of positive integers and their decision
problems, Bull. Am. Math. Soe. 50 (1944), p. 284-316.

[18) J. Robinson, General recursive functions, Proc. Amer, Math. Soc. 1 (1950),
p. 703-718.

[14] E. Specker, Nicht konstruktiv beweisbare Sitze der Analysis, Journ. Symb.
Log. 14 (1949), p. 145-158.

+abl, 7,
P d

33 od,

Begriffe der rekursiven

INSTYTUT MATEMATYCZNY POLSKIE] AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 21. 7. 1954

icm

Continuous mappings of a certain family
by
J. de Groot (Laren, Holland)

1. We shall prove as a main result, using the axiom of choice (c de-
notes the potency of the system of real numbers):

THEOREM I. There exists a family of 2¢ subsets of the plane such that
no set of the family can be mapped continuously (degenerate maps excepted))
i (or on) another set of the family.

This theorem is known if the “continuous maps in” are replaced
by “topological maps in” or “continuous maps on’ or even “continuous
maps in, with ¢ image-points” 2). While these theorems are true and
have been proved in any complete separable space, this is clearly not
the case with theorem I. In the discontinuum of Cantor D for example
any subset of D having dimension 0 may be mapped continuously and
non-degenerately in any subset of D, consisting of more than one point.
Moreover it is clear that the family of theorem I must in any case con-
sist of connected sets comtaining mo ares. On the other hand the other
theorems are true both for (suifably selected) families of connected or
not connected sets and (except in one case) for families containing arcg
Or no arcs.

From these considerations one might expect that a proof of theo-
rem I might be rather difficult. This is, however, not the case if we add
some topological features to the proof of a general set-theoretic theorem
of Kuratowski?). Our proof parallels therefore to a great extent the
proof of Kuratowski, which enables him to establish the mentioned theo-
rem in the case of “continuous maps in with ¢ image-points”. On the
other hand this proof is only an existence-proof using the axiom of choice.
It is easy e. g. to define effectively two sets neither of which can be map-

) A map is called degenerale it the image consists of one point. Henceforth all
maps considered will be non-degenerate. .

?) Comp. C. Kuratowski, Topologie I, Waxrszawa 1952, p. 330-341. Associated
with the theorems stated are the names of Kuratowski, Sierpifiski, Lindenbaum,
Waraszkiewicz.

%) 0. c., p. 332, Théordme auxiliaire.
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ped continuously on the other, whereas it is more difficult to find an
effective example of two sets of this kind considering “continuous maps
in?, The sets of the family we shall find may be taken as totally imper-
fect; therefore the construction cannot be made effective (at the time
being).

Let us mention finally two problems:

Does there exist a connected set which cannot’ be mapped conti-
nuously and non-degenerately on any proper subset?

Does there exist a 0-dimensional set A in a separable metric space §,
which cannot be mapped continuously on any set A’ with. ACCA'CS?

2. Levya. If O={f} is a family with potency c of transformations
of subsets of n-dimensional Buclidean space R" (n>1) on subsets of R™ with
potency ¢, and if in © are included transformations of all discontinua of Can-
tor D contained in R, there is a family F={X,Y,..} of 2¢ connected,
totally imperfect subsets X, Y,... in R" such that for each pair of different
sets X,Y and every fe® the relation

DH—¥=c
holds true.
Proof. Put c=x, and consider a well-ordering of the elements of @
(1) Torfiratayensfars {0 < 0y)

in which every element f of @ occurs ¢ times (this is possible since c2=C().
Consider a fixed f,; introduce for each function-value y of f, one value
of the argument » such that f,(z)=y. 4, will be the union of all chogen
arguments x. f, is therefore one to one on 4,. Let Ja=1a| 4,. The potency

of A4, is obviously c¢. By transfinite induction one proves the existence
of a well ordered sequence:

(2) PosP1sesPwyese s Day e (a<wy)
such that
1° p.e 4,.
2% PaF Py, (£<a).
3% puFgn(ps), (§<a, n<a).
1°  g,(pa)F s, (<o, n<a).
Put
U p.=P.
a<aog

P has potency ¢ and even each set P~ A= B, has potency ¢ in view
o X . .
of 1° (each § occuring ¢ times in (1), from which it follows that each A4,

is rep()ea,bed ¢ times though with different indices in the sequence {4},
s a<<mg).
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According to a known theorem (Kuratowski, o.c.,p. 330) there is

a family F={X,Y,...} of 2° subsets of P such that for two different
gets the relation

(3) BnX—TF=c
holds for any a<<w,.

We prove that each X ¢ F is connected. Consider an arbitrary dis-
continnum DCR". There is an f, which maps D. From the eonsm{lction
of 4, it follows that there is an 4, and B, with B,C 4,CD. In view of (3)
we gee that D~ X5£0. Therefore any X ¢ F contains points of every dis-
continuum DCR” This shows that B"—X is totally imperfect. On the
other hand the complement in R" of a totally imperfect set is connected
according to a theorem of Sierpingki. This means: X itself is connected
(the previously defined set P is also connected by the same argument).
Moreover by analysing the proof (not mentioned here) which gives the
family F' it is easy to see that X itself ‘can be chosen as a totally imper-
fect set.

From the relation (3) it follows easily that

fo(X)—Y=¢
The proof is omitted here being a repetition of Kuratowski’s proof {o. c.,
p. 333).

8. Proof of Theorem I. Substitute for @ in tl . preceding lemma
the family of all continuous maps of all Gs-subsets of the plane into sub-
sets with potency c¢. The family F={X,Y,..} satisfies the propositions
of theorem I. Indeed any non-degenerate confinuous map f of a con-
nected set X ¢ F contains ¢ image-points. The continnous extension f*
of f to a Gyset X*DX therefore contains c image-points. Hence /* ¢ P.
From f(X)=y*X) it follows

(a < ws).

XY= —¥=c
This proves that f(X) is not contained in any Y for any f, q.e. d.

4, Kuratowski (0. ¢., p. 333) proves theorem I in the case of con-
tinuous maps with ¢ image-points. If is easy to strengthen this result
somewhat.

TEEOREM II. In each complete separable metric space 8 there evists
a system of 9¢ subsets {X}, each X of potency ¢, such that no X can be map-
ped continuously in another X, countable images ewcepted.

Proof. Substitute in the *“théordme auxiliaire” (Kuratowski o. c.,
p. 332; this theorem corresponds with our lemma) the family Q) of sec
tion 3, the plane being replaced by 8. F={X, Y,...} is the family which
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satisfies the conditions. Indeed, from f(X)— ¥ = ¢ fe®, X5, it follows
that X=c¢ for any X e F. Furthermore, if ¢(X) is a continuous map of X
with uncountable image, there is a continuous extension g* on a Gs-set X*
containing X. X* contains a discontinuum D such that g*(D) is a topo-
logical map. This follows from a well’known theorem (Kuratowski, o. c.,
- 351), g(X*) being uncountable and our Gs-set being topologically com-
plete. Therefore g¥(X*)=rc. This implies ¢* ¢ @. The relation

FEO—-Y=9X)—T=c (X#7Y)
proves the theorem.
In particular the potency of g(X) for any X ¢ F and any continuous
map of X with uncountable image equals ¢, which gives
COROLLARY. There exists a system of 2° sets of dimension 0 and po-

tency ¢, such thai every continuous image of a set of the system either ig
countable or has ¢ many points.
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