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An application of lattices to logic
by

H. Rasiowa and R. Sikorski (Warszawa)

This paper is a continuation of our papers ‘“Algebraic treatment of
the notion of satisfiability’’ [6] and “On existential theorems in non-classical
functional caleuli” [7] cited hereafter ag [AT] and [ET] respectively.

The method used in this paper is indeed the same as in [AT] and [ET],
but the subjects of research are sentential calculi with quantifiers. Ana-
logously to [AT] we shall first examine a non-gpecified sentential calculus
with quantifiers &, determined in an obvious way by a sentential cal-
culus &§. Later on we shall study some special sentential calculi with
guantifiers &, &1, &, S,, determined by the classical calculus o,
the Lewis calculus &§;, the Heyting calculus ,, and the minimal cal-
culus &,, respectively. Sinee the positive sentential ealenlus with quan-
tifiers is equivalent (in a certain sense) to &,, we shall not examine it
separately.

‘We shall formulate a necessary and sufficient condition for a given
formula a to be a theorem of one of these caleuli with quantifiers. This
condition will be formulated in the language of the lattice theory. We
shall show later that, in the cases of &, S, and &,, this condition ean
also be expressed in a topological form.

As an application we shall obtain — by means of the same method
as in [ET] — some theorems on the elimination of the quantifier > in

a

systems &, ei;x and S,, (see 5.5, 6.5, 7.5). These theorems are analogous
to Theorems (A), (x), (¢) in [ET]. However, in contrast to [ET], theo-
rems on elimination of quantifiers in sentential calculi with gquantifiers
do not imply directly the decidability of formulas of the form Ep where,
roughly speaking, Z is a sequence of quantifiers, and g iz a formula
without quantifiers (see [ET], Theorems (A'), (')). The problem of de-
cidability remains open. An algebraical interpretation of the theorems
on elimination of quantifiers will be given in theorems 6.7 and 7.7.

As the second application we shall prove (see 5.4, 6.4, 7.4) that in
systems Sy, Si; S, there exist infinite sequences of closed non-equi-

valent formulas in contrast to the classical caleulus &,, which is com-
6*
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plete, 4. e. for each closed formula a in S,, either a or the negation of «
is a theorem. The construction of a sequence of closed non-equivalent
formulas in &, and & has a very simple topological interpretation.

The third application (§ 8) is the proof of a connection between &,
and &; (see the analogous theorems 15.1 and 15.2 in [AT]).

There is a slight difference between the method used in [AT] and
the one applied in this paper. In order to ensure that all the infinite opera-
tions are feasible we operated in [AT] exclusively with complete lattices.
In this paper we consider a wider class of lattices, called S:algebms. The
question whether it suffices to consider only the complete lattices remains
open. We do not know whether, in case of S (of Sx, of SH), it suffices to con-
sider the complete lattices of all (of all open) subsets of topological spaces.

This paper can be studied independently of [AT] and [ET]. In order
to avoid the repetition of definitions, the definitions of an S-algebra,
of Lindenbaum algebras, and of the systems &, S, Sy Fny I I8
merely outlined. The reader can find the exact definitions in [AT].

§ 1. Sentential caleculi with quantifiers. Let § be a fixed
congsistent system of a sentential calculus?!) containing as primitive sym-
bols the sentential variables a,,a,,..., parentheses and the following
primitive constants:

(a) the disjunction sign -, the conjunction sign -,
gign —;

(b) some other binary sentential operators o,,...,0.;

(c) some unary sentential operators ot,...,0%

The set of operators mentioned in (b) or (¢) may be empty. The
rules of inference in & are: the rule of substitution for sentential variables,
modus ponens, and the rule of replacement of equivalent parts. We
suppose that all the theorems of the positive sentential caleulus are theo-
rems of &. However it is possible that some other formulas are also theo-
rems of &.

The letter I, will always denote the set of all positive integers.

The system & determines in an obvious way a system & of senten-
tial calculus with quantifiers 2 and H .

the implication

The primitive symbols of & are the parentheses, the sentential
variables a; (where 4 € I,), the constants mentioned in (a), (b), (¢), and
the quantifiers 3 ,[] (¢ ¢ I,). The set § of formulas in & is the smallest

a; a;

set such that
1) a; e 8 where ¢ Iy

') The system & is exactly described in [AT], § 1.
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2) if @, B8, then (a+,3 Ye8, (a-B)e8, (a>p)e S, (zorf)e
(k=1,...,7), kae8 (k=1,..., ZaeS HaeS

We write (a=p) instead of ((a—>ﬁ) 13—>a )

‘We assume that the notion of free and bound occurrence of a sentential
variable q; is familiar.

The axioms of & are all substitutions of all theorems of &.

The set T of all theorems in & is the least set of formulas such that

(i) T contains all axioms of S;

(ii) if aeT, and if 8 is obtained from « by the admissible repla-
cement of all free occurrences of a; (i e I,) by a formula y ¢S

=a (‘;i) ’
then fe T
(iii) if aeT and (a—B) ye T, then 8T,
(iv) if aeT and (y=0)e T, and if y is a part of a, then the for-
mula f obtained from a by the replacement of the part y by 6, is also in T;
(v) if (a——>ﬁ e T and there is no free occurrence of ¢; in a (in 8),
then (a—>Hﬂ )eT (then ( Za»ﬂ Ve TY;

(vi) 1f a-—>H,8 YeT (Lf Z’a—»ﬁ)efl’), then (a—f)e
I aeT, we \,hall also Wnte a.

§ 2. S-algebras. The system § determines also a kind of abstract
algebras (called &-algebras?)) with algebraic operations corresponding to
the logical sentential operators —,:, —,01,...,0r, 0%, 0% The JS-alge-
bras, which are the matrices of the system o, are relatn'ely pseudo-
complemented lattices (with the sum (join) a4+ b and the product (meet)
a-b) having the unit element e¢ which is the distinguished element cor-

responding to the logical value of truth. If an S-algebra is a complete

lattice, it is called an &*-algebra.

Tet 4 be an S-algebra. Every formula « e S can be interpreted as
an algebraic function (denoted by (4)@;) by treating

(a) all sentential variables a; as variables running over A;

(b) each of the logical signs mentioned in §1 (a), (b), {c) as the
corresponding algebraic operation in 4;

(¢) the quantifiers 3 and ] as the signs of the infinite sums

a; a;

(4)3 and products (4) [] respectively3).
aed a;ed
2) See [AT], § 3.
3) If 4 is a lattice and a, e A for each ue U, then (4) z, au (then (4) I]’au)

is the sum (the product) of all the elements a, in the lattice A whenevet t]ns sum
(product) exists. See [AT], p. 68.
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Let {z;} be an infinite sequence of elements of 4. If, for a given
~formula a8 and for the substitution

(8) = ; (tely)

there exist all the sums and products corresponding to the logical quan-
tifiers in the algebraic interpretation (4)®, of «, then the sequence {}
is said to be a valuation of a.

Obviously, it is sufficient to determine the substitution (s) only for
those a; whose free occurrences appear in a. However, for the simple for-
mulation of the definition of valuation of a it is convenient to assume
that the substitution (s) is determined for all a; (i e Ip).

The value of the function (4)®, for the substitution (s) will then
be denoted by (A)Pu({x}).

If the sequence {z;} is a valuation of every formula aef, then {z:}
is said to be a valuation of S.

_If every sequence {z;} of elements of an J-algebra 4 is a valuation
of 8, then A will be called an &§-algebra.

Obviously the element (4)®,({z;}) depends only on the elements z;
where 4 i3 a positive integer such that a contains a free occurrence of a;.

The following equations can be condidered as the inductive defini-
tion of (A)@q({w:}).

2.1, If a,fe 8 and o0 is a binary operation (see § 1 (a), (b)), then
(A)Pop({mi}) = (A) Bl {m1}) 0 (4) By({:}).
If 0 is a wnary operation (see § 1 (c)), then

(4 ) maa({wi}) =0 (A ) Qia({mi})'
Analogously

(A)Pga({z})=(4) X (4)Bu({x}}),

xp€d

(A)¢£za({mi}) =(4) ]I (4)®.({x}),

x €4

where {xi} is any sequence of elements of A such that wj=ax; if i k, and z,
5 arbitrary.

If (4)@o({a;})=a € A for each valuation {m} of a, we write (4)P,=a.

2.2, If Va, then (4)®,=e¢ for every S-algebra A.

The easy proof by induction with respect to the length of the proof
of a is omitted.

An e?-‘a]gebra, 4 is said to be functionally S-free if, for every aef,
the condition (4)®,=¢ implies that (B)®a=e¢ for every Salgebra B.
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§ 3. The Lindenbaum algebra L. For every a ¢S, let |of denote -
the class of all § e § such that +(a=p). Let L be the set of all cosets |a|
where aeS. |We define the algebraic operation in I as follows (see
[AT], §4):

ilao]p|=|a0p]

if o is one of the binary operations mentioned in § 1 (a), (b), and
olaj=Joa|

if o0 is one of the unary operations mentioned in § 1 (c). The element |a],
where | a, will be denoted by e.

8.1. L is an S-algebra. In particular L is relatively pseudocom-
plemented lattice with the operation 4 (join), - (meet), — (relative pseudo-
complement), with the unit e and with the zero element 0=|[] a;|. The

a

lattice inclusion |a|C|B| holds if and only if +(a—B).
laj=¢ if and only if +a.

For every aef, keI, and e, let a(f ) be the formula obtained
%,

from o by the substitution of the formula B for each free occurrence of ay.
‘We assume that the neecessary changes in the bound occurrences of va-
riables of « have been performed before the operation of substitution

. {a)
mined.

More generally, let {8;} be a sequence of formulas of S. Then, for

every aed, let a({f ‘}) be the formula obtained from o by the substi-

has been applied. Obviously the element of L is uniquely deter-

tution of formulas §; for the variables a; (i e I,) respectively.
8.2, Let ael, p;eS for iel,. Then

(e -0, )
()=o)

(%)
awhere {fj} is any sequence such that
Bi=B i ik,

and By is an arbitrary formula of S. .
The proof is similar to that of 4.3 in [AT], therefore it is omitted.
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3.8. Let ae S and ;eS8 for ieI,. Then

“ (=) ladl= 22 |<()
) (- |<()

where V is the set of all sentential variables and {f;} is any sequence such
that Bi=p; for itk and BreV.

The proof of 3.3 is similar to that of 3.2.

8.4. For every aef and for every sequence B;e S,

“(fo

a; )
The proof is by induction with respect to the length of a. In the

case of a=a; the theorem is obvious. Suppose that a=1y0d, where o is

one of the binary operators mentioned in § 1 (a), (b). If Theorem 3.4
holds for y and 4, then it holds for «, since

(L) L({[:11) = (L) B,({[8:]3) o (L) Ba({| 1]}

=W%w@%4m-

In the case of a=oy, where o is one of the unary operators mentioned
in § 1 (c), the proof is similar.

Suppose that a=3y» and that Theorem 3.4 holds for y. Then
%

A6,

L)o.{{|#f) =

PlBil}=(L) X

SCRIRIE i

()
where fi=p; for itk and g e L. »
In the case of a=[]y the proof is similar.

Do1pi=D) 3 (T)
BreL

Tt follows immediately from 3.4 that
3.5. L is an S-algebra.
8.6. For every ael

L)@o{|as]})=q].
It follows from 3.6 that

3.9, If non -a, then (I)@y({|aif}) e
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We infer from 3.7 and 2.2 that

3.8. The algebra L is functionally S-free.

Combining 2.2 and 3.6 we obtain

8.9. The following conditions are equivalent for every formula aeB:

i) Fag

(i) (d)P,=e for every S-algebra A;

(i) (L)Ps=e.

§ 4. The classical calculus. Consider the case where & is the
classical sentential calculus (see [AT], § 9) denoted here as &,. The sen-
tential caleulus with quantifiers, determined by S=d&, by the method
deseribed in § 1, is the classical sentential calculus with quantifiers (see
[1] and [2]), denoted by &,-

The set of all formulas in &, will be denoted by §,.

L, will denote the Lindenbaum algebra constructed by the method
deseribed in § 3.

The §,-algebras are Boolean algebras and conversely. Every Boo-
lean algebra is also an S,-algebra. The letter B will always denote &
Boolean algebra. In particular B, will always denote the fwo-element
Boolean algebra.

The following theorems are known (see [1] and [2]), but their proofs
seen to be new.

4.1, For each aeB,, +u if and only if (By)P,=e.

The necessity follows immediately from 2.2. To prove the sufficiency,
let us suppose that non a. Let » be a prime ideal of L, such that*)

1} ja[ €D,

2) p preserves all the sums and products mentioned in 3.2 (*) and (x*).

The quotient algebra L,/p is the two-element Boolean algebra B,.
For every fel, we have

(Bo) Pa({l sl =I]5]1,
where [b] denotes the element of B,—=LI,/p determined by an element
b e L,. The proof of this equation is by induetion with respect to the
length of a.
In particular

{Bo) Do {l|as| 1N =T]a[1=10,
4.2, If ar, 3 and [] do not appear in a, then
ax %

- (n a=(a5) “(Z)))

4} Such a prime ideal exists. See e. ¢. [5], Lemma (iv), p. 197.

q.e.d.
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- (Fe=lelh+ <L)

where ﬂ:(ak-(— ak)) and y:(uk+(—ak)). )

This follows immediately from 4.1. Indeed, the algebraical functions
corresponding to both sides of each of the above equations are identically
equal (the algebra is supposed to be By) since (By)Pp=0 and (Bo)®,=e,

4.3. Let B be an S-algebra. Then for every a e,

and

(B) [1(B) @u({m}) = (B) Pl {21}) - (B) Pul {})

x.€B
and
(B)x%(B)@“({”*‘}): (B)Do{{21}) + (B) Pul{ar})
where '

wi=wy=0u; for ik, and 2;=0¢eB, zi=¢cB.

This results from 4.2 since the elements on both sides of the equa-
tions in 4.3 are the values of the algebraical functions corresponding to
the formulas on both sides of the equivalences in 4.2. The algebraical
functions corresponding to equivalent formulas are always identical.

4.4. BEvery Boolean algebra B is a functionally S.-free algebra.

By 2.2 and 4.1 it suffices to prove that if (B)®,=e¢ for a formula
aef,, then (B,)®,=e. It follows from 4.3 that if ;=0 or e for iely,
then (B,)®= (B)P, since all sums and products 3 and [ can be

x€Bg x€By

replaced by 3 and [] respectively (B, is interpreted as the subalgebra
x€B x€B

of B composed only of the zero element and the unit element). This re-
mark completes the proof.

§ 5. The modal caleulus. Now congider the case where & is
the sentential calculus of Lewis (see e. g. [AT], § 10), denoted here by o;.
Besides the signs +-, -, —, the system &, contains also the two unary
sentential operators: the negation sign —, and the possibility sign C.
We shall write I instead of —C—. B

The sentential caleulus with quantifiers, obtained by the method
described in § 1 where $=,, will be denoted by ;.

The &y-algebras are closure algebras and conversely (see e. g. [AT],
§10). The letter ¢ will exclusively denote closure algebras. A closure
algebra C is said to be topological if it is formed of some subsets of a to-
pological space &, finite sums and products in ¢ are the usnal set-theo-
retical operations, and the operation € in ¢ is that induced by the clo-
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sure operation in &. If ZC&, then IZ is the interior of Z. The closure
algebra of all subsets of a topological space & will be denoted by C(%).

S; will denote the set of all formulas in &2, and I, will denote the
Lindenbaum algebra of S, (see § 2 where S=d,).

The &;-algebra I, is isomorphie to a topological closure algebra (see
[AT], Theorem 10.1) C; of some subsets of a space &;, and this iso-
morphism % preserves all the infinite sums and products corresponding
to the logical quantifiers, 4. e. all the sums and products mentioned in
3.2 (x) and (#x), the corresponding infinite operations in €, are the usual
set-theoretical ones.

5.1. The following conditions are equivalent for every a e S;:

1) Fa; ’

({i) (C)P,=eeC for every Sy-algebra C;

(iii) (C)Pe=& for every topological -S;-algebra C formed of subsets
of a space &F;

(iv) (C)Bo=%F; (i. e., by isomorphim, (L;)P,=e ¢ L;).

The implication (i)—(ii) follows from 2.2. The implications (ii)— (iii)
and (iii)—(iv) are trivial. The implication (iv)->(i) follows from 3.7.

The equivalence {i)=(iv) can also be formulated as follows:

5.2, The topological closure algebra C is functionally S;-free.

The problem whether there exists a functionally &;free closure
algebra CG(&), where & is a topological space, is unsolved.

5.3. If & is a T,-space dense in iiself, then the closure algebra C(%)
is not functionally Sy-free3).

Consider the formula

(a) %=2((Ca)- (C—a)).

If X is a T,-space, then (C(Ef))dl,o is identically equal to the de-
rived set (7. e. the set of all cluster points) of the space & since it is the
sum of boundaries of all subsets of &. Hence if & is dense in itself, then
(C(,SE)) @, =& = the unit of C(%¥). On the other hand, if & contains
an isolated point, then (C (.SE'))@%#%.

In particular, we infer that non - a,.

It follows from 4.1 that, in the classical calculus &, for each closed
formula aeS,, either Fa or +(—a). This means, roughly speaking,
that the classical calculus &, is indeed the two-valued logic. In parti-
cular, there is no infinite sequence of closed non-equivalent formulas
a, € S, (more exactly if n>2, there is no n-element sequence of closed

°} The idea of the proof of 5.3 was suggested to us by a remark due to A. Grze-
gorezyk.
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non-equivalent formulas of &,). The Lewis calculus &; does not possess
this property, it is indeed an infinitely valued logic.

5.4. There is an infinile sequence {an} of closed non-equivalent formulas
of the system ;.

Let a, be the formula defined by (a), and let

O Z(C(an_l- Ons1) Clpes (—~a,1+1))) for n=1,2,..
@ni1 .

Let & be a T,-space. Then the functions (C(&’))CD% are constant
since ¢, contains no free variable. The set Z,,=(C(&'))®an is the derived
set of the closed set Z,_;, since it is the sum of all boundaries (relative
to the space Z,—,) of all subsets of Z,_;. Consequently, Z, is the (n4-1)th
derived set of the space & 6).

There are T, spaces such that all derived sets Z, (n=0,1,2,..)
are different, Z,#Z, for nm. Since the algebraical functions of equi-
valent formulas are always identically equal, we infer that no two of
the formulas o, are equivalent.

Let @, be a fixed element such that z, ¢ ¥, and let Fi=%,+ ().
We shall consider the set &3 as a topological space with the following de-
tinition of the closure operation in &3: €°(0)=0, and C"(X)=C"(X %) +(x,)
if 0s£XC%) (C denotes the closure operation in &;). Let I and IP
denote the interior operations in the space & and &3 respectively, i. e.
KX)=X—C(¥;—X), and analogously for I°.

Let Gf be the closure algebra of all sets X and X - (x,) where X (4,
the closure operation in Cf being C°. ’ '

5.5. If the formula 3 YaeS; is a theorem of &, 3 La, then there
ag a

exists such a formula B e S, that |—a( B )
a

Let b be the isomorphism of I, onto ¢, mentioned on p. 91.
One can prove by induction with respect to the length of the for-
mula that €} is an &;-algebra and that

(b) % ((CR)Po({X})) = (C) Bol{ X: Fi})

for every feS, and for every sequence X,e (3.
Suppose that -y, y=3Y1TIa. By 5.1 and 2.1
]

() Fi= (002, {(h(la))) = 2 X{(Gh0u((X)
¥ Ca

where' Xy=h(|a;]) for is£k, and Xie (] is arbitrary.

. ) The deﬁniiﬁion of the nth derived set of a set ZcX is by induction: the (n+1)th
derived set of Z is the derived set of the nth derived set of Z.
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All the sets under the sign 3 in (c) are open. Since there is only
one open set which contains the element z,, viz. the set &3, we infer that
I{(C)o. (X)) =%
for a sequence {X;} where X;=h(]a]) for ik, and where X is an ele-

ment of C}. Consequently, for the sequence {X;},
(Cg)(ﬁa({Xi})z—Xg’
1. e, by (b)
(d) (CHDUELEN) =F:FEr=Fa.
We have X;&;=h(|a;]) for iz*k, and X &;=nh(|g]) where g is a
formula e S; since all elements of €5 are of this form. Let §;=¢; for ik

and fi=p. By (d) _ )
(L) Bal{|Bil}) = < Ls

since k is an isomorphism. Consequently, by 3.4

a(f;)i=(El>¢a({x5,-1})=eeEz,

}—a(ﬁ), q. e. d.

dx

By the same method we obtain
5.6. If a,f Sy, and —(Ta-+1p), then either t-a or +f.

§ 6. The intuitionistic caleulus. Consider now the case where
S is the Heyting sentential caleulus (see [AT], § 11) denoted here by &,.
Besides the signs +, -, — the system &, contains the negation sign 1.
The sentential calculus obtained from &, by the method described in § 1
will be denoted by &,. Of course &, is the sentential intuitionistic cal-
culus with quantifiers. The set of all formmlas of 0_5;1 will be denoted by 8,,
and the Lindenbaum algebra of &, will be denoted by L,.

The &,-algebras are Heyting algebras and conversely (see [AT], § 11).
The letter H will exclusively denote Heyting algebras. A Heyting algebra
ig said to be topological, if it is formed of some open subsets of a topo-
logical space &, the finite sums and products in H are the usual set-
-theoretical operations, the operation a—b is defined as the interior of
the set (X —a)+b, and Tla is the interior of the set X —a. The Heyting
algebra of all open subsets of a topological space & will be denoted by
H{%).

The Sfalgebra- L, is isomorphic to a topological Heyting algebra
(see [AT], Theorem 11.2) H, of some open subsets of a space &,, and
this isomorphism % preserves all the infinite sums and products corres-
ponding to the logical guantifiers (. e. all the sums and products men-
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tioned in 3.2 (%) and (*x)), the corresponding infinite operation >in
H, is the set-theoretical union, and the corresponding operation [] in H,
is the interior of the set-theoretical intersection.

6.1. The following conditions are equivalent for each formula a e Sz

i) ko _

(i) (H)@.=¢ecH for cvery S,-algebra H;

(iii) (H)P,=& for every topological Sx-algebm H formed of some
open subsets of a space &;

(iv) (H)Pa=&, (i. €., by isomorphism, (L)®,=e ¢ L,).

The proof is the same as the proof of the corresponding theorem 5.1.

The equivalence (i)=(iv) can also he formulated as follows:

6.2. The topological Heyting algebra H, is functionally S,-free.

The problem whether there exists a functionally & free Heyting
algebra H(&), where & is a topological space, is unsolved.

6.3. If & is a Ti-space dense in itself, then the Heyting algebra H ()
is not functionally S, free.

Let
(2) a1=g (6 (D))

and let a="Tq,. If & is a T,-space, then (H (Ei?))gl?‘,l is identically equal
to the interior of the intersection of all open dense subsets of &, since
an open seb GC X is dense in X if and only if it is of the form 44 (T14)=
=A+X(X—4) where 4 ¢ H(¥), and conversely. Otherwise speaking,
(H(Sc”)) @, is the set of all isolated points of the space &. Consequently,
(H(%))®. is the interior of the derived set of the space &.

Therefore (H(&')) @, =& it & is dense in itself. On the other hand,
(H(ﬁ)) O, #F if & is not dense in itself.

6.4. There s an_infinite sequence {a,} of closed non-equivalent for-
mulas of the system &,7).

Let & be a T;-space. Notice that, for 4,B ¢ H(&), the set

A—~>B=1((%—4)+B)
is equal to the set
B+1s_5((%—B)—4)

where, for ZCY, the set Iy(Z) is the interior of the set Z with respect
to the subspace YC&, i.e.

1+(Z)=Y-Y-C(Y—2).

") The analogous theorem for the system &, was proved by J. C. C. McKinsey
and A. Tarski [4].
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In fact, B+Iz-5((%—B)—4) is the greatest set & open in & such
that G(4—B)=0, i, e. such that GACB. The same property characte-
rizes (see [AT], p. 68, footnote 1)) the set G=A->B.

Consequently, if 4,B ¢ H(¥), then the set

(b) A+(4->B)

is the complement of the boundary of A(¥—B) taken with respect to
the space &¥—B, i.e. the set A4 (4->B) is the sum of the set B and
a set open and dense in the space & —B. Conversely, each set @ which
ig the sum of B and a set open and dense in & —B can be written in the
form (b), viz.

G=G+ (G—B).

In fact, @ is open in &, G—B is open and dense in & —B. There-
fore Te-p((—B)—G)=0, i.e. G—B=B. Consequently

G+(G—>B)=G+B=4G.
By (b) the set
(e) [l (4+(4->B))
| AHE)
is the sum of B and the set of all isolated points of & —B. The set (¢)
is thus open in &.
Let
B= [l (A+(4-0)= ][] ([4+(714)),

AeH(E) aeBE®
and by induction

Bya= [] (A+(4-B,) for a=1,2,..
Ae ()

The set B; is the set of all isolated points of &, i. e. B, is the com-
plement of the first derived set of &. By (c), the set B, is the sum of B;
and of the set of all isolated points of the & — By, ¢. e. B, is the comple-
ment of the second derived set of the space . More generally, the set B,
(n=1,2,...) is the complement of the nth derived set of the space &.

Let X be a T,-space such that all the derived sets of & of the order
1,2,... are different. Then

B,CB,CB,C...
but
B,#B, if n#*m.
Let
= l] (al‘f" (-]al>) ’
1
and, by induction,

Oni17= H(an+1+(an+1—>0n)); n=1,2,..
A+l
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‘It follows from 2.1 that (H(%))®,, is identically equal to B,C,
n=1,2,.. The closed formulas o, (n=1,2,...) are not equivalent, since
the functions (H)®, of equivalent formulas are always identically equal,
and in the case of the space & mentioned above

(H(&')) D, (H(&')) @, for nzEm.
6.5. If the formula Y ae8, is a theorem of Sy X a, then there
g ay

ewists such a formula f e S, that e ( fk)

The proof of this theorem is the same as that of theorem 5.5. It suf-
fices to omit the sxgn I and to replace the spaces &, &'1, the closure
algebras C; and (3 and the Lindenbaum algebra L; by the spaces &,, %z,
the Heyting algebras H,, Hj and the Lindenbaum algebra L, 1espect1~
vely. The space ,i'c"’ is con%mucted in the same way as the space &3, viz.
Fy=%,+ (x,), where x, is an element, x, ¢ &,. The open sets in %, are
the sets @ and %, where G is open in &,. The Heyting algebra H,
formed of the set &, and of all sets belonging to H,.

By the same method we obtain

6.6, If o,8 ¢S, and (a+p), then either a or 4.

Theorems 6.5 and 6.6 can also be formulated as follows:

6.7. The set p=1L,— (e) is an ideal of L,. The ideal p is the only mazi-
mal ideal of L,. It is enumerably additive in the following sense: if all com-
ponents of am infinite sum corresponding to the logical gquantifier 3 are
in p, then the sum 1is also in P.

Let &, denote the smystem (with quantifiers) obtained from the
system S=d, by the method described in § 1, where &, is the positive
sentential calculus (see [AT], § 12).

6.8. The system S, is equivalent to the system S, with the rule of de-
findtion and with the following definition of the negation:

{*) Ta=a—]]a,.
a1
It follows frem 6.8 that the separate examination of S, is super-
fluous.
To prove 6.8 let us notice that the formulas

{d) ((aiégal)»(a,-—mk))
(e) : ((ai——> (ak—>£[ al))e (o~ (a,-—>£] alm
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are theorems in &,. Hence, using the definition of negation, we infer
that the following formulas are theorems in &§,:

(@) (—‘ai—‘(aiﬁak)) 3
(e) ((a,-—»(_lak‘)+(ak—>("la,-))),~

If we add those formulas to the set of axioms of §,, we obtain a set
of axioms of &,. Hence, if a¢ 8, and a is a theorem of &, then « is
also a theorem of .

Conversely, if a formula ce 8, is a theorem of &, then a is also
a theorem of &,. This remark is obvious if « does not contain the sign 1.
Suppose that a contains the sign 7. Let o* be the formula obtained from
a by the elimination of the sign 7 on account of the definition (x). Of
course o* is a theorem of &,. Thus o* is a theorem of eS’ It is easy to
see that the formula

Ta=(a—>]] o)

is a theorem of &,. We obtain a from o* by replacing some parts of the
form f—[]a, by 718. This implies that a is also a theorem of & .
a1

§ 7. The minimal calculus. Consider now the case where J§ is
the minimal sentential calculus (see [AT], § 13) denoted here by &,.
This system contains the operators 4+, -, —, and the negation sign ~.
The sentential calculus with quantifiers (obtained from ;S‘; by the me-
thod described in § 1) will be denoted by SF. The set of all formulas
of &, and the Lindenbaum algebra of &, will be denoted by S, and L,
respectively.

S,-algebras are algebras <M; e; +, -, —, ~> such that (M;e; +, -, >
is a relatively pseudocomplemented lattice with the unit e, and ~a=
=g —>~e where ~e¢ is an arbitrary but fixed element of M (see [AT],
§ 13). The letter M will exclusively denote &,-algebras. An J&,-algebra
is said to be topological if it is formed of some open subsets of a topolo-
gical space &, the definition of a4 b, a-b, a—b being the same as in
the case of topological Heyting algebras (see § 6). M(%,G) denotes the
&;-algebra of all open subsets of a topological space & such that ~e=
=~F=0G ¢« M(¥).

The S,,—algebra L, is isomorphic (see [AT], Theorem 13.2) to a to-
pological &,-algebra M, of some open subsets of a topological space &,,
and this isomorphism preserves all the infinite sums and produets cor-
responding to the logical quantifiers (see 3.2 (x) and (xx)), the corres-
ponding infinite operations ) and [] in M, being the same as in the case
of H, (see p. 94).

Fu ta Matherr . T. XLIL 7
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7.1, The following conditions are equivalent for each formula ae8,:

(i) Fo

(i) (M)®P,=ee M for every S,-algebra M;

(iii) (M)Pe=& for every topological S,-algebra M formed of open
subsets of a space &; . ~ -

(iv) (M,)Pa=&, (i. €., by isomorphism, (L,)Pa= e cLy).

7.2, The topological S,-algebra M, is functionally S, free.

The proof is the same as in § 6.

The problem whether there exists a functionally eS’ -free algebra
M(%,6G), where & is a topological space, is unsolved.

7.8. If X is a Ty-space dense in itself, and G is an open subset of X,
then M(¥,G) is not functionally &,free.
The formula

a:(g (a2+(a2—>al—1]al)))—>g @

has the following property: (M (& ,G))¢a=3f if and only if & is dense
in itself. The proof of 7.3 is the same as that of 6.3.

7.4. There is an infinite sequence {a,} of closed non-equivalent for-
mulas of the system &,.

In fact, the formulas a, (n=1,2,...) satisfying theorem 6.4 are not
equivalent in ei since they are not equivalent in the stronger system o,.

7.5. If the formula 3 o € 8, is o theorem of &,, then there exists a for-
ay

mula B €8, such that the substitution a( f) is @ theorem of &,.
k

The proof is the same as that of 6.5.
By the same method we obtain

7.6. If o, fed, and (a+B), then either t-a or 1p.

Theorems 7.5 and 7.6 can also be formulated as follows:

7.7. The set p=L,—(e) is an ideal of L,. The ideal p is the only ma-
mimal ideal of L. It is enwmeradbly additive in the.following sense: if all

components of an infinite sum corresponding to the logical quantifier X
are in p, then the sum is also in p.

7.8. The negation 71 defined by the fo'rmula.

Ta=a—=[la, for aeB,

ag

is the intuitionistic negation in S.. The megation 7\ is not equivalent (in
the system &,) to the minimal negation ~.
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The first remark has been proved in 6.8. The second remark fol-
lows from the fact that the formula

5=("‘"’2)“>(a2">nal)

is not a theorem of &,. In fact, let I be a complete pseudocomplemented
lattice and let ~e=e. The last equation determines uniquely the ope-
ration ~a in M, therefore M is an §,-algebra. If z;=e¢ ¢ I for i=1,2,..
then

(M) Dy ({2:})=(~e)>(e—>0)=¢—0=0,

which completes the proof (see 2.2).

§ 8. The connection between the intuitionistic and the
modal logic. Let y be the transformation of S, into S, defined by in-
duction as follows (see [AT], § 15):

(1) (a,)=1{a,),

i)  ylat B)y=y(a)+v(B),

(i) pla-B)=p(a) p{B),

(iv) a—>ﬁ)—1(~w a)+%(p)),
) wma)=1(—ap(a>),

i) p(Ya)=Dp(a),

(vit) ([T o) =TTyt

8.1. Let C be a closure algebra and let H(C) be the Heyting algebra
of all open elements of C. If the sequence {x;} of elements of C is a valuation
of yla) where a €Sy, then the sequence {Lx;} is a valuation of a and

(C) Py ({:3)=(H(C)) Pu( (L))

The proof is by induction with respect to the length of a.

8.2. A formula a €8, is a theorem of Sx if and only if w(a) is a theo-
rem of &y.

Suppose that y(a) is a theorem of §;. Let € be a closure algebra
such that L,=H(C) is the algebra of all open elements of ¢ (such a clo-
sure algebra exists by a theorem of Tarski and MeKinsey [3]8). By 8.1,
3.6 and 2.2 we have

Ja]= (L,) P {|as]}) = (C) Byiy ({{asi|}) =,
which proves that a is a theorem in &, (see 3.1).

#) The Brouwerian algebras examined in that paper are dual to Heyting algebras.
7*
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icm
Suppose now that p(«) is not a theorem of ‘83 Let H be the Heyting

algebra of all open elements of I;, H=H (L;). Then by the same argu-
mentation as above

H)o({Mai})=

which proves that a is not a theorem of S, (see 2.2).

Dy ({lail}) =al e,
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Introduection

A well-known result due to Godel [5] states: If (¥) is one of the
usual systems of arithmetic (for sufficient conditions on (F) see [9],
p. 285) the formula which is ordinarily taken as the arithmetization of
the consistency of (F) cannot be proved in (F) itself. Thus the consistency
proof for Z; ([9], p. 293) due to Ackermann [2] uses the principle of or-
dinal induction up to the first e-number, which cannot be formalized
in Z,, and the consistency proof by means of a truth definition ([9],
p- 339) uses a predicate which cannot be formalized in Z, either. It is
now natural to ask whether the “ideas” of these consistency proofs may
be formalized in Z,: the result of such a step would then be a consistency
proof for a subsystem (¥F) of Z,; (F) would be demonstrably weaker
than Z, since a formula of Z, which expresses the consistency of (F)
would be provable in Z, but not in (F). We shall denote such a formula
by Con(F); it is to be understood that the formmla chosen for expressing
the consistency of (F) satisties conditions sufficient to ensure the appli-
cation of Godel’s second undecidability theorem.

In this way we are led to systems which are obtained from Z, by
suppressing all those proofs of Z, which are too ‘‘complex”’; several de-
finitions of complexity will be used, the principal ones being the maxi-
mum number of bound variables occurring in any formula of the proof,
and the number of distinct critical e-matrices (Grundtypen, [91], p. 93),
if the Hilbert e-symbol is used instead of quantifiers. These measures
of complexity are suggested by the two consistency proofs mentioned
above. We may note in passing that, for our present purpose, the con-
sistency proof by means of a truth definition is more appropriate becanse
it can be immediately applied to any extension of Z, by means of trans-
finite induction, and other principles of proof which satisfy the rule of
infinite induetion ([11], p. 124).

Our first application of these results concerns the elimination of
the induction scheme of Z, by means of a finite set of axioms (which
are themselves formulae of Z,). It was established in [13] and [16] thab
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