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On the spaces of functions satisfying Hélder’s condition
by
E. Tarnawski (Gdansk)

We shall always suppose that funetions, which we shall denote
by f(z), are continuous, periodic with period !, finite and defined for
every value of the real variable z.

In this paper we shall denote by w(h), w,(k) functions defined and
differing from zero for h>>0, monotonie, non-decreasing and tending to
zero for h—0%). ‘

By H, we shall understand the space of all functions f(x) satisfying
Holder’'s generalized condition, ¢. e. the inequality

&) [+ h) — (@) < o(h)

for every x and h. We shall always suppose here that

h
fim —— <oo
hrto @(R) -
The distance ¢ between two elements of this space we define by

(2) A(f112) ma,x ]f1 —fa@) I

Space H, is a complete space. )
Let R denote a set of functions f(z) belonging to space H, and sa-
tisfying for every x the condition

. ) —f@)|
3 fim w+—-———=
) PPN (%)
Under the assumption
lim —L =0
fato ©(R)

we shall show that set R is either empty or residual in space H,, in
1) We note that the theorems in this paper also be true if we suppose that w(h) -
= const> 0. (Concerning functions f(z), we shall also in this case always suppose that
they are continuous and periodie.)
%) Qtherwise only constant functions would belong to space He.
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other words, that its complementary set in this space is a set of the first

category. 3)

The theorem remains valid also in the case where H,, is substituted
by space C of all functions f(») continuous and periodic with period 19).

Lemma 1. Let g(u) be a continuous function, periodic with period 1
bul non-constant, defined for every wu.

For a function p(u) thus defined we can always determine two nivin-
bers r, s satisfying the inequality 0 <r<s<l with the following property:

For every value of u there exists a nwmber hy,, satisfying the inequality
r<|h) <s, such that

(e + hu)

where I is the oscillation of @(u) u<l3).

LEMMA 2. Given o function flz) belonging to space H,, we can find
a sequence {f,(x)} of functions also belonging to space H.,, satisfying Lip-
schitz’s condition and tending wniformly to f(z).

Proof. For the proof it iz sufficient to take

—g(w)] >D/2,

in the interval 0 <

x+1jn
(4) fu@)=n [ flu)au.

*
Functions f,(r) are periodic with the same period as f(x) and their se-
quence tends uniformly to f(z). Since, in addition, we have the inequalities

lfal)| =nlf(z+1/n) — flz) <A,
where 4 is constant for a fixed n, and

ifn

e D) —fu@) < [ [+ Bu)— o4 w)| du < ol (h]),
0

therefore the functions f,(x) satisfy Lipschitz’s condition and also be-
long to H,.

‘We shall consider the functional space H,, previously defined, which,
as can easily be shown, is a complete space, and the set R of functions
f(z) belonging to space H, and satisfying condition (3); as regards w,(h)
we shall temporarily suppose that
- . =— h
® o 1) <

-3) The set R is empty if w,(k) does not satisfy condition (6). This results from
a theorem of W. Orliez [3].

4) This is Theorem 1 of H. Aeurbach and 8. Banach [1].
?) The proof of the Lemma can be found in my paper [4].
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TreorEM 1. If, under assumption (5), w,(h) satisfies the condition

(6) im 28 )0,
i P
where

AW =22, Sy
then R is a set residual in space H,..

Proof. Let us denote by Z, a set of funetions f(x) of space H, sa-
tisfying the inequality
{7 [+ h)~f(z

for a certain x with every b (n natural). The complementary set R, of
set Z, in space H, is a set of functions f(z) belonging to H, and sabis-
fying the inequality

)f < nwl(lh”

[+ ) —f(z)] > o |h])

for every a with a certain value of #.
In view of the fact that w,(h) is non-decreasing and f(a') is bounded,

.we have

B= ][] E..
n=1

‘In order to prove the theorem it is therefore sufficient to prove
that each of the sets Z, is non-dense in space H,.

Let us suppose, for the proof, that Z,, is not non-dense in space H,.
Since each of the sets Z, is obviously closed in space H,, therefore there
would exist in space H, a sphere K, (f;) of centre f,(x) and radius g,
belonging entirely to Z,,.

On the basis of Lemma 2, there exists in space H, a sequence of
functions {f.(x)} tending uniformly to fy(2), whose terms satisfy Lipschitz’s
condition. We can therefore find in space H, a sphere K, o (%), of centre
y:() and radius g, such that K, (y,)CK, (fo)CZn,, with' yy(®) = Ofn{),
where 0 <f<1, and fy(x) is a sufﬁclently d1stant term on the sequence
{fs(2)}. Function y,(z) therefore satisfies Lipschitz’s econdition and belongs
to H,.

From (5) it follows that, with a certain h, and a certain constant A,
the inequality h/w,(h) <A will be true for 0<<h<h,. Hence, for every x
and every h satisfying 0<|h|<h, we shall have

(8) [ya(@+ 1) — ()] ex([R]) < C,

where C=Fk, 4 and %, is Lipschitz’s constant of the funection y,(x).
14%
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Let @(w) be a non-constant function, periodic with period 1, satis-
fying Lipschitz’s condition with Lipschitz’s constant %. By D we shall
denote the oscillation of function g(x) in the interval 0 <z<l.

Let number « be so large as to satisfy the inequality

9 aD[2>C+n,

and h, so small.as to satisfy simultaneously, besides (8), the inequalities

(10) ho <12,

(1) kzaii(::i A(ho)<%(1—6),

(12) amy(ho) + MaX |p(2)| < o1,
o<x<l

which, in view of (6), is possible.

Moreover, let us write
(13) b=[l/ho] +1
and

Yal) = ac (1) @(bv).

We shall prove that

] FH@)= (@) + )
belongs t0 Zy,.

In view of (13) and (10) we shall have I/b <hy<2l/b, and hence
inequality (11) hecomes

—1
klauﬁl(;é—l)A(lb'l)<l~ 8.

From the latter we obtain the inequality

1—6

@R —ye@) _ (1N |p(bo+bh)—ba)l b
(14) (A —awl( ) i il

b
valid for 0<bh <1 and for every x. Inequality (14) remains valid for
the case bh >, in view of the periodicy of ¢(x) and monotony of w(h).
It is also valid for h<0, which we verify substituting in it o—7 for a.
From (14), in view of y,(x)=0fy(x) and fy(z) ¢ H,, it follows that
f*(x) e H,. Taking into account (12) we have further

(f*, ;) = max ;.’/2(1')1 <@
osx <l

from which it follows that f*(z)eZ,,.
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Thus, from the supposition that set Z, is non-dense in the space H,,
it would follow that f*(#)e Z,,. We shall show that it is not possible.

Tet us apply to g(z) Lemma 1, in which we put u=bx and hu=bh,.
Tn view of (9), for every » we can choose such an b, satisfying

0 < 7/b<|hs) <s/b<I/b,
that we shall have

ol -+ ) — yol@)] | o1 h]) = D2 > C 41,

Taking into aceount (8), we should obtain for every z and a certain hy

@+ ) — 15 (@)] _ lya(@+ R — (@) |92+ ) — ()]
y([e]) @ ([hs) @y([h])

which would be contradictory to the fact that f*(®) ¢ Z,,.
It follows hence that each of the sets Z, is non-dense in H, and
therefore set R is a set residual in H,. Thus Theorem 1 is proved.
Before examining the case where (5) is not satisfied, we shall state,
for the space H, praviously defined, the following

>,

TamoREM 2. Let {h;} denole a sequence of positive numbers tending
to zero for i—oo. Then set R* of functions f(z) belonging to the space H,
and satisfying for every m the condition
(15) im l(wt@;f.@ =00

00 | hi

is empty in the case of im A(h)>0, and residual in space H,, in the case of
h—>+0
lim A(hy=0.
h—>+0
Proof. Let us take lim A(h)>0. In this case space H, is & seb of
h—>+0
functions, all of which satisfy Lipschitz’s condition ), and therefore do
not satisfy (15). In this case set R* is empty.
Suppose that lim A(h)=0. With this supposition the first part of
k

the proof rans anai;rgoically to the first part of the proof of Theorem 1
with the following adaptation of the notation and formulas used in it:
We must take w,(h)="h. In this way conditions (5) and (6) are sa-
tisfied. Symbols Z,, R,, B must be replaced respectively by Z¥ Ry, R~
Set Z* we define as a set of functions f(z) of space H, satisfying the
inequality
[+ ha)—f(@)| < mhs

5) Compare the Remark to Theorem 6 in my paper [4].
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for a certain  with every value of ¢ (¢=1,2,...). Set R¥ we define as
a set of functions f(z) of space H, satisfying the inequality

[+ hi) = f(@) | > nhy

for every x with a certain value of ¢ (1=1,2,...).
Function ¢(x) we define by the formmula

plw) =12 — | —1/2]

fm_' 0<9‘c§l, taking g(x+-I)=g¢(») for the remaining x. On the basig of
this definition we have k=1 and D=1/27).

Sinee the conditions of Theorem 1 are all satisfied with the notation
thus changed, therefore, supposing that set Z% is not a non-dense set
we should prove that f*(x) belongs to Z%.

In order to prove that this is not possible, (whence follows the proof

of Theorfem 2), we do not apply Lemma 1. Taking into account (8) and (9)
we obtain for every =z

@] > [y (@) — [yie (@) > al— O >,

in contradietion to the fact that f*(x) belongs to Z; .

.In this manner Theorem 2 has been completely proved.‘ Since it is
obvmus.ly va,lu-i for the sequence {k;} of negative terms tending to zero
hence, in particular the following theorem is valid: ’

THEOREM 2%, The set of functions having the properties:
1° belong io the space H,,
20 for every x at.least one of the ri j ioats
ght-side derivatives of f(x) (or at
least one of the left-side derivatives) is nfinite, e o«
18 n space H, residual if hlilg A(hYy=0 or empty if lim A(R) >0 8).
> h—~+0

‘We shall now prove that Theorem 1 is valid@lso in the case of a

position contrary to (5). Suppose that sup—

— 3T =00.

fsro ©1(h)

Thus there exists a

ench that sequence {h;} of positive terms and tending to zero,
b
L S
o0 01(h;)

7) Instead of (9) we can take 2aD> O-F-n, in this case.

%) Replacing in Theorem 2* .
nach’s paper [2]. space Hou by space O we obtain Theorem 1 of 3. Ba-
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Let us suppose that f(z) belonging to H,, does not satisty, for & certain z,
condition (3). In this case that function does not satisfy for this @ si-
multaneously condition

s (f@ ) — fl#)] _ = fle ) —f@)] M

i et Tn) = f@)] _ 3 | : -
i—prg (’)1(}!'1) i—:-ol;l i wl(hi)

le ]

and condition

im fla-+ ) — fl2)] _
=00 i
A seb of functions of space H, which do not satisfy for a certain »
the latter condition is on the basis of Theorem 2, with the supposition
lim A(h)=0, a set of the first category in this space. Therefore the same
h->+0 ’
applies to the set of functions f(z) of space H, not satisfying condition (3)
for a certain x. Thus in the place of Theorem 1 we obtain the following
TeEOREM 1*. Under the assumption

h

—— =0
rro ©(R) ’

if wy(h) satisfies (), then set R is a set residual in space Ho,.

Tt is not difficult to verify that the proof of Theorems 1 and 2 and
consequently 1* and 2% can be carried out analogically in the case of
space H, being replaced by space C of all funections f(#) continuous and
periodic with period I In the last case the proofs are simplified. For-
mulas (6), (11), (14) are unnecessary, since it is obvious thab *(x) e C.
Supposition (5) becomes superfluous and Theorem 1 takes in this case
the following form:

THEOREM 3. The set of functions f(z) which satisfy (3) for every u
is in space ' of all junetions continuous and periodic with period. | a re-
sidual set.

Remark. To prove the superfluity of (5) for space H, there is no
need to refer to Theorem 2. We define, for this purpose, the function
wi(h) as follows: :

Let of(h) assume for every h one, but not the smaller, of two va-
Tues h and o,(h). We note that wi(h) satisties (5), (6) with the supposition

h

Im —~ =0
>ta ©O(R)

and that Theoremy 1 is valid for it. For every x we have

— [+ ) )] _ g M@+ 1) —]()]

Tim 222 DL o

B+ o¥(1h] F0 w,(|h])
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Thus the set of functions f(x) satisfying condition (3) for every wx is a re-
sidual set in space H, not only for wi(h), but also for w,(h).
The same applies to space C.
We note also that the supposition
h
im —— =0
at0 0(R)
is evidently satisfied in view of (6) in the case of Theorem 1, <. e. in the
case of accepting supposition (5). In the case of the contrary supposition,
i e. lim A(k)>0, space H, is a set of funections, all of which satisfy
A0

Lipschitz’s condition ).
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A generalization of maximal ideals method of Stone and

Gelfand
by
W. Stowikowski and W. Zawadowski (Warszawa)

It is well known that the ring C(T) of all real-valued continunous
functions defined on a bicompact Hausdorff space T characterizes topo-
logically the space T'. More exactly, two bicompact Hausdorff spaces 77
and T’ are homeomorphic if and only if the rings ¢(T) and O(T") are
algebraically isomorphie. This theorem is usually referred to as Stone’s
theorem (see [4] and also [2]).

The analysis of the proof of Stone’s theorem shows that instead
of considering the whole ring O(T) it suffices to consider some weaker
classes of functions, e. g. the class O+(T) of all non-negative continuous
functions on 7. The class ¢+(T) can be considered as an abstract algebra
with the usual operations of addition and multiplication. Two algebras
C+(T) and C+(T") are algebraically isomorphic, if and only if the bi-
compact Hausdorff spaces 7 and 7" are homeomorphic.

On the other hand, it is known that the bicompact Hausdorff
spaces T are also topologically characterized by the lattices off all open
subsets of T'1).

The usual methods of proofs are similar in both characterizations:
by real functions or by open subsets. This method may be called the
method of maximal ideals. In hoth cases we consider certain abstract
algebras with two operations, addition and multiplication, and we define
the notion of maximal ideals. This notion is the algebraic analogue of
the notion of a point in a space.

The purpose of this paper *) is to develof) the common idea of both
characterizations of bicompact spaces. We introduce a general notion
of a semi-ring with two operations, addition and multiplication, cha-
racterized by a set of simple axioms. Algebras C+(T) and some lattices
(in particular, Boolean algebras and lattices of open subsets which ap-

*) Presented to the Mathematical Institute of the Polish Academy of Sciences
Group of Topology, in October 1952.
1) This is valid for more general spaces. See [5] and [6].
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