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Thus the set of functions f(x) satisfying condition (3) for every wx is a re-
sidual set in space H, not only for wi(h), but also for w,(h).
The same applies to space C.
We note also that the supposition
h
im —— =0
at0 0(R)
is evidently satisfied in view of (6) in the case of Theorem 1, <. e. in the
case of accepting supposition (5). In the case of the contrary supposition,
i e. lim A(k)>0, space H, is a set of funections, all of which satisfy
A0

Lipschitz’s condition ).
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A generalization of maximal ideals method of Stone and

Gelfand
by
W. Stowikowski and W. Zawadowski (Warszawa)

It is well known that the ring C(T) of all real-valued continunous
functions defined on a bicompact Hausdorff space T characterizes topo-
logically the space T'. More exactly, two bicompact Hausdorff spaces 77
and T’ are homeomorphic if and only if the rings ¢(T) and O(T") are
algebraically isomorphie. This theorem is usually referred to as Stone’s
theorem (see [4] and also [2]).

The analysis of the proof of Stone’s theorem shows that instead
of considering the whole ring O(T) it suffices to consider some weaker
classes of functions, e. g. the class O+(T) of all non-negative continuous
functions on 7. The class ¢+(T) can be considered as an abstract algebra
with the usual operations of addition and multiplication. Two algebras
C+(T) and C+(T") are algebraically isomorphic, if and only if the bi-
compact Hausdorff spaces 7 and 7" are homeomorphic.

On the other hand, it is known that the bicompact Hausdorff
spaces T are also topologically characterized by the lattices off all open
subsets of T'1).

The usual methods of proofs are similar in both characterizations:
by real functions or by open subsets. This method may be called the
method of maximal ideals. In hoth cases we consider certain abstract
algebras with two operations, addition and multiplication, and we define
the notion of maximal ideals. This notion is the algebraic analogue of
the notion of a point in a space.

The purpose of this paper *) is to develof) the common idea of both
characterizations of bicompact spaces. We introduce a general notion
of a semi-ring with two operations, addition and multiplication, cha-
racterized by a set of simple axioms. Algebras C+(T) and some lattices
(in particular, Boolean algebras and lattices of open subsets which ap-

*) Presented to the Mathematical Institute of the Polish Academy of Sciences
Group of Topology, in October 1952.
1) This is valid for more general spaces. See [5] and [6].
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pear in the characterization theorems) are semi-rings. Then. we develop
the theory of maximal ideals in an important clags of seml-r%ngis called
in this paper positive semi-rings. Specifying the ku.ld Qf semi-rings, we
obtain the above mentioned theorems on characterization of bicompact
Hausdorff spaces by means of functions or of open sultbse.ts. We obt.a,m
also two representation theorems for certain kinds of distributive lattices
and Stone’s representation theorem for Boolean algebras. .

The developed theory enables us also to translate eagﬂy all topo-
logical notions and theorems ahout hicompact 7)-spaces into the lan-
gnage of semi-rings. . .

- aJgWe wish to thank Prof. K. Kuratowski and Prof. R. Sikorski for
their kind help and many corrections.

§ 1. Semi-rings

Definition 1. A semi-ring is a set % of elements which is closed
wuder two binary operations, addition -+ and multiplication -, with
the following properties:

(a) both the addition and the multiplication are associative and
commutative;

(b) the addition is distributive under the multiplication: a{x+y)
= ax-+by for a, s,y eW;

() there exist two distinet elements 0 and 1 in %A such that for
every £e we have

L4+-0=uz, le=ur2).

Examples. 1. The ring of all real valued functions on an a.bstrac.t
set T with the usual operations of addition and multiplication 1s a semi-
-ring. The same is true of every commuta,tive ring with identity.

9. Every distributive lattice containing maximal and minimal elfa-
ments is a semi-ring. In particular the class of all open sets in @ c‘ert:a.m
topological space T with +- as union and - as intersection is a semi-ring.
Dually the eclass of all closed sets with + as intersection and
is a semi-ring.

3. The set C+(T), of all real-valued non-negative continuous fune-
tions on & topological space T with the usual operations is a gemi-ring.

4. The set of all real-valued, non-negative functions on an abstract
set T with + and - defined as usual is 2 semi-ring.

5. Let T be a topological space. We denote by R the least set of
real non-negative functions () on T -with the following properties:

2) Evidently 0 and 1 are the only elements with these properties.

- as union
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() N containg all characteristic functions of open sets in 7.
(B) weR, yeR implies z-+y R and xy e R.

(v) we R, @(t)7#0 for all te T and y(t)=1/x(z) implies that y ¢ R.
The set R with the usual operations is a semi-ring.

Let A be a semi-ring. We say that the element ¢ % has an inverse
if there exists an element z-* ¢ U, called an inverse of x, such that zz—1=1.
We denote by (), or simply by £, the set of all elements which have

inverses. The set £ is not empty, as it contains the element 1. Evidently,
if xeQ and yef, then ayeQ.

In the semi-ring of all open subsets of a topological space 7' the
seb 2 consists of only one element, namely the whole space 7. In exam-
ples 3 and 4 the set Q consists of functions z(z) for which x(f)5£0 for
all tel.

Definition 2. A semi-ring U is positive, if for every element i ¢ %A,
we have 1+4+xe¢(? i. e. 142 has an inverse 3).

In examples 2, 3 and 4 all semi-rings are positive.

Definition 3. A non-empty subset I of a semi-ring A is an ideal if

(@) ael and bel implies a+bel;

(b) aeI and x e implies axel;

(e) I#9U.

It is easy to see that condition (¢) may be replaced by

() 1¢1,
and that an element which has inverse cannot belong to any ideal.

TEEOREM 1. Let U be a semi-ring. A set E=F (v ¢ ) is an ideal,
if and only if an element a has no inverse. -

Proof. If a has no inverse, the equation ar=1 is not satisfied by
any a. Therefore 1 ¢ ¥, and, being different from the whole 9, and satis-
fying conditions (a) and (b), F is an ideal.

On the other hand if ¢ has an inverse, then ae—! =1. This implies
that 1 ¢ F in contradiction to (¢’).

Definition 4. An ideal is maximal, if it is not a proper subset of
any other ideal.

The class of all maximal ideals is denoted by M. Maximal ideals
are denoted by M or N.

THEOREM 2. Ewvery ideal is a subset of at least one maximal ideal.

3) This is an abstract form of the axiom formulated by I. Gelfand in [1] for normed
rings (Banach algebras) namely: “element »*-}-1 has an inverse”.
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Proof. For a given semi-ring % and an ideal ICA let X be the class
of all ideals contained in 9 and containing I. The class X is partially
ordered by inclusion. If Xyis a simply ordered subset of 2, the union
of all ideais contained in X, belongs to 2. Consequently, by Zorn’s lemma
there exists a maximal element M in X. An ideal M is not properly con-
tained in any ideal, and therefore M is maximal.

COROLLARY 1. An element @ <% has an inverse if and only if xe M
for all M e IM. -

Levma. If an ideal A is maximal, then for »¢ M the set

E=F (y=m+zz, meM, _ze‘lI) .
B ¥

is identical with the whole A, and therefore for some g e M and z4€ U we
have my-+zZpx=1.

Proof. In the oppositive case the set B would be an ideal contai-
ning M properly. This is impossible, for M is maximal.

TrmorEM 3. If M is o mazimal ideal, then for all ©,y eN

xye M is equivalent 10 zeM or yelM.

Proof. Implication to the left is evident. Let us suppose that im-
plication to the right is not true, 4. e. that there are an ideal M and two
elements » and 4y with @y ¢ M, x¢ M, and y ¢ M. By the lemma there
are elements m, € M and 2z, e A such that L=m,-+2,2. We have y=moy+
+ 2,7y, and as the left side is a sum of two elements of M, it follows
that y « M. This contradicts our supposition.

THEOREM 4. 4 semi-ring U is positive if and only if for all M M
and 2,y U
(1) e+yell

Proof. a) Suppose that A is positive and that there are elements
z,y <A and a maximal ideal M, with

o+yeM and

implies zweM and ye M.

xeé M.

By the lemma there are elements m,e M and 2,e A such that
1=1my~+ 2. The supposition that I is positive implies that 142,y has an
inverse. This is impossible for 1+ 2gy = 1y 2o+ 2oy == Mo+ 2o(2-+y) € M.

Therefore if 9 is positive condition (1) is satisfied.

b) Now let the semi-ring 9 satisfy condition (1). It may be for-
mulated in an equivalent form:

céM or yéM implies

(+y) ¢ M.

Assuming that y=1 we have 14 ¢ M for all M « I and all x e 9.

By corollary 1 U is positive.
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COROLLARY 2. If U is a positive semi-ring, then for M ¢ M and x,y ¢ A

xt+yeM is equivalent to e M and ye M.

COROLLARY 3. In a positive semi-ring A element zero belongs to all
the maximal ideals.

For a given maximal ideal M there exists at least one element z e J/.
Then 4+0 e M, 0+ 0)=0x+0 ¢ M and by corollary 2 0 e M.

COROLLARY 4. In a positive semi-ring U, for all x,y e W the condition
xeQ implies x+yeL.

Definition 5. The intersection of all maximal ideals of a pogitive
semi-ring A we call its radical. We denote it by Rad .

Definition 6. A semi-ring ¥ is said to be without radical if Rad A={0}.

Examples. 1. The semi-ring of all real-valued non-negative funec-
tions on an abstract set T is without radical.

2, The semi-ring of all open sets of a topological T)-space under
usual operations is without radieal.

3. In the positive semi-ring of all open sets of a T -space the ra-
dical may be different from 0. An example is the set of all real numbers
with U,=F (a <) as open sets.

THEOREM 5. Let U be a positive semi-ring. A necessary and sufficient
condition for Rad A={0} is that

(2)  for every x=0 there ewist an y ¢ Q such that x+ye L.

Proof. a) Let U satisfy (2) and suppose that there is an element
2+#0; @ e Rad . By (2) there is an element y ¢ 2 such that #4yeQ.
By theorems 1 and 2 y belongs to a certain maximal ideal M. At the
same time x ¢ M, because otherwise x4y e M, and this is impossible.

b) Suppose now that the radical contains only element 0. If ¢ Q,
then the element y—=0 has the desired properties: y ¢ 2 and x4y Q.
If 2 ¢ 2 and 50, then there is a maximal ideal M with x ¢ M. By the
lemma there are mi, e M and z, e A such that 1=my+ 2w If 2+ m,e 2,
there would exist a maximal ideal N with z+m,eN. By theorem 3
we should have ze N and mye N, which together with 2,2 ¢ N would
give 2o+, € N. Tt follows that -+ m, € 2 and that element m, satisfies
eondition (2).

CoroLLARY 5. In a positive semi-ring % without radical 0x=0 for
all zeA. '

Indeed, from definition 5 and corollary 3 element Oz belongs o the
radieal. ‘
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Definition 7. In a positive semi-ring WA a set of elements
{0y 20y o2 }CU is 2 dual finite covering if @12,...2r « Rad U

A set of elements {&;,&y,...,2}CU is a finite covering if ¥+a+ ...+
& € Q.

Examples. 1. In the case of the semi-ring A of all open sets of
a topological space T, a finite class of sets {Ey,..., Bx}CU is & dual finite
covering if )

TC(T— B+ (T~ By)+ o+ (T — Ey).

The class {E,,..., B} is a finite covering if

TCE,+Ey+ ...+ Ex.

2, In the case of a semi-ring of all real-valued, non-negative func-
tions on a set T, the set of functions {@,,%,,...,4} is a dnal finite cover-
ing if

- TCF+ Fyt ...+ Py,
with Fy=F (te T, @ (t)=0).
1
The set of functions {x;,,,...,zx} is a finite covering if
TCE,+Ey+ ...+ Eg,
where Bi=F (t< T, ;(t) >-0).
t

THEOREM 6. In a positive semi-ring U a set of elements {&y, @z, ... Ti} 18
(a) @ dual finite covering if and only if for every maximal ideal M al
least one of the elements &y ,%,,...,%; belongs to M;
(b) a finite covering if and only if there is no maximal ideal M such
that #; € M for i=1,2,...,k.
Proof. (a) By corollary 3 the condition
Ly @y... 2 € Rad A

ensures that for every M ¢ MM we have x,a,...2; ¢ M, which by theorem 3
is equivalent to the fact that for every M af least one of the elements
o; {(¢=1,2,...,k) belongs to M.

(b) By corollary 2 the condition

2ot 2 e Q2
is equivalent to the fact that for every M eI z,+@p+ ...+ ox ¢ M.
By corollary 2 there exists 4y, 1<%, <k, with =, ¢ M.
Definition 8. A set of elements {z;}C, A belonging to a certain
set of indices 4, is a covering in a positive semi-ring U if for every ma-
ximal ideal M e M there exists 4, 4 with z; ¢ M.
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By theorem 6 for finite sets A this definifion agrees with defini-
tion 7 of finite covering.
THEOREM 7. In a positive semi-ring every covering contains a finite
covering.
Proof. Let {2;}, A¢ 4, be a eovering in U. The set of elements of
the form
R=Y Byt Yok, + o T YTy,

with '@y, € {#;}, y; €W, 1=1,2,...,k, is identical with the whole 2. Other-
wise, as an ideal, it would be contained in a certain maximal ideal M,.
This is impossible because the ideal M, would contain all z;, ie A, and
the set {w;} would not be a covering. Therefore there exist elements
U1y Gy @y € W and 2y ,8,,..., 2, € {£;} such that

W5+ Aol + oo - Oty =1,
By theorem 3 and corollary 3
By Byt et 2y € 2,
and thus {w; ,r,,...,2;} is a finite covering.

THEOREM 8. In a positive semi-ring U the following three conditions
are equivalent:

(a) for every two maximal ideals M and N there exists a dual finite
covering {r,y} with & ¢ M and y ¢ N;

(b) for every maximal ideal M and every element x ¢ M, there ewists
a dual finite covering {a,b}, such that {x,a} is a covering and b ¢ M;

. (¢) for every covering {z,y} there exists a dual finite covering {u,v}
such that {x,u} and {y,v} are coverings.

If A is a lattice of all open sets for a certain topological space T,
this theorem has a simple topological interpretation. As we shall see
later, the maximal ideals in % may be taken, in this case, as elements
of the space T. The theorem states here that for bicompaect topological
spaces 1' the following conditions are equivalent:

(a) T' is a Hausdorff space.

(b) T is a reqular space.

(¢) T is a normal space.

Proof. We are going to prove three implications:

L. (a) implies (b). Let M, be a maximal ideal, and &y ¢ M. If x5 N
for all N e MM we put a=0, b=1 and (b) is true. If z, ¢ N for some ¥ ¢ M,
then Ns£1,. With every ideal N « M, such that xz, ¢ N we may associate
a dnal finite covering {x,y} in such a way that z¢ N and y ¢ M,. This
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is possible by (a). Let us take a set 4 containing , and all elements
which are taken from dual finite coverings corresponding to maximal
ideals N. The set 4 is a covering. Indeed, for every maximal ideal M,
either @, ¢ M or there exists a dual finite covering {z,y} corresponding
to M, such that @ ¢ 3. By theorem 7 A contains a finite covering, say 4,.
By theorem 3 and because of ay e Rad ACHM, and y ¢ M, we deduce
that e M, for all 2%z, in A. Therefore the covering 4, must contain
element x,, and can be expressed as

A= g, @y .0 L)
We put

a==i,+ 2o+ ...+ T, b=1Yy Y¥p--- Yk

where {2y}, i=1,2,..,% is a dual finite covering corresponding to
maximal ideal N;. By theorem 3 and condition (a) %:¥s...Yx ¢ M.
Since x;y;¢Rad U then abeRadA. The dual finite covering {a,b}
satisfies condition (b).

II. (b) implies (¢). Let us take the covering {z,y}. If x or # has an
inverse, condition (e) is satisfied by the elements 0 and 1. Suppose now
that @ and y have no inverses. Let N be a maximal ideal containing y;
2+ y ¢ Q implies that » ¢ N. Making use of condition (b) we associate
with every ideal N containing y a dual finite covering {a,b} in such a way
that s+ae2 and b ¢ N. A set A which consists of y and all elements b
from dual finite coverings corresponding to maximal ideals ¥ is a cov-
ering. By theorem 7 A contains a finite covering A,.

As z has no inverse, there exists a maximal ideal M containing it.
Since # +a € 2, none of the elements a may belong to M. On the other
hand ab e Rad ACH, and by theorem 3 every element b must belohg
to M. This implies that the covering 4, must contain the element y,
and can be expressed as

Ag=1{y,b1,bs; ..., b}
We put
r=b;+ byt ...+ b,

U= 0ty Oy... O,

where {a;,b;}, i=1,2,...,k, is a dual finite covering corresponding to X¥;.
We must show that z+u Q. If it were not so, there would exist
2 maximal ideal M’ containing z-+u. By corollary 2 x e M', uw e M’ and
by theorem 3 for some i, a; ¢ M', and this implies that z+e;, ¢ M Y, in
spite of ¢+ ay, e, )
III. (c) implies (a). Let us take two maximal ideals M s N. The set

EG=z+y, zel,yeN)
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is a whole . Therefore there exist elements x,e¢ M and y,e N with

#,+Y,=1. By condition (c) there exist # and » such that
Yo+ vel and uv e Rad A.

Lo+ U €82,

Since x, ¢ M and y,e N, we have u ¢ M and v ¢ N. Therefore the
dual finite covering {u,v} satisfies condition (a).

Definition 9. A posifive semi-ring which satisfies condition (c)
of theorem 8 we call a normal semi-ring.

. Definition 10. (a). A dual finite covering K is conjugate to a cov-
ering 4 if for every element x in K there exists an element y in A such
that z+y Q.

. (b) The order of a dual finite covering K is the largest integer » for
which there exists a subset {#,&,...,2}CK which is not a covering.

_ (¢) The order of a covering A is the largest integer n for which there
exists a subset {a;,a,...,a,}C4, which is not a dual finite covering.

Definition 11. The algebraic dimension of a positive semi-ring A
is the least number » for which to every covering there corresponds
a conjugate dual finite covering with the order <n4-1. We denote it
by dimW=mn.

Let % be a semi-ring. We define a certain relation of equivalence
in Y. We write

r=y,
if and only if for every maximal ideal M e 9

zeM is equivalent to yeM.

It is easy to see that relation == is reflexive, symmetric and transi-
tive. The abstraction classes are denoted by [zl,[y], z,y e, and the
set of these classes by [U]. If we define, in a natural way, operations
-+ and - in [] as

[#]+[yl=[s+y), [a1ly]=[=y],

then [¥] is a semi-ring. Addition and multiplication in [9] are idem-
potent, i. e.
[2]+[#]=[z] and
If U is positive, then so is [AL.
Example. Let % be the semi-ring of real-valued, non-negative,
continuous functions z(t) on a certain bicompact Hausdorff space T.

It is easy to verify that in this case all maximal ideals M in U have the
form

[@][e]=[a].

M=F (ze¥, 2(t,)=0), toe 7.

Fundamenta Mathematicae. T. XLIL 15
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In this case [%] may be identified with a lattice of all open sets in T'
by @ one-to-one correspondence
[ﬂ»E@eﬂwm>ﬂ‘
t

By corollary 2 and definition 5 we see that
[1]1=2, [0]=Rad«A (for positive A).

Remark. If 9 is positive, then every maximal ideal in [U] may
be expressed as [M] where M e M is uniquely determined, so that we
can identify the set M([A]) with the set IM(A) of maximal ideals in A.

TrEoREM 9. If U is a positive semi-ring, then [U] is without radical.

Proof. This is a trivial conclusion from definition 6.

THEOREM 10. In a positive semi-ring W x=1y is equivalent to xy=.c+y.

Proof. By theorem 3 and corollary 4 ze M, y ¢ M is equivalent
to z+yé M, zyeM for all M <IN

THEOREM 11. =y is in a positive semi-ring A equivalent to:

[z+2+y]=[1] implies [z+ayl=[1] for every =zeA.

Proof. (a) Let M « M, x ¢ M and y ¢ M. This implies that #+y e M.
and by the lemma there exist elements a e and me .M, such that
a(z-+y)+m=1. This equality implies that £+ y-m e 2, which together
with oy e M and m e M gives m-xy ¢ M and consequently -y é Q.

This completes the proof of the necessity of the condition.

(b) Now let m ¥ be such that m+z-+y e and m+ay ¢ 0.

Then there exists a maximal ideal M such that m-xy ¢ M. Con-
sequently m ¢ M and zy ¢ M, or in other words, w ¢ M or y e M. On the
other hand m-+ -ty « 2 and therefore x and y cannot at the same time
belong to M. Thus =~y and this proves the sufficiency of the condition.

Definition 12, A semi-ring is reduced if it is positive and if z=y
is equivalent to z=y. :
COROLLARY 6. A positive semi-ring W is reduced, if and only if, for
every two elements o,y « W the relation x=y is equivalent to:
z+ar+y=1 implies z+ay=1 for all zeW.
The above considerations may be formulated in the following
THEOREM 12. Bvery reduced semi-ring U is a distributive lattice,
with 0 and 1, such that for every »,y e w=y if and only if
zrat+y=1 wmplies ztaxy=1 for every zeW.

Every distributive lattice with 0 and 1 which satisfies this condition
1% a reduced semi-ring.
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§ 2. Topology in the space M of maximal ideals

Let % be a positive semi-ring. We introduce topology in the set It
of maximal ideals of ¥ in the following way. As a basis of open sets in I
we take all the sets of the form

I'e=F (z¢ M).
Mem

Dually the sets
A= E (e M)
Mem

form a basis of closed sets in the same topology.

It is easy to see that M is a topological T, -space and satisfies four
axioms of Kuratowski. By theorem 7, Ut is bicompact.

We have seen that it is possible to identify the set M of all ma-
ximal ideals in % and such a set for [A] by a one-to-one correspondence

Ms[M].

It is a direct consequence of the definition of neighbourhoods that [9]
yields in 9 the same topology as 2.

The I-sets have the following properties:

(8) Ip=I.I),

(b) Fx+y= x+I:v,

() In=M if and only if xcL,

(d) Ii=0 if and only if zeRad.

The first three properties can be derived from theorem 3, the last
from theorem 3.

Dually, for A-sets, we have

(a") dy=4.44,,

(b)) dery=4:4;,

(¢) dx=0 if and only if xeQ,

(d') 4.=M if and only if »ecRadl

THEOREM 13. In the sense of topology defined, as above, in 0, for
every maximal ideal M and each of the sets ECI we have

MecE  if and only if []NCHM.
NeE

Pruof: M ¢ E is equivalent to: M eI, implies I'.E=0. The latter
statement is equivalent to: for every @ ¢ M there exists a maximal ideal
N ¢ B such that x¢ N. This is further equivalent to:

ze[]X  implies e M.

NeE
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THEOREM 14%). A reduced semi-ring U is isomorphic with a semi-ring
of sets which form an open basis for a bicompact topological T-space, namely
the space M of its mawimal ideals.

Proof. To every element @ U corresponds a set IRCIN. The cor-
respondence is one-to-one because U is reduced. Moreover, it preserves
algebraical operations.

COROLLARY 7. Bvery positive semi-ring may be homomorphically map-
ped on a semi-ring of sets, which form an open basis for some bicompact
T,-space.

By a homomorphism we mean here a mapping preserving algebraical
operations. In fact the mapping

I, )
is something more than a homomorphism (see § 3). It is such that the
element mapped on the whole space has an inverse.

'We are now able to give a topological interpretation in the space It
of some notions introduced in § 1. We have the following correspondences:

(3) By Lyt T € 2
if and only if
MC Ty FTogt Ly

i, 6. {@y,%a,.. 2z} 18 @ covering in W, if and only if o Iryy.. Iy, is
an open covering of M.
(4) Lys... % € Rad A
if and only if
MCA;, + A+ .o+ 4,
il @y, @gyer, ) 48 @ dual findte covering in U if and only if
Ayyy Ayyeey 4y, 18 @ closed covering of M.
(3) The order of a covering {&y,&s,...,%x} 18 1 if and only if the order of
the open covering
J AR Y o
08 M. -
(6) The order of a dual finite covering {#y,&s,...,ax} is n if and only if
the order of the closed covering
i Y I Y
8 M. .
By passing from A to M the relation » ¢ M passes into M ¢ I', and the
relation x ¢ M passes into M e I,

4) By theorem 12 this theorem states that every distributive lattice with 0 and
1 such that for x,y ¢ x#y implies that there exists zeA such that ayz=0 and
(@-}y)z="0 is isomorphic with the basis of closed sets for a certain bicompact T)-space;
it was obtained by H. Wallman in [6].
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In terms of A-sets xe M passes into M e A., x¢ M passes into M ¢ 4,.

‘With this in mind we see that theorems 3 and 4 as well as corollary 4
characterize trivial properties of union and intersection of sets in ferms
of positive semi-rings.

THROREM 15. The space M is normal if and only if the semi-ring U
is normal.

Proof. (a) Let M be anormal space. For every two distinet points
Me M, N e M, M+ N there exist disjoint neighbourhoods I'; and I, such that
M eI, and N e I',. In terms of semi-rings it means that there are elements
#,y €W suchthat 2y=0 and 2 ¢ M, y ¢ N. By theorem 8 % is thus normal.

(b) If U is normal, then, translating for example condition (a) of
‘theorem 8 into the language of I'sets in M, we see that NVt is a Hansdortt
space. Being bicompact and a Hausdorff space, I is & normal space.

THEEOREM 16. The space M has the (Lebesgue) dimension n if and
only if the corresponding positive semi-ring has the algebraic dimension n.

Proof. It is a direet consequence of definitions 7 and 11.

Ag an example we deduce the following representation theorem of
M. H. Stone:

Every Boolean algebra is isomorphic with a class of all open-closed
sets of a certain topological bicompact space which is totally disconnected.

Proof. Every Boolean algebra B is a reduced semi-ring. This follows
at once from theorem 12.

Since for given x and y with #+y=1 the condition (c) of theorem 8
is satisfied by the elements u =1—2 and » =1—u, it follows that B is
a normal semi-ring. Therefore by theorem 15 It is a Hausdorff space.

It may also be directly deduced from the fact that in this case a com-
plement of a I'-set is a [-set

M—Te=I7_«.

It suffices to demonstrate that every open-closed set may be expressed
as a Iset. This follows from the fact that in bicompact Hausdorff spaces
every open basis, closed under formation of finite unions, contains every
open-closed set.

Ag another example we prove the following

THEOREM 17. Every distributive lattice % with 0 and 1 such that for
every x,y ¢ A with z-+y=1 there exist u,v e A with uv =0, such that

zt+u=1 and y+ov=1,

is isomorphic with a basis of open sets for a certain bicompact Hausdorff space.

Proof. This is an immediate consequence of definition 8 and theorems
12, 14 and 15.
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§ 3. I'-homomorphisms

Given two semi-rings % and U’ we say that A’ is a I-homomorphic
image of A if and only if A’ is a homomorphic image of A in the usual
algebraical sense and if the inverse image of the set 2 is identical with Q.
In other words, the mapping F of % onto W’ is a I“homomorphism if and
only if

(a) F(o+y)=F(@)+Fy),

(b) Flay)=F(e)F(y),

() PHQ)CLQ.

If A’ is a [~homomorphic image of A, we write

a5 .
Conditions (a) and (b) imply that

FHQ)DQ,
so that from (c) we have
F@e)=..

The importance of I~homomorphisms is due to the fact that the pro-
perty of having an inverse is invariant under this type of mappings.
The structure of the sets of elements which have no inverses of two
I-homomorphic semi-rings is for topological purposes the same.

Examples. 1. For positive semi-rings the natural mapping F(x)=[z]
is a I~homomorphism of % onto [A]. In particular:

2. Every positive semi-ring % is /~homomorphic with a basis of
open sets I'y,x ¢ W in the space of its maximal ideals F(z)=1T.

3{. The semi-ring C+(T) of all real-valued, non-negative continuous
functions on a certain topological bicompact Hausdorff space T with
the usual operations of addition and multiplication is I“homomorphie
with the semi-ring y of all open sets in T if we put for x ¢ 0+(T)

F(m):tE (2(t)>0), teT.

4, T]'le semi-ring R (see example { to definition 1) generated by
chara(?temstic functions of open sets in 7' is J~homomorphic with the
semi-ring of open sets in T if we put, as before,

F(w)=g(a:(t) =0),  teT.

icm
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TaEoREM 18. Let 9 be a positive semi-ring, T o bicompact topological
T,-space, W a semi-ring of some open sets in T. If A is T-homomorphic
with W, then every maximal ideal M in U has the form

(7) M=F (t¢eF(@);

X€EH
here F is a T-homomorphism of % onto W', and t a certain point of T, cho-
sen for M.

Proof. If there is a maximal ideal ¥ not having the form (7), then
for every point te T there exists an element e M such that ¢ F(x).
It means that the class of open sets F(M) is a covering of T.

Since T is bicompact, there are elements z;,&s,...,a; in % such that

T=F(2,)+ Flags)+ ... + F (@) =F (2, + p+ o+ 2)-
T as identity of %’ has an inverse, and thus
Iyt Tyt oo+ T € 2,

in spite of x4 &+ ..t are M.

If to different points ¢zt correspond different sets (7), then we
have a one-to-one correspondence between the sets Mt and T. It is so
if 9’ is an open basis in T.

Tt is true that if every maximal ideal in % has the form (7), then
the topology which is determined in 7' by taking U’ as an open basis is
bicompact. We prove a somewhat more general

TamorEM 19. Let W and A be two positive semi-rings, M and W’
the corresponding spaces of maximal ideals. Then

asar implies m =2 o

i.e. a I“homomorphism of positive semi-rings implies a homeomorphism
of the corresponding spaces of mawimal ideals.

Proof. Let us assume that F is a I-homomorphism such that
FO)=9".

I M’ e M then F1 (M) is a maximal ideal in . We define the map-
ping f of P’ in W as follows:

f(M)y=F~(3).
We have to show that f maps I onto M, that it is one-to-one and

bicontinuons.
a) Let M=F""(M'), i e. M:E(F(w)ejf’). Suppose there is an
xX€N

M ¢ M which is not an inverse image of any M'e . Then, for every
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M'e ', there exists e M such that F(z) é M'. Therefore the set F(M)Cu’
is a covering. By theorem 7 there are elements P15 %3y +ey @ € M such that

Bla) +F (@) + ..+ Flwe) =F (2 + 2+ .. -2

Therefore &, + o, ...+ @ e 2 in spite of @+ Lot ...+ 2y € I
(b) Suppose that M’ N', M e M, N' ¢ M’ and F‘I(J[')zp‘l(g\'”)
=M. There are o', ', #'e M', y'¢ M', 2'¢ N', y'e N'. Since
&y M’ and @' +y'énN,
it follows that
FNa' +y) ¢ M,
in spite of
FYa)+F 7 () e M.

¢) From the identities

JACE m)=1(F (Pla) ¢ M')),

M

E (F@) e M)=77( Fwe )

M

we see that f maps the open basis of I’ onto the open basis of M and
therefore f is a homeomorphism.

CoroLLARY 8. Let T and T’ be bicompact topological T\-spaces, W and A’
positive semi-rings, F and F' two I-homomorphisms defined on % and W,
such that F(A) and F'(N') are open bases in T and T.

Under these assumptions

ula implies TR,

Examples. 1. If T is a bicompact topological Hausdorff space and %A
a semi-ring of all real-valued non-negative continuous funetions on T,
then the sets
E (m(t) >0)’ zel,
teT
form an open basis y in 7. y is a semi-ring and the mapping

Fla)=F (a(t) >0)

is a I“homomorphism between 9 and 7.

From corollary 7 we obtain in this case the well known theorem of
M. H. Stone:

The necessary and sufficient condition for two topological Hausdorff
spaces to be homeomorphic is that the rings of real-valued continuous func-
tions on these spaces be algebraically isomorphic. ’
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It must only be noted that isomorphism of the semi-rings of all
non-negative functions induces an isomorphism between rings of all
continuous functions.

2. Assuming in corollary 7 that 2 and 9’ are open bases in T and 7"
we obtain another well known theorem:

A mecessary. and sufficient condition for two topological T -spaces to
be homeomorphic is the existence of bases of open sets in these spaces which
are algebraically isomorphic (considered as lattices).

References

1] 1. Gelfand, Normierte Ringe, Mar. C6opn. 9 (51) (1941), p. 3-23.

[2] — and A. Kolmogoroff, On rings of continuous functions on topological spaces,
Comptes Rendus (Doklady) de I'Acad. des Sciences de I'URSR 22 (1939), p. 11-15.

[3] G. 8ilov, Ideals and subrings of the ring of continuous functions, Comptes Rendus
(Doklady) de I'Acad. des Seiencex de I'URSS 22 (1939), p. 7-10.

[4] M. H. Stone, Applications of the theory of Boolean rings to general topology.
Trans. of Amer. Math. Soc. 41 (1937), p. 375-481.

[5] E. 8zpilrajn, On the isomorphism and the equivalence of elasses and sequences
of sets, Fund. Math. 32 (1939), p. 133-148.

[6] H. Wallman, Lattices and topological spaces, Annals of Math. 39 (1938},
p. 112-126.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 19.5.1954


GUEST




