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On the definition of computable functionals
by

A. Grzegorczyk (Warszawa)

The notion of computable function has been defined in several
different ways (cf. for example S. C. Kleene [2], Part II). The equivalence
of all those definitions implies that the notion of computability is well
chosen. There are two main ways of defining this notion: mathematical
and meta-mathematical. In this paper I shall prove that also the mathe-
maitical definition of computable functional is equivalent to the meta-
-mathematical. -

Let SN be the set of natural numbers (positive integers with zero).
Let § be the set of all functions of one argument defined over the set N
and assuming values from the set N (F=N).

The functionals considered in this paper are defined on the n-tuples
of funections belonging to § and on the #-tuples of natural numbers and

assume the natural value:
DL Pryeery Pop (Lrgee s TK) =Y € N.

We start from the following definition of the class K of compuiable
functionals: K is the smallest class of functionals gontaining the fol-

lowing initial functionals:

U<97>(m)=97(m)7 S<(p17-'~7¢n>(m)=s(m)=w+17

1
@ Mgy, (2,y)=0"1, Pl sow (@) =127,

and closed under the operations of substitution and of effective minimum.

Substitution. If &, ¥eK and
{2) QL@yyee s Pry (@55 s Bhy Y1yeeesYs)
=¢<‘7’1a---,‘Pu>(w1;'“71‘k7,ly<971n~'-:‘pn>(f‘h}-~-7ys))a

then Q¢ K.
EBffective minimum. If de K,

(3} Q@1 ey Py By en s 1) = (LY NP1, - 1P (21, ey @p,y) = 0]
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and the following condition is satistied:

4) H%---.smsﬁ Hxl,--,xksﬂv'.f":y‘eﬂfdj(%:"' P (Lryene s Tp, ) =0,

then Qe K1).

In order to formulate the meta-mathematical definition we shall
consider the system (S) of arithmetics of natural numbers. Let @y, ... , &, ...
are the number variables. Let 0, +, -, S, be the constants denoting zero,
addition, multiplication, and successor. Parenthesis, connectives and the
“p” symbol are the constants of the system, f,...,fus... are the function-
-variables.

The well formed formulas (wiff) of the system (8) are the finite sequen-

- ces of these symbols. We distinguish the well formed number formulas

(winf) and the well formed sentential formulas (wist). The number-variables
and 0 are winf. If a and § are winf, and 4 and B are wisf, then S(a),
a+ g, a-p, fua), and (ux;)[A] are wint, a=8, 4 +B, ~A are wisf. The
function-variables are also always free in any wif. Thus we can say that (S)
is an elementary arithmetics. The axioms of arithmetics as well as the
axiom sehemes of the caleulus of propositions and of the caleulus of
quantifiers (the caleulus of w-operation), are assumed to be axioms
of (8)2).

The rules of inference are the well known logical rules of inference
with the rule of substitution of a winf for free number-variables. Sb A(z;/a;)
symbolizes the substitution in the formula A4, of the winf a; for the number-
-variable ;. A formula obtained from a finite number of axioms by means
of the application of the rules of inference a finite number of times is
a theorem of (S).

For each finite set of functions ¢,,....q, e we shall consider a set
of postulates P(g,,....¢,) of the form

() 1:(87(0)) = 87(0) .
for any m e N and 0<i<n, where S§"(0) is the formula of the form

SSST.TS(O); (8%0)=0, 8(0)==8(0) ete.). The postulates P(g,,...,¢,) define
the function-variables f,, ..., , as function-constants representing the func-
tions ¢y,...,@a.

!) Some theorems on the functionals defined above are proved in the paper of
A. Grzegorezyk [1]. Especially the applications to the computable analysis are considered
there.

?) A system of arithmetics with the minimum operation instead of the quantifiers
wag described in the paper of A. Mostowski [3]. We agsume that our system (8) is similar
to the system (S) of Mostowski.
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We shall say that a formula A4 is a consequence of & set P if there
exists a finite set of formulae Bi,...,B; ¢ P such that the implication

(6) (BiA .. AB)—>A

is a theorem of (8).

Let C(gy,...,p.) be the set of consequences of the set of postulates
Plps; .o s@a)-

In this paper we prove the following

THEOREM. If for any @u...,@. the set Clgy,...,ps) 18 consistent, then
for each functional D@y, ..., @ny (21,-52c), D e K if and only if there evists
a formula aewint with n function-variables f,,...,f. and k free number-

—variables ©y,...,%, such that for any functions @i,...,p.€y and for any

Zyyeney2k € N the formula
(1) 8D a{@y/8%(0) ..., 2] 8F(0)) = §*T-o00)

is a consequence of the set of postulates P(@y,...,@n) %)-

Proof. The first implication we prove by induction. For the identity
functional U we set a=%f,(z,)”’, hence formulae (7) are identical with
postulates (5), and obviously belong to C(g,...,p.). For the constant
functionals S, M, P, it is evident that the functions z+1, =¥, " are
representable in the system (3) and the corresponding formulae (7} are
theorems of (S) and therefore belong to C(pyy-..,¢x).

Now suopose that for two functionals @,¥ e K there exist such
ag,ay € winf that the following formulae belong t0 Clpy,-..,Ps):

(8) Sbag (:/8%(0), :/8"(0)) P g
(9 Sb a(z,/8(0)) = 8700,

Setting v=¥{¢p(t) and using the theorems of extensionality we can
deduce from formulae (8) and (9) the following formula:

(10) Sbaq,(ml/szw) ,%/Sb agr(wl/’S'(O))): SR (#e00) gy

Hence formula (10) belongs 0 C(@y,...,¢a). The theorem is also true for
the functionals obtained by substitution (4). To prove that this property

%) This theorem imitates the definition of computable functions formulated by
A. Mostowski [3], p. 74. The supposition of the consistency of the set C(g@,,...,p,) is
unessential because it is easy to prove the consistency of this set in the well known
semantic manner of Tarski.
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P

is hereditary with respect to the operation of minimum suppose that
formulae (8) belong to Cig;,...,ps) and that

(11) QL (@)= (o) DL (2,v)= 0],
(12) [Toges [zear Svey P (2,0) =0.
From (11) and (12) it follows that

(13) gy (2,29 () =0,

(14) Dy (z,0) %0 for <@ (?).

1t is evident that §%(0)=0 if and only if #= 0. Henee from (13) it follows
that formulae (8) imply the following:

(15) Sbaq;(.r,/Sz(O),1‘2:18’9@‘"’("(0)):0.
Similarly (14) involves that formulae (8) imply the following:
(16) Sba,p(acl,f‘SZ(O),a:g/'S"(O));z’:O

for any v<Q{@)(2). From (15) and (16) it is easy to deduce in (8) the
formula of the form

an (,) [ Sb a0 (/87 (0)) = 0]= [e@@D ),

Hence according to the deduction-theorem the formulae of the form (17)
belong to the set C(@i;-.sPn)-

To prove the inverse implieation we need an arithmetization of the
syntax of the system (S).

Obviously it is easy to define an arithmetical recursive function
Th(n), such that the set of values of the funetion Th is identical with
the set of numbers representing the theorems of the system (S). Each
recursive function is identieal with & constant functional of the class &K.
Hence Th e K.

On the other hand, it is easy to define a computable functional
O<qyy...,pa> (2) such that the set of values of O it identical with the set
of numbers representing the formulae of the set P(g;,...,p,). Indeed, we
can assume that: if z=mn-i, where 0<i<n, then O<{gy..,p> (?)
is the number representing formula (5). For z=mn we assume that
Oy e 03 (2)=OLpr, ooy o> (+1). It is evident that the arithmetical
description of a formula of form (5) can be obtained in a computable
manner. The first symbol of (5) is the function-variable f;, the second
a parenthesis, then come m-times the symbols of successor, parenthesis,
zero, and two parentheses, later the identity symbol, g(m)-times the
successor-symbol, parenthesis, zero and two parentheses. Such a deserip-
tion expresses an arithmetical computable relation.
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If by,...,b, are the numbers of the expressions Bjy,...,B;, then
(by/, ...Abs) 1s the number of the conjunction BiA...AB; and (b;->b,)
is the number of the implication B;—B,. Let [Sba(z,,...,%)==u] be the
number of the formula

Sba(a:/8%(0), ... @/ SH0)) =8(0).

Proving the inverse implication we assume that for a functional @
there exists a formula aewfnf such that for any ¢p,..,p,¢¥ and
2158k € N the formulae of form (7) belong to C(gyy...,p,). In the
arithmetical language this condition can be expressed as follows:

(18) f]-,, ..... 7€ I]zl ,,,,, :,,séNE:,rsﬂV
ThE) ={[0< @5, P> (0) A - AOCas s8> (5)
S[Sbafzy;...;20) 2 PLPry ey O (zum:zk)])-

This follows from (6) and from the definitions of the set C(gy,-..,¢,) and
of functionals T%h and @. Setting U=®{@y,..., @ (21,...,%) and using the
pairing functions J, K, L (for example J(z,y)= (z-+y)*+, Kz=z~"[|/§]2,
Lz=[Jz] — Ez) we can represent the triplet <s,t,%> by a number » such
that v=J(J(s,?),u) and hence

s=HKHKv, t=LHv, u==Lr.
Thus from (18) we obtain the following condition:
(19) Hermrine [zt Svesy
THEK)={(04 1, w013 () oe AO 1, oo s> (K D))
S [Sba(zy, ... 2) - Im]) .
According to the operation of effective minimum the functional
(20) E@uyee s Pu) (21500 2)
= (H0)[THELED) = ((0¢91, - s05(0) f . A O, e 905 (K T)
“>[Shofey,... o) = Lv])
belongs to K. Setting
(21) DGy ey (a5 oee ) = D{EC 1y oy G (215 oy 20))

we find that @* e K. From (19), (20) and (21) it follows that for any
Pry-esPn eF a,r'Ld 215002 € N, formula (7*) obtained from (7) by repla-
cing @ by &* is a consequence of P(g1;:.50)- If (7) and (7*) belong to
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C(g1;..., @) and the set Clgy,...,¢.) is consistent, then it is possible only
if _@:@*. Also @ e K.

Remarks. 1. It is easy to verify that the functionals Th and &
can be defined by using only the simple induction scheme (even by using
only the operation of limited minimum). Hence we can prove that each
computable functional can be presented in a canonical form

L) [P Pryeee 1@ (R1y oo sZr, ) = 0]
where the functional ¥ ean be said to be recursive or even elementarily
recursive.

2. If formmla (7) follows from the postulates P(g,...,p,), then it
follows from a finite number of postulates: P,,...,P,. Hence we find
that, if other functions w,..,p, satisfy the postulates Py,...,P,, then
the funectional @ assumes the same value for the functions @,...,¢, as
for w,....y,. The postulates Pi,...,P, determine only a finite set of
values of functions ¢;,....¢,. Thus for each functional @ ¢ K

(22) Hzl‘.u,:,‘eﬂv nq-l,.‘-,«z,,E;’r SIEW ”'h ..... V€T
if  @lv)=mpi(v) for v<<l, then D{Eyy... ,@uy(Z1y--s2k)
=OYy ey P (Zay o r )

This means that for given numbers 2,,...,2,, the functional @ depends.
only upon a finite set of values of the function-arguments.

These two properties can also be obtained by induetion from the
inductive definition of the class K (without the supposition of the consi-
steney of the system (S))4).

3. From (22) we can deduce

(23) H:;,....zkeﬂ\f ”ze? EIE'W Hg,l,...,q,,,yl....,z,-nsii
if gt)y=wr) for v<l, and @) <g®), pv)<y(v) for any veN,
then D@y, eeey@up (Bryeen s 8k) =PPry eve y W) (B1yoee y2%)-

In my paper [1] there is an effective but very long proof of (23) (Uni-
formity Theorem). Now I shall sketech another proof, non effective but
short. To simplify the notation let us consider the functional @{g>
than one function-argument. For example, let y be a eonstant function,
z(u)=1 for any u e S¥. In that case theorem (23) is reduced to

24) Scewrllowes i @pe(0,1) and  glo)=p(v) Jor v<k,
then D) =D{p>
where (0,1) is the set of functions assuming only two values: 0 and 1.

1) The property {22) was proved by induction in the paper of A. Grzegorczyk [1].
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Suppose that (24) is not true. Hence we define the function

0 if [l Sepeon @)=p(v) for v<k
and  p(0)=p(0)=0 and Bp)+Dy),
1 in the contrary case.
0 i [Tk Dewean @0)=g(®) for v<k
and @iy =vp(i)=pg(3) for i<n,
and p(n-+1)=y(n+1)=0, and B{p>EBGD,
1 in the contrary case.

From (25) and from the negation of (24) it follows that if ¢(0)=1
then for each ke N there exist ¢,y €(0,1) such that (0)=v(0)=1 and
¢(v)=2y(v) for v<k and D<) AP{y).

On the other hand, from (25) it follows that if ¢(0)=0, then for
each & e Y there exist ¢, ¥ € (0,1) such that p(0)=(0)=0 and ¢(v)=1y(v)
for v <k and @<{g>=Py>. We can join the last two sentences into one
saying that
{27) ke Dowen p(0)=1(0)=¢(0)

and  @)=p®) for v<k, and DP>FDPLY>.

Now we whall prove by induction that for any n e N
(28) ke Soweon pli) =p()) =pli) for i<n
and  glo)=v(v) for v<k, and DLP)FD{y).

If n=0, then we have (27). Now suppose that we have (28) and let
us distinguish two cases: g(n+1)=0 and p(n-+1)=1.
If o(n-+1)=0, then from {26) it is evident that
29) [Tkeww Sopecn @li) =p(t) = o(i)  for i<n-+1
and  gvy=vp) for v<k and DP>FED{Y>.

If o(n-+1)=1, then (26) implies.that there exists %k, such that for
any g,y e (0,1) if p(v)=1p(v) for v <k, and @(i)=y(i)=p(4) for i <n and

@(n+1)=9p(n-+1)=0, then O¢{g>=P{y>. Hence from (28) it follows that ’

{30) Hksﬂvzgws(o,l) q)(i):‘l’)(‘i):g(i) for i<n,
and  p)=vp@) for v<k and O{p)EDLYD,
and  g(n-+1)=pint1)=1.

Namely suppose that (30) is not true. Then there exists k, such that
for any @,y € (0,1) if p(i)=y(i)=g(i) for i<n, and gp(v)=yp(®) for v<k,
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and g(n+1)=y(n-+1)=1, then D{p)=G{yp>. Hence there exists ky
such that ko>k,, ky>k,, and k,>n+1. Thus for any ¢,y e (0,1) if
Pli)=yp(@)=p(i) for i<n and ¢(v)=my(v) for » <ky, then @(pd>=0{y).
Indeed if ¢,pe(0,1) and @)=y(v) for r<k, and n-l <ky, then
g(n+1)=yp(n+1). If g(n+1)=p(n+1=0 then from the fact that ko> ky it
follows that ¢(v)=y(v) for » <k, and D{p)=>B{y> according to the above
mentioned property of k. If g(n+1)=u(n-+1)=1 then from the fact
that ky>k, it follows that p(v)=1(v) for v<k, and O(p>=DIy> according
to the property of k,. But the existence of such a number k, contradicts
condition ({28).

Condition (30) means that (29) is likewise true when o(n+1)=1.
Also (28) implies (29) in any case. (28) is thus proved by induction for
any n e . Setting n=~k we find that

B xew Sypewn ¢lo)=p(t)=0(tr) Jor c<k and D>+ Dy}

It @. ¢ =@y, then O{g} 5= Do) or Oy =D o>. Hence from (31) it
follows that

(32)  [lkewr Srewn 2(0)=0(v)  for o<k, and B> EB.

And (32) contradicts (22), which completes the proof of (24). The general
proof ‘of (23) is similar to that of (24) but more complicated. Theorem (23)
in the stronger effective form proved in [1] has many applications to the
computable analysis.
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