

3. Using the above Lemmata we can prove by the same method as in the paper of A. Alexiewicz the following

Theorem 1. If the set B is linear and analytic, then there exists a decomposition $T = e \cup h$ and a residual set R in X such that

- (a) for every x and every $\varepsilon > 0$ there exists a set e' such that $\mu(e \setminus e') < \varepsilon$ and $U(x)_{e'} \in B$;
- (b) for every $x \in R$ and every set $h' \subset h$ of positive measure $U(x)_h \in B$.

THEOREM 2. When the set B is analytic and satisfies the following condition:

from
$$y_{e_n} \in B \ (n=1,2,...)$$
 and $e = \bigcup_{n=1}^{\infty} e_n$ results $y_e \in B$,

then there exists a decomposition $T=e\bigcup_{h=0}^{n-1} A$ and a residual set $R\subset X$ such that

- (a₁) $U(x)_e \in B$ for every x,
- (a₂) $U(x)_{h'}\bar{\epsilon}B$ for every $x \in R$ and every set $h' \subset h$ of positive measure.

References

- [1] J. Albrycht, On Saks' theorem for abstract polynomials, Studia Mathematica 14 (1953), p. 79-31.
- [2] A. Alexiewicz, A theorem on the structure of linear operations, Studia Mathematica 14 (1953), p. 1-12.
 - [3] C. Kuratowski, Topologie I, 2 ed., Warszawa 1948.
- [4] S. Mazur und W. Orlicz, Grundlegende Eigenschaften der polynomischen Operationen (Erste Mitteilung), Studia Mathematica 5 (1934), p. 50-68.
- [5] Grundlegende Eigenschaften der polynomischen Öperationen (Zweite Mitteilung), Studia Mathematica 5 (1934), p. 179-189.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 30.4.1954

On the estimation of the norm of the *n*-linear symmetric operation

bу

J. KOPEĆ and J. MUSIELAK (Poznań)

Let X and Y be two Banach spaces. An operation $U(x_1,\ldots,x_n)$ from $X \times \ldots \times X$ to Y is called *n-linear* if it is linear in each variable x_i

separately. It is called symmetric if $U(x_1,\ldots,x_n)=U(x_{n_1},\ldots,x_{n_n})$ for every permutation π_1,\ldots,π_n of the numbers $1,\ldots,n$. The operation $U(x_1,\ldots,x_n)$ being n-linear and symmetric, we call the operation $U(x)=U(x,x,\ldots,x)$ the power of degree n; $U(x_1,\ldots,x_n)$ is then called the primitive (or polar) operation of U(x). Between the norms of these operations an inequality

$$\sup_{\|x_1\| \leqslant 1, \dots, \|x_n\| \leqslant 1} \|U(x_1, \dots, x_n)\| \leqslant B_n \sup_{\|x\| \leqslant 1} \|U(x)\|$$

holds, with B_n depending only on n. A. E. Taylor 1) has shown that $B_n \le n^n/n!$. We shall show that this estimation is the best possible.

Let X=L, $Y=R^1$ (the space of reals), $\Delta_k=\langle (k-1)/n,k/n\rangle$ $(k=1,2,\ldots,n)$. Let us consider the operation

$$U(x_1,...,x_n) = \sum_{(\pi_1,...,\pi_n)} \int_{d_1} x_{\pi_1}(t) dt ... \int_{d_n} x_{\pi_n}(t) dt,$$

the summation being extended over all permutations π_1, \ldots, π_n of the numbers $1, \ldots, n$. This operation is obviously n-linear and symmetric. We shall prove that

$$\sup_{\|x_1\| \leqslant 1, \ldots, \|x_n\| \leqslant 1} \|U(x_1, \ldots, x_n)\| = \frac{n^n}{n!} \sup_{\|x\| \leqslant 1} \|U(x)\|.$$

Let

$$||x_i|| = \int_0^1 |x_i(t)| \, dt \leqslant 1$$

¹⁾ A.E. Taylor, Additions to the Theory of Polynomials in Normed Linear Spaces, The Tôloku Math. Journal 44 (1938), p. 302-318, theorems 2.5 and 2.6.

icm[©]

and write

$$a_{ik} = \int_{\Delta_k} |x_i(t)| dt$$
.

Then

$$0 \leqslant \sum_{k=1}^{n} a_{ik} \leqslant 1$$

and

$$\begin{split} \|U(x_1,\dots,x_n)\| &= |U(x_1,\dots,x_n)| \leqslant \sum\limits_{(\pi_1,\dots,\pi_n)} \prod\limits_{k=1}^n \int\limits_{d_k} |x_{\pi_k}(t)| \, dt \\ &= \sum\limits_{(\pi_1,\dots,\pi_n)} \prod\limits_{k=1}^n a_{\pi_k k} \leqslant \prod\limits_{i=1}^n \sum\limits_{k=1}^n a_{ik} \leqslant 1. \end{split}$$

On the other hand choose

$$x_k(t) = \begin{cases} n & \text{for } t \in \Delta_k, \\ 0 & \text{elsewhere.} \end{cases}$$

Then $||x_k||=1$ and $U(x_1,\ldots,x_n)=1$. Hence

$$\sup_{\|x_1\| \leqslant 1, \ldots, \|x_n\| \leqslant 1} \|U(x_1, \ldots, x_n)\| = 1.$$

By definition of the operation $U(x_1,...,x_n)$ it easily follows that

$$U(x) = U(x, \dots, x) = n! \prod_{k=1}^{n} \int_{d_k} x(t) dt.$$

Let $||x|| \leq 1$; since

$$||x|| = \sum_{k=1}^{n} \int_{\Delta_k} |x(t)| dt,$$

we obtain

$$||U(x)|| = |U(x, \dots, x)| \leqslant n! \prod_{k=1}^{n} \int_{\mathcal{A}_k} |x(t)| dt \leqslant n! \left(\frac{1}{n} \sum_{k=1}^{n} \int_{\mathcal{A}_k} |x(t)| dt\right)^n \leqslant \frac{n!}{n^n} ||x||.$$

On the other hand, x(t)=1 implies $U(x,...,x)=n!/n^n$, whence

$$\sup_{\|x\|\leqslant 1}\|U(x)\|=n!/n^n.$$

Thus the equality (*) is true.

Reçu par la Rédaction le 29.3.1954

On quotient-fields generated by pseudonormed rings

bу

K. URBANIK (Wrocław)

I. A linear ring R over the field of complex numbers as scalars with unit element is called a *pseudonormed ring* if R is a B_0 -space (Mazur and Orlicz [4], p. 185) with respect to a sequence of pseudonorms $\|\ \|_1, \|\ \|_2, \ldots$ submultiplicative, i. e. satisfying the condition $\|xy\|_k \leqslant \|x\|_k \|y\|_k$ for every $x, y \in R$.

In this paper we shall deal exclusively with commutative pseudo-normed rings without divisors of zero.

Let Q(R) be the quotient-field obtained from the pseudonormed ring R (Van der Waerden [7], p. 46-49). J. G.-Mikusiński has introduced by means of the convergence in the ring R a convergence in the field Q(R) (which will be called the M-convergence) as follows: the sequence $a_1, a_2, \ldots (a_n \in Q(R))$ converges to $a \in Q(R)$ (which will be denoted by M-lim $a_n = a$) if there exists $x \in R$ ($x \neq 0$) such that $x a_n \in R$ ($n = 1, 2, \ldots$), $x a \in R$ and the sequence $x a_1, x a_2, \ldots$ converges to x a in the ring R, i. e. $\lim_{n \to \infty} ||x a_n - x a||_k = 0$ ($k = 1, 2, \ldots$) (Mikusiński [5], p. 62). It is easily seen that Q(R) with the M-convergence is an L-space of Fréchet (Kuratowski [3], p. 84) and that the addition and the ring- and scalar-multiplication in Q(R) are continuous with respect to the M-convergence.

The M-convergence in Q(R) is called topological if there exists in Q(R) a topology satisfying the first axiom of countability (Kuratowski [3], p. 33), such that the convergence according to this topology is equivalent to the M-convergence, and Q(R) is a topological field with respect to this topology (we suppose here that the inverse of an element is a continuous function). In connection with the study of the M-convergence in the field of operators of Mikusiński (Urbanik [6]) arose the problem of determining those pseudonormed rings for which the M-conevrgence in Q(R) is topological. In this paper we shall prove that

If the M-convergence in the field Q(R) is topological, then the pseudonormed ring R is isomorphic and homeomorphic with the field of complex numbers (topologized as usual).