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Llexpression [|z—zy| 4] —E5o| "2 /(0 42)! est le terme du developpement
en série de la fonetion exP (e —zy| 4-1{—(of) convergente pour toute va-
leur de |z—zy|4-|;—£,|. Nous pouvons tirer de ce qui préeéde la conclu-

00
sion suivante: La série Z(«p,, +1—@y) est uniformement convergente, et
n=0

la suite {(pn} est convergente. De la méme fagon nous pouvons montrer
la convergence des séries

0 0 oo

2 (“n-yl“%z): 2( 2 (Wn-i-l—‘wn)

N==0 n=0 Ne=0
et des suites: {u,}, {v,}, {w,}]. Les fonctions limites

Vpg1 =)y

’U(z,C) :—"Hm”n(zag)}
w(z,{) =limw,(z,{)

®(2,0) = Hm g, (2, ),

u(2,4) = lim u, (¢, ),
donnent la golution du systéme (16). La preuve que la solution précé-
dente du systéme (16) est unigue, sera la méme, que dans la méthode
des approximations successives en général. La fonction ®(2,0) satisfai-
sant au systéme (16) satisfait de méme aux équations (13), (12) et (11).
La fonetion ¥(z,y)=p(e,t) donne la solution de Péquation proposée.
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INSTYTUT MATEMATYCZNY POLSKIET AKADEMII NAUK
INSTITUT MATHEMATIQUE DB L’ACADEMIE POLONAISE DES SCIENCES

Some properties of plane sets with positive
transfinite diameter

by A. SzYBIAK (Krakéw)

The main object of this work is to strenghten Kellog’s lemma, which
states that if the boundary of the domain containing oo has the positive
transfinite diameter [1], then there exists on this boundary a point which
is regular for its Green’s function. The first part contains some theorems
from the general theory of the integral. The theorems in the second part
are not new, but the method of the proofs seems to be new. It is shown
that a Green’s function constructed by the extreme points-method [5]
is equal to that constructed by Frostman’s “masse du balayage” [2].
The third part considers the so called “polynomial condition?”’ ([4], [6])
and, as its consequence, the above lemma of Kellog.

I. The following two theorems are given without proof. The proofs
are to be found in Frostman’s paper [2].

Let X be any set in the Cartesian space, X denote the elass of Borel
sets. Let {u,} be a sequence of measures on (. Let {f4} be a sequence of
continuous functions converging to any function f. Then we have

TemorEM 1. If the set {p,(X)} is bounded, there exists a subset {#ona),
convergingl) to some measure pu.

THEOREM 2. If the sequences {u,} and {f,} are uniformly bounded
on X, po—>py fo—>f uniformly, then

(1) im | f,du,= | fdu.
I [1ti=

I shall prove

THEOREM 3. If the functions f, are lower uniformly bounded on X,
fn2 M, continuous, and for every >0 there exists a set e=e, such that

(i) ple)=limu,(e)<e and

N0

(i) all [ful, except a finite number, are uniformly bounded on X—e,

then

() tm [ fudp> [ fau.

n—rco X X

1) For the definition of this convergence cf. [2].
2%
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Proof. Let ¢ be a positive number and e a suitable set, u(e)<s

ffnd:un- ffnd/"n“‘ff'nd/’ln/ f/nd/‘n'f‘ﬂ/[/“n( e).
Xee
Sinee |f,| for all sufficiently large n are uniformly bounded on X -—e, we
have
lim ffn(l‘unz .j fdu.
Nr00 ¥ Xt
Therefore

im [f,du,> [ fap-+Me.
nooeo X X-e
In view of ¢ being arbitrarily small, we obtain our theorem.
TEEOREM 4. If by the conditions of the above theorem there exists o set e
such that (i) and (ii) (of Theorem 3) hold, and

(i) M [ /o dun< &, then
n—ooe
(3) lim ffndyn= ffd/.z.
N0 ¥ %
Proof.

lim ffnd”u<ﬁ ffnd/"n'Jr* ii—r?lffnd/{n(\ixrf fap-e.
Ni—00 ¥ N—+00 X e N0 g X

In view of the opposite inequality (2) and of & being arbitrary small,
we obtain our theorem.

IT. Let E be a set closed and bounded in z-plane. Denote by My
a class of all measures w for which the followmg properties hold:

D) p(B)=1, ule)=0 if eB=0,

(ii) the Borel gets (in z-plane) are measurable.

In the Cartesian product ExE introduce the measure pxu [3].

We consider with Frostman

) m—ffloglz— P au(@)du(s)=_ [ logle—T dluxu)(z, &),

ExE

It is proved [2] that in My there exists a measure, denoted by 7, which
realises

(5) inf I(u)
neMyg

and » is unique. We shall write I(n)= inf I{u)= yg.
weMp
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Further we assume that yz<<oo.
Let "= {ng,%,..., 7} be the nth extreme system of the set B (4. e.
a system of points of & such that the product

H |7 — il

0<1, kgn

is as large as possible). Then the transfinite diameter d(E) of E is

() A(B)= lim ([ [ i3 —agl) .
200 <k

It has been proved by G. Szegd [7] that d(F)=e "E. Hence
7 =1 =H ! ot

(M) og d(E) %n;( Y 2 og l7f —kl )

'L<k
= lim Zlog[m —n (n41)7?
n—00 g

Let u, be a measure which is e(iua.l to (n-+1)"! at the points #f,..., 7,

0 except. Evidently p,e Mz. In EXE we introduce the measure u,X ti,.

Then u, X uy i (n-+1)"% for every pair (47,7}%) of extreme points, 0 except.
Let us put

{ logle—&™ it 2z #E,

8 L(z,&) =
@ (258 0 if =z=E¢.
Because of the agsumption yy = f [ log lz— &~ dy (&) dn(2)<<co, the measure

7 of every single point is 0 and (for L(z,&)=log |z — &7 except a set of
y-measure ()

(9) = [[ L &an(& @) = [ Lz,&dlnx ).
EE ExE
It is evident that
(10) Moglft—mpn-+1) = [ L(#,&)d(pnX pn)-
ik ExE

We shall prove
THEOREM 5. The sequence of measures w, defined above is convergent
to the measure u realising the lower bound (5).
Proof. By theorem 1 {u,) contains the convergent subsequence
|y} Writie Em tin,= . By (10) and (7) we have
—>00

ygp=lim fL(z,E)d(anﬂn)-

R0 By B
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By theorem 3, in view of u of every single point heing 0, we have

yp=lim [ Lz
fs00 EXE

), X i) = [ L(2,8) A x )
ExE

> [ Lddnxy) =
Fxf‘

I(n) =y

Hence I(p)=I(n).
" Since 7 is unique, u==n and u (=Ilim u,,) is independent of the choice
ke

of the convergent subsequence. Therefore y, is convergent and lim g, =2.

Denote by F the set of accumulation points of the set {n}} (n=1,
2,000y 0j<n). It is known that F is the boundary of the dom&mn
D, consisting of CE and containing the point oo. By the above theorem
7(F)=1 and n(E—F)=

THEOREM 6. Let {n;?} (Mp1> ng) be @ subsequence of ewtreme points
converging to any point 206 F. Then
(11) lim [ L2, &) dun, (€)= [ogley— ¢ dn (8).

ey B

Proof. It is sufficient to prove that the conditions of theorem 4 hold,
i.¢. that for every e>0 there exists a circle K, (=J(jz—z)l<¢g)) such
that ¢
| lim [ T, £) dun, (£) < ¢

00 KQ X

Suppose the contrary: then by any {y*} converging to any &,>0, and
every >0,

,}i—m [ L2, &) i, (8) > 6.
—)MK

Q

I ghall show that any subsequence of tn, 18 DOt convergent to 5. Put
0 (6) =pun, (6—K,) [[L—n(E,)) and.
I = [ [ Laudp,

BE

Inw= [ [ Ldudy,
ELEg B Ky
Io(w= [ [ Ldudg,

E-Ry K,

In= [ [ Lapdu.
Ko Ko

Since n=Nmu,, realises the lower bound (&), we have

(12) Lim (1 ( (ftny) —
Joo

I())<0.

icm
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By ordinary computation we find

(1) Em (2~ T08)
o 1K) 2K,
= lim K —‘*I [, 2—*‘———9-—1'12 n —1, .
(10000 Frm s Tl +2 5L T~
9Ky 2 (K,
(i) 2T e 2T L)
W) gy T2 5 e 0

The first and the third members tend to 0 with 5(K,)->0. Since
Io(g) =lim [ [L(2,6) A, (&) A, (2) = (1—(E )
—”"E-—-KQK'Q

(by hypothesis), if for p sufficiently small the difference (13) is 550/2,
which contradicts to (12).

(14)

TeEOREM 7. The constant yg is exactly the upper bound of the func-
tion
(15) u(z) = [logls—&dn(8)
E
Proof. Write
A (") = H!m and 4, n = Iin A’M—nlno—m
0<1<n <j<n

It is known [4] that lim V2% — d(E). Hence
N—>00

n
2 _ym1) — _logd(E) = yg.
1210% | ) l0gd(E) = 5

(16) lim (—1-
N—>00 '”‘+

The points 7g have on F a point of accumulation z,. Let 77*—2,. By the-
orem 6 and formula (16) koo

s =lim. | L, &) dpe
vE k_,mn +121°g“7“ 75l hmf (73, &) Aty (E)

= [ L(zo, &) an(&) = [ loglzg—é&|~ ().
B E

For any #'eF we take any sequence |nf* converging to 2’. By (14) we
have

J L5 6) U (8) < [ L5, €) At (8) = 75
E 00

Hence, in the limit [ logle’'—&|~'dn(&)<yr , ¢ e d.
z
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Denote by F, a subset of F such that for zeF, we have
u(2) = [logle— &7y (&) =y
£

THEOREM 8. F, is a Gy-set and n(F—T)=0.
Proof. By Fatou’s lemma if any sequence of points zkk—> 2, then
—00

. . _1

lim u(z) = lim [ log |a,— &4 dn (£) = u(2,).

ey oo B

Hence u(z) is lower semi-continuous, and thus F, is a Gy-set.
In view of theorem 5 and using Fubini’s theorem, we have

0= | [logle— &= dn (£)dn(e)—ym = [ (u(z)—yz)dn(2)
FF F

= [ (u(e)—yg)dn(z).
FF,
Since #(2)—yg<0 on F—F,, n(F—F,) must be 0.
COROLLARY 1. The transfinite diameter of F, (defined by the inte-
gral (5) and formuls d(E)=e"’E) is equal to that of E.
Since F,C FCE, we have d(F,)<d(X). But for (B —F,)=n(B—1I)-
+n(F—Fq)=0

: 1
log = [logle—&~tdlnxn) = [ logle—&~'d(n x7) >log ——=;
ExE

1
d—(E—) FoxFy d(Fﬂ)
therefore d(H)=d(F,). )

CoROLLARY 2. The power of F, is greater than denumerable, for im
the contrary case its transfinite diameter would be 0.

Denote by 4, a measure which is equal 1/n ab the points {7}} (i)
(4. e. excluding the point ;) and 0 except. Evidently also ul,—># a8 g1,
with n->oco. Write

Doy =] [ =) [ty =),
it
which is Lagrange's interpolatory polynomial. It is known [4] that for
zeDy

tim V{27 (e, 7)< 9 (2)
N—y00
exists, and log®(e) is the Green's fumction of the domain Dy generalized

in the sense of its being continuous and equal to O at every point 2y which
belongs, to any boundary continuum.

icm
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Evidently
log /|2 (2,7 = — J o8 =70 (&) Hog (4) .
In the limit, for n—oo, we obtain
log @ () =yE—Ef loglz—&|~*dn (&)

and this last is the Green’s function constructed by Frostman’s “masse du
bolayage”, which is equal to the Green’s function of D, generalized in
Wiener’s sense. We have obtained

THEOREM 9. The function log®(2) of Leja is the Green's function
G (2,00) of the domain D, generalized in Wiener'’s sense. '

HI. Let {P,(2)} be any set of polynomials such that the degree of P,
is not larger than n. 4 denotes any set in the z-plane. Assume that all
[P, (2)] are uniformly bounded on 4, [Pp(2)| <M (n=1,2,...).

We say that for any point 2,e4 the polynomial condition holds if and
only if for every e>0 the inequality 1Po ()| <M (264, n=1,2,...) implies
Hm [P, ()" < 14-¢

N—»00

in some neighbourhood K, of z,.

THEOREM 10. Let E be a set with a positive transfinite diameter. For
every point zeF, (F, defined above) the polynomial condition holds.

Proof. Let #"={y7,7t,...,7,} denote the nth system of extreme po-
ints of the set E. Put

(17) Dy = [ [ e—n2) o —oy.

i=j
These are the Lagrange interpolatory polynomials. To begin with I shall
prove the theorem for these polynomials. It is easy to show [4] that on E

@<l for n=1,2,..., 0<j<n.
Lemma 1. If we put
of =log [ 4'(") "= [log |y — &= du’,(£),
E

then for every j, 0<j<n, and for all sufficiently large j and n we have
(18) of <yg+te.
Proof of the lemma 1. Clearly

cr}‘:fL(n}‘,E)dpn(f)(n-{—l)n‘l.
B
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Suppose the existence of some £>0 such that for ‘my sequence ¥
(0<j<my) We have oF=yg+eo- We choose from 7/ any convergent
subsequence 73, say n}”’—»z Then, by theorem 6,

im off = lim (ny+1)ni [ D, &) Ay, (8= [ L', €)dn (8)
>0 >0 B . 5

and by theorem 7 it is <yg. This contradicts the hypothesis (18).

LemMa 2. If we put
B =0~ 3 logle—ri,
57

then for every £>0 and for every zye By there emists a 6=0(g,2) such that,
in the circle K, (-E({z——z,,[<6)), for all suffwwntly large n we have

Z}'<—"7E+£
Proof of the lemma 2. In the contrary case there would exist a se-

quence of points # converging to z, and two sequences of indices {ma)y
{ix} (0<jx<<ry) and >0 such that
(19) A3 (o) =

Clearly

—yg+é-

T A7%(a) = Hm [ — L2, &) dudh (8) < [ —L(eo, £)dn(§) = —ym
P ko0 7 a7
by theorem 3. (It should be noted that here the inequality must be oppo-
site to that in theorem 3.) This is a contradiction of the above hypothe-
sis (19).

Agsuming both lemmas we obtain:

For every ¢'>0 and every z,¢ F, there exist some N, and é>0 such

that for |¢—z,|<d and n>N,

or ™' Y log(je—n||nf—
1947

P ()t < ™ <e'.

Hence

[ (2, <6 it [e—2o| <8, n>DN,, 0<j<n

Now, if we have any positive & we can take &'>0 such that ¢l
and take the appropriate N and ¢ such that with [z—z,|<d and n>N and
for 0<i<n

Iﬁ(z,n")lll"< L+e,

which directly gives the assertion of the themem for the extreme poly-
nomials (17).

icm
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Yet, having an arbitrary set of polynomials {Pn(z)}, the degree.of P,
being <n, we interpolate P,(z) by the extreme polynomials

n

Po(@) = D) Poly) I (2,")

j=0

If there exists a constant M such that |P,(2)|<M on E, then by (20)

(20)

n

Pol) < ) [Pty |7 (27)] < (n+-1) 3 max| T/ (s, 7).

Jom0

Assuming that [(n-41)M "1, we immediately obtain

Tm P, (&)< 146 for |p—z,| <8,
N> OO

which proves our theorem.
CoroLLARY 3. As has been shown above, the function

G(2,) =log @ (2) = lim log| L'(z,7")['"™  (¢€F)

n—~>00
constructed by Leja [4] is the generalized Green’s funciion of D, with the
pole oo,

For this function F, is the sét of regular points, because G(z)
is continuous and =0 at 0 if and only if z,¢F,. This may be deduced
directly from the semicontinuity of @(z) and theorem 7. Then the suffi-
cient and necessary condition for z, to be a regular point is that the po-
lynomial condition hold for z,. In view of the above and corollary 2 to
theorem 8 we obtain as a consequence:

If the transfinite diameter of the plane set F is positive, F contains
a set F, of regular points (with respect to G(2)) and the power of F,
is greater than denumerable.

Denote the set of irregular points by H. Because of the gemiconti-
nuity of G(z), H is an F,-set. The transfinite diameter of H (defined by
¢~*u where yg==inf I(u))is 0. In the contrary case, there would exist

neMpy

a closed set H, with positive distance from #,. By theorem 7, corollary 2,
d(B)=a(F,), and, as is well known, adjoining to F, any set of positive
trangfinite diameter would increase d(F,), which is absurd. Thus d(H)=
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Note on the mean value theorem

by W. MrAx (Krakéw)

This paper deals with the generalization of the mean value theorem.
For strong topology in Banach spaces the mean value theorems have
been proved by T. Wagzewski [4]. In the case of weak topology a guitable
theorem has been given by A. Alexiewicz [1].

By F we designate a linear topological locally convex space, ©.e.
a linear space in which a topology is introduced in such a faghion that
the operations of addition and multiplication by real numbers are conti-
nuous in the topology, moreover the fundamental system of neighbour-
hoods of 0 is formed by convex sets. B* denotes the class of all linear
(additive and continuous) functionals defined on E. )

For feE* and real o we define the right (left) half-space H*(f,a)
(H™(f,a)) as a set of all xeF for which we have the inequality f(@)>a
(f(#)<a). We have H™(f,a)=H(—f,—a). It suffices therefore to inve-
stigate the right half-spaces only.

Now we formulate the following lemma:

Lemuma 11). Suppose that A is o closed and convex subset of E. Then A
i8 a common part of all right half-spaces including A.

By v(f) and ¢(t) we shall denote real valued functions. We assume
@(t) to be increasing and continuous in the given interval A.

LEMMA 22). Let the function (1) be continuous in A and let

(a real)

hm{[w t41)— =D;’w(t)>a

1/ E+v)—e ()]}
except an at most denumerable set of points of A. Then for t,t,e A and
tis#t, we have the inequality [y(t)—w(t))/[p(h)—p ()] = a

Let us assume that the function x(f) with values lying in E, defined

on Ais weakly continuous in 4, . e. for every fe " the real valued function
flz(t)] is continuous in A. We formulate the mean value theorem.

1) See for instance [2], livre V, chapt. II, p. 73, col. 1.
2) This lemma may be proved in the same manner as in the case of @ (f)=
and a=0. See [3], p. 203.
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