A constructivist theory of plane curves

by

R. L. Goodstein (Leicester)

Introduction. This paper develops a theory of p-curves, which are finite matrices with binary fraction elements. Roughly speaking, a p-curve is a finite assemblage of points in serial order on a grid, the jump from one point to the next being of fixed amount in one or other of two "directions". The concept of a plane curve is then introduced in terms of sequences of p-curves. The emphasis throughout the paper is on the strictly finitist character of the proof processes.

The present work on analysis situs is a preliminary to a study of curvilinear integrals.

Definitions. We denote integers by $i, j, k, l, m, n, \mu, r, p, q, r, s, t, \varrho, \sigma, \tau$ with or without suffixes, and binary fractions $m/2^p$ by $a, b, c, d, x, y, \xi, \eta$ with or without suffixes or affixes; more specifically, for a given p we write x^p , etc., for $m/2^p$. The ordered pair (x, y) is called a point, and the ordered pair (x_1, y_2) an interval; the ordered pair of intervals $(x_1, x_2) \langle y_1, y_2 \rangle$ (where $x_1 \langle x_2, y_1 \langle y_2 \rangle$) is called a rectangle with vertices (x_r, y_s) , r=1, 2 and s=1, 2. If

$$2^p a_r^p$$
, $0 \leqslant r \leqslant \mu_p$, $2^p b_s^p$, $0 \leqslant s \leqslant \nu_p$

are the integers from $2^p x_1^p$ to $2^p x_2^p$ and from $2^p y_1^p$ to $2^p y_2^p$, respectively, then the points

$$(a_r^p, b_s^p), \quad 0 \leqslant r \leqslant \mu_p, \quad 0 \leqslant s \leqslant \nu_p,$$

are called the lattice points of the network

$$F_p \left(egin{matrix} x_1^p & x_2^p \ y_1^p & y_2^p \end{matrix}
ight)$$

in the rectangle $\langle x_1^p, x_2^p \rangle \langle y_1^p, y_2^p \rangle$; the rectangles $\langle a_r^p, a_{r+1}^p \rangle \langle b_s^p, b_{s+1}^p \rangle$, $0 \leqslant r \leqslant \mu_p$, $0 \leqslant s \leqslant \nu_p$ are called the *p-cells* of the rectangle $\langle x_1^p, x_2^p \rangle \langle y_1^p, y_2^p \rangle$ or of the network

$$F_p \left(egin{matrix} x_1^p & x_2^p \ y_1^p & y_2^p \end{matrix}
ight).$$

For a given $k \ge 1$ the integers i_r, j_r satisfy the equation

$$(0.1) |i_{r+1}-i_r|+|j_{r+1}-j_r|=1$$

for all r, 0 < r < k-1, and $x_r^p = i_r/2^p$, $y_r^p = j_r/2^p$; then the ordered set of points

$$(0.2) (x_r^p, y_r^p), 0 \leqslant r \leqslant k,$$

is called a plane curve, or specifically a plane p-curve, joining the points (x_0^p, y_0^p) and (x_k^p, y_k^p) . If

$$|i_r - i_s| + |j_r - j_s| > 0$$

for all r, s satisfying $0 \le r < s \le k$, then the curve (0.2) is said to be simple and open.

(0.31) If i_r , j_r satisfy the condition (0.3) for all r, s such that $0 \le r \le s \le k-1$ or $1 \le r < s \le k$, and if in addition, $i_k = i_0$, $j_k = j_0$, $k \ge 4$, then the curve (0.2) is said to be *simple* and *closed*.

If x_r, y_r are periodic, with period k, and if (x_r, y_r) , 0 < r < k, is a simple closed curve, then *eo ipso* the curve (x_r, y_r) , m < r < m+k, is closed and simple. The curves (x_r, y_r) , 0 < r < k, and (x_r, y_r) , m < r < m+k are said to be *equivalent* and mutually interchangeable.

Tf

$$i_{2r}^{p+1} = 2i_r^p, \quad i_{2r+1}^{p+1} = i_r^p + i_{r+1}^p,$$

and

$$j_{2r}^{p+1} = 2j_r^p, \quad j_{2r+1}^{p+1} = j_r^p + j_{r+1}^p,$$

where i_r^p , j_r^p satisfy (0.1), then obviously i_r^{p+1} , j_r^{p+1} satisfy (0.1). The p-curve (x_r^p, y_r^p) , $0 \le r \le k$, and the (p+1)-curve (x_r^{p+1}, y_r^{p+1}) , $0 \le r \le 2k$, (where $x_r^q = i_r^q/2^q$, $y_r^q = j_r^q/2^q$ for q = p, p+1) are said to be equivalent and mutually interchangeable.

We shall denote by ξ (with one or more suffixes) a value taken by one or more of the numbers x_r , $0 \le r \le k$, and by η a value taken by one or more of y_r , $0 \le r \le k$. In a network F_p , $\xi + 2^{-p}$ will be called the successor of ξ and denoted by ξ' , and $\xi - 2^{-p}$ will be called the predecessor of ξ and denoted by ξ^* . Similarly we define η' , η^* . The successor of x_r of course is x_{r+1} , r < k, and the predecessor of x_{r+1} is x_r , r > 0; we shall also call x_1 the successor of $x_k (=x_0)$ in a closed curve, and x_{k-1} the predecessor of x_0 . Similarly the successor of y_k and the predecessor of y_0 are y_1 and y_{k-1} respectively, when the curve is closed.

Such a pair as ξ , ξ' will be called a *vertical strip*, and such as η , η' a *horizontal strip*.

If r_n , $0 \le n \le \mu$, are all the suffixes r such that, either

$$x_r = \xi, \quad x_{r+1} = \xi' \quad \text{or} \quad x_r = \xi', \quad x_{r+1} = \xi$$

in a simple closed curve (x_r, y_r) , $0 \le r \le k$, then the values η_n of y_{r_n} , $0 \le n \le \mu$, are called the boundary levels in the vertical strip ξ , ξ' (note that $y_r = y_{r+1}$ since $x_r \ne x_{r+1}$). The η 's are all different since the points (x_n, η_n) , (x_{n+1}, η_n) cannot both occur twice in the set (x_r, y_r) , $0 \le r \le k$. Similarly we define the boundary levels in the horizontal strip η , η' .

The foregoing definitions, and the proofs which follow, may be regarded as definition and proof *schemata* formalisable by replacing the unspecified numbers and functions introduced by definite numbers and functions. The definitions, however, are also susceptible of formalisation in a free variable calculus.

1. THEOREM 1. If (x_r, y_r) , $0 \le r \le k$, is a simple curve, and if for some m, n (where $0 \le m < n \le k$ if the curve is open, and $0 \le m < n < k$ or $0 < m \le n < k$ if the curve is closed), and for all s, t satisfying $m \le s < t \le n$, we have $y_s = y_t$, then the sequence x_r , $m \le r \le n$, is strictly monotonic.

We may suppose n > m+2, else there is nothing to prove. Let $x_s = \xi$ so that, since $y_{s+1} = y_s$, x_{s+1} must be either ξ' or ξ^* ; suppose the former, then since x_{s+2} differs from both x_s and x_{s+1} , and the values of x_{s+1}, x_{s+2} are consecutive in F_p , therefore $x_{s+2} = \xi''$. Similarly, if $x_{s+1} = \xi^*$ then $x_{s+2} = \xi^{**}$, and so, since $x_m \ge x_{m+1}$, the sequence x_r , $m \le r \le n$, is strictly monotonic.

2. THEOREM 2. If the integers i, satisfy the equation (0.1), and if $0 \le m < n \le k$, then i, takes every integral value between i_m and i_n for a value of r between m and n.

For if $i_m < v < i_n$ and if μ is the *smallest* integer, greater than m, such that $i_n > v$, then $i_{n-1} < v - 1$; but

$$0 \leq (i_{\mu} - v) + (v - 1 - i_{\mu - 1}) = (i_{\mu} - i_{\mu - 1}) - 1 \leq 0,$$

and so $i_{\mu} = v$.

It follows that if (x_r, y_r) , $0 \le r \le k$, is a *p*-curve then x_r attains every value $l/2^p$ between x_m , x_n for an r between m, n and y, attains every value $l/2^p$ between y_m, y_n for an r between m, n.

3. THEOREM 3. If the integers i_r , $0 \le r \le k$, satisfy (0.1), and $i_k = i_0$, and if for some $m, v, i_0 \le v, i_m = v$, then if $\lambda \le k$ is the greatest suffix such that $i_\lambda = v$, we have $i_{\lambda+1} = v-1$; for otherwise $i_{\lambda+1} = v+1$, and by Theorem 2 we should have $i_r = v$ for some r, where $\lambda + 1 \le r \le k$. Similarly, if $i_0 > v$ and μ is the least suffix for which $i_\mu = v$, then $i_{\mu-1} = v+1$.

4. THEOREM 4. If (x_r, y_r) , $0 \le r \le k$, is a simple closed curve, and if for some m, n

$$x_m = \xi$$
, $x_{m+1} = \xi'$ and $x_n = \xi'$, $x_{n+1} = \xi$,

then $m \neq n+1$ and $n \neq m+1$.

For by 0.31, $x_{m+2} > \xi' > x_{n+1}$ and $x_{n+2} < \xi < x_{m+1}$.

5. THEOREM 5. If (x_r, y_r) , $0 \le r \le k$, is a simple closed curve, then each pair of values ξ , ξ' is taken by consecutive x's an even number of times.

Proof. If there is no value of r, $0 \le r \le k$, such that for a given pair $\xi, \xi', x_r = \xi$ and $x_{r+1} = \xi'$ or $x_r = \xi'$ and $x_{r+1} = \xi$, then the theorem is proved.

If there is a unique value of r, $0 \le r \le k$, such that $x_r = \xi$, $x_{r+1} = \xi'$ then there is an s, $0 \le s \le k$, such that $x_s = \xi'$, $x_{s+1} = \xi$. For if $x_0 < \xi'$ and s is the greatest suffix such that $x_s = \xi'$ then, by Theorem 3, $x_{s+1} = \xi$. Moreover, by Theorem 4, s > r+1.

If there is more than one value of r for which $x_r = \xi$, $x_{r+1} = \xi'$ then between any consecutive two such values, m and n say, there is a ρ such that

$$x_{\varrho} = \xi', \quad x_{\varrho+1} = \xi, \quad \text{and} \quad \varrho + 1 < n.$$

For if $\varrho+1$ is the least suffix between m+1 and n such that $x_{\varrho+1}=\xi$ then, by Theorem 3, $x_{\varrho} = \xi'$ (and $m+1 < \varrho < n-1$, by Theorem 4). Similarly, between consecutive values of r for which $x_r = \xi'$, $x_{r+1} = \xi$ there is a value of r for which $x_r = \xi$, $x_{r+1} = \xi'$.

Let m_s , $0 \le s \le \sigma$, where $m_s < m_{s+1}$, be all the values of r, $0 \le r \le k$, for which $x_r = \xi$, $x_{r+1} = \xi'$, and let μ_t , $0 \le t \le \tau$, where $\mu_t < \mu_{t+1}$ be all the values of r, $0 \le r \le k$, for which $x_r = \xi'$, $x_{r+1} = \xi$.

We may without loss of generality suppose that $m_0 < \mu_0$. Since there is a μ between m_0 and m_1 therefore μ_0 lies between m_0 and m_1 , and since there is an m between μ_0 and μ_1 , therefore m_1 lies between μ_0 and μ_1 , and so μ_0 is the only μ between m_0 and m_1 .

Similarly μ_s is the only μ between m_s and m_{s+1} , $0 \le s \le \sigma - 1$. By considering the equivalent closed curve (x_r, y_r) , $m_\sigma \leqslant r \leqslant m_\sigma + k$, it follows that there is a unique τ between m_{σ} and $m_0 + k$ such that $x_r = \xi'$, $x_{r+1} = \xi$ and so there is just one μ greater than m_{σ} (for the least μ , μ_0 , exceeds m_0). Thus $\tau = \sigma$, which completes the proof.

In the same way we can show that each pair of values η , η' is taken an even number of times by consecutive y's.

It follows from Theorem 5 that in a simple closed p-curve there are an even number of boundary levels in each horizontal strip, and an even number in each vertical strip. If x_l, x_q are the least and greatest values of x_r , $0 \le r \le k$, and y_l, y_g the least and greatest values of y_r , $0 \le r \le k$, and if $2^p X_s$, $0 \le s \le \sigma$ are the integers from $2^p x_l$ to $2^p x_g$ inclusive, and 2^pY_t , $0 \le t \le \tau$, the integers from 2^py_t to 2^py_g , and if, finally, η_r^s , $1 \le r \le 2\mu_s$, are the boundary levels in the strip X_s , X_{s+1} and ξ_r^t , $1 \le r \le 2\nu_t$, the boundary levels in the strip Y_t, Y_{t+1} then the cells of the network F_p in all the rectangles $\langle X_s, X_{s+1} \rangle \langle \eta_{2r-1}^s, \eta_{2r}^s \rangle$, $1 \leqslant r \leqslant \mu_s$, $0 \leqslant s \leqslant \sigma - 1$, are called the interior p_x -cells of the curve, and the cells of the network F_p

in all the rectangles $\langle \xi_{2r-1}^t, \xi_{2r}^t \rangle$, $\langle Y_t, Y_{t+1} \rangle$, $1 \leqslant r \leqslant \nu_t$, $0 \leqslant \tau \leqslant r-1$ are called the interior p_y -cells of the curve. A cell of the network F_p , in a vertical strip, which is not an interior p_x -cell is called an exterior p_x -cell, and a cell in a horizontal strip which is not an interior p_{ν} -cell is called an exterior p_{ν} -cell.

6. Linked boundary levels. (x_r, y_r) , $0 \le r \le k$, is a simple closed curve on a network F_p , where x_r, y_r are periodic with period k.

A level α (of the closed curve) in the strip ξ^* , ξ is said to be linked along ξ to the level β in the strip ξ , ξ' if either $\beta = \alpha$ or $\beta \ge \alpha$ and for some $\mu, \nu > 1$

$$x_{\mu} = \xi^*, \quad x_{\mu+\nu+1} = \xi', \quad x_r = \xi, \quad \mu+1 \leqslant r \leqslant \mu+\nu,$$

and $y_{\mu} = \alpha$, $y_{\mu+r+1} = \beta$ and $2^{p}y_{r}$, $\mu+1 \leqslant r \leqslant \mu+\nu$, are the integers from $2^{p}a$ to $2^{p}\beta$ inclusive.

Two levels α, β of the same strip ξ^*, ξ or ξ, ξ' are said to be linked along ξ if $y_{\mu}=\alpha$, $y_{\mu+\nu+1}=\beta$ and $2^{p}y_{r}$, $\mu+1\leqslant r\leqslant \mu+\nu$, are the integers from $2^p a$ to $2^p \beta$ inclusive, and $x_r = \xi$, $\mu + 1 \le r \le \mu + \nu$, and either x_μ $=x_{\mu+\nu+1}=\xi^*$ or $x_{\mu}=x_{\mu+\nu+1}=\xi'$.

- **6.1.** If a level α is linked to a level β along ξ then α is not linked to another level along ξ ; for, in a simple curve, there cannot be two values of r, $0 \le r \le k$, for which $y_r = y_{r+1} = a$ and either $x_r = \xi^*$, $x_{r+1} = \xi$ or $x_r = \xi'$, $x_{r+1} = \xi$.
- **6.2.** If α, β are consecutive boundary levels in either of the strips ξ^* , ξ ; ξ , ξ' and if $\alpha \leqslant \eta < \eta' \leqslant \beta$, then if for some μ , $x_{\mu} = x_{\mu+1} = \xi$ and $y_{\mu} = \eta$, $y_{\mu+1}=\eta'$ (or $y_{\mu}=\eta'$, $y_{\mu+1}=\eta$) the levels α,β are linked along ξ .

Let $2^p \varrho_s$, $0 \leqslant s \leqslant \sigma$, be the integers from $2^p a$ to $2^p \beta$ inclusive, where $\varrho_t = \eta$, $\varrho_{t+1} = \eta'$, say, $0 \le t < \sigma$. If $\alpha = \eta$, $\beta = \eta'$ there is nothing to prove; hence we may suppose $\mu \ge 2$ so that for $1 \le s \le \sigma - 1$, ϱ_s not a boundary level in either of the strips ξ^* , ξ ; ξ , ξ' .

Accordingly $x_{\mu+2} = \xi$, $y_{\mu+2} = \varrho_{\ell+2}$ and, by induction, $x_n = \xi$, $y_n = \varrho_{n+\ell-\mu}$ for $\mu \leqslant n \leqslant \mu + \sigma - t$. Similarly $x_m = \xi$, $y_m = \varrho_{m+t-\mu}$ for $\mu - t \leqslant m \leqslant \mu - 1$, which completes the proof.

- 6.21. It follows from 6.2 that if the consecutive boundary levels a, β are not linked along ξ then there is no value of μ , $0 \le \mu \le k$, for which x_{μ} $=x_{\mu+1}=\xi$ and 2^py_{μ} , $2^py_{\mu+1}$ are consecutive integers between $2^p\alpha$ and $2^p\beta$ inclusive.
- **6.3.** If α, β, γ ($\alpha < \beta < \gamma$) are consecutive boundary levels in either of the strips ξ^* , ξ or ξ , ξ' then either β is a level in both strips, or β is linked along ξ either to a or to γ .

For if β is not a level in both strips and if $y_{\mu} = y_{\mu+1} = \beta$ and one of x_{μ} , $x_{\mu+1}$ is ξ , then two cases arise:

- (a) $x_{\mu+1} = \xi$, then $x_{\mu+2} = x_{\mu+1}$;
- (b) $x_{\mu} = \xi$, then $x_{\mu-1} = x_{\mu}$.

In case (a) either $y_{\mu+2}=\beta'$ or $y_{\mu+2}=\beta^*$; if the former then β is linked along ξ to γ , and if the latter, β is linked to α , by 6.2. The result follows in the same way in case (b). We observe that if γ is the *greatest* boundary level in either strip, and if γ is a level in only one of the two strips, and there is no greater boundary level in the other strip, then the foregoing considerations show that γ is necessarily linked to β along ξ . If γ is a level in both strips then, by definition, γ is linked along ξ .

- **6.4.** We take for granted the definitions and theorems on linked levels in *horizontal* strips corresponding to 6-6.3 above.
- **6.5.** If $\langle \xi^*, \xi \rangle \langle \eta, \eta' \rangle$ and $\langle \xi, \xi' \rangle \langle \eta, \eta' \rangle$ are interior p_x cells of a simple closed contour (x_r, y_r) , $0 \leqslant r \leqslant k$, then ξ is not a boundary level in the strip η, η' .

There are an odd number of levels in the strip ξ^* , ξ which are not less than η' , and an odd number in the strip ξ , ξ' . Hence there are an even number of levels which lie in one or other of the two strips, and which are not less than η' (counting twice a value of y_r which is a level in both strips). Let these levels, in decreasing order of magnitude be h_r , $1 \le r \le 2n$, (where for some values of r, h_r may equal h_{r+1}). By 6.3, h_1 is linked to h_2 , h_3 to h_4 and hence by induction, h_{2r-1} is linked to h_{2r} for $1 \le r \le n$. If h_{2n+1} is the first level in either strip which is less than η' (and so not greater than η) then h_{2n} , being linked to h_{2n-1} , is not linked to h_{2n+1} , and so by 6.21 there is no μ , $0 \le \mu < k$, such that $x_{\mu} = x_{\mu+1} = \xi$ and $y_{\mu} = \eta$, $y_{\mu+1} = \eta'$ (or $y_{\mu+1} = \eta$, $y_{\mu} = \eta'$) which proves that ξ is not a boundary level in the horizontal strip η , η' .

- **6.51.** If one of the p_x -cells $\langle \xi^*, \xi \rangle \langle \eta, \eta' \rangle$, $\langle \xi, \xi' \rangle \langle \eta, \eta' \rangle$ is interior, and one exterior, then ξ is a boundary level in the strip η, η' , and conversely. Proof similar to 6.5.
- 7. THEOREM 7. In a simple closed curve (x_r, y_r) , $0 \le r \le k$, the interior p_x -cells are interior p_y -cells, and vice-versa.

Let the boundary levels in the strip η , η' be ξ_s , $1 \leqslant s \leqslant 2\mu$, where $\xi_{s+1} > \xi_s$, $1 \leqslant s \leqslant 2\mu - 1$.

If σ is less than x_r , $0 \le r \le k$, then, by 6.51, there are no interior p_x -cells in the rectangle $\langle \sigma, \xi_1 \rangle \langle \eta, \eta' \rangle$, and therefore, by 6.51, all the interior p_x -cells which lie in the strip η, η' lie in the rectangles $\langle \xi_{2r-1}, \xi_{2r} \rangle \langle \eta, \eta' \rangle$, and are therefore p_y -cells. Similarly the interior p_y -cells are p_x -cells.

In view of Theorem 7 we now drop the suffix and refer to interior p_x - or p_y -cells as the interior p-cells, and the cells of the network F_p which are not interior p-cells, as exterior p-cells.

- **8.** For any s, $0 \le s \le k-1$, the simple curves (x_r, y_r) , $s \le r \le s+1$, joining the points (x_s, y_s) , (x_{s+1}, y_{s+1}) , are called the boundary lines of the simple closed curve (x_r, y_r) , $0 \le r \le k$; for any assigned value of r between 0 and k inclusive, the point (x_r, y_r) is called a boundary p-point or vertex of the simple closed curve.
- **9.** Let $2^p a_r$, $0 \le r \le \mu$, be the integers from $2^p a$ to $2^p b$ inclusive, and $2^p \gamma_r$, $0 \le r \le r$, the integers from $2^p c$ to $2^p d$ inclusive, then if

$$x_r = a_r,$$
 $y_r = c,$ $0 \le r \le \mu,$ $x_r = b,$ $y_r = \gamma_{r-\mu},$ $\mu \le r \le \mu + \nu,$ $x_r = a_{2\mu+\nu-r},$ $y_r = d,$ $\mu + \nu \le r \le 2\mu + \nu,$ $x_r = a,$ $y_r = \gamma_{2\mu+2\nu-r},$ $2\mu + \nu \le r \le 2(\mu + \nu),$ $x_r^* = x_{2\mu+2\nu-r},$ $y_r^* = x_{2\mu+2\nu-r},$ $0 \le r \le 2(\mu + \nu),$

then the simple closed curve (x_r^*, y_r^*) , $0 \le r \le 2(\mu + \nu)$, (or an equivalent p-curve) is called the *clockwise* p-path round the rectangle $\langle a, b \rangle \langle c, d \rangle$, and (x_r, y_r) , $0 \le r \le 2(\mu + \nu)$, is called the *anticlockwise* p-path.

The sides of a p-path round a p-cell are called the sides of the cell. An interior cell of a simple closed curve, which has a side in common with the curve, is called an interior boundary cell.

9.1. For any lattice point (ξ,η) of a network F_p we define:

$$\left\{ egin{array}{ll} x_r^s = \xi, & r = 0, 3, 4 \\ x_r^s = \xi', & r = 1, 2 \\ y_0^s = y_1^s = y_4^s, & y_2^s = y_3^s, \end{array}
ight. \left. 1 \leqslant s \leqslant 4, \\ y_0^s = \eta, & s = 1, 2, \quad y_2^s = \eta', \quad s = 1, 2, \end{array}
ight.$$

and

and

$$egin{array}{lll} y_0^s = \eta, & s = 1, 2, & y_2^s = \eta', & s = 1, \ y_0^s = \eta', & s = 3, & y_2^s = \eta, & s = 3, 4, \ y_0^s = \eta^*, & s = 4, & y_2^s = \eta^*, & s = 2. \end{array}$$

It is readily verified that the simple closed p-curves (x_s^s, y_r^s) , 0 < r < 4, are clockwise for s = 2,3 and anticlockwise for s = 1,4. In the curves given by s = 1,2 the point (ξ,η) precedes the point (ξ',η) , and in the curves s = 3,4 the point (ξ',η) precedes (ξ,η) .

Thus of the four curves there is one clockwise and one anticlockwise curve in which (ξ,η) precedes (ξ',η) , and one clockwise and one anticlockwise curve in which (ξ',η) precedes (ξ,η) .

9.11. Let η be a boundary level, in the strip ξ, ξ' , of a simple closed curve Γ ; then of the four curves (x_r^s, y_r^s) , $0 \le r \le 4$, either those with s=1,3 or those with s=2,4 are paths round the interior boundary cell with

vertices (ξ,η) , (ξ',η) . In either case there is only one curve in which the order of the points (ξ,η) , (ξ',η) is the same as in Γ . Similarly there is only one path round an interior boundary cell with vertices (ξ,η) , (ξ',η) in which the order of these points is the same as in Γ . Thus with each boundary line of Γ we have associated a unique path, round an interior boundary cell, and this path is said to be described in the same sense as Γ . We shall show that all the paths described round interior boundary cells of Γ , and described in the same sense as Γ , are either all clockwise, or all anticlockwise. In the former case the curve Γ is said to be clockwise, and in the latter, anticlockwise.

9.12. Let the path round the interior boundary cell of Γ , with vertices (ξ,η) , (ξ',η) , be the anticlockwise curve (x_r^1,y_r^1) , $0 \le r \le 4$, and consider the successor, in Γ , of the points (ξ,η) , (ξ',η) .

If the successor is (ξ'', η) then ξ' is not a boundary level in the strip η, η' and so $\langle \xi', \xi'' \rangle \langle \eta, \eta' \rangle$ is an *interior* boundary cell; thus the path associated with the side of Γ joining the points $(\xi', \eta), (\xi'', \eta)$ is the *anticlockwise* curve

$$(\xi',\eta), \quad (\xi'',\eta), \quad (\xi'',\eta'), \quad (\xi',\eta'), \quad (\xi',\eta),$$

(i. e. the curve (x_r^1, y_r^1) , $0 \le r \le 4$, with ξ replaced by ξ' and so ξ' replaced by ξ'').

If (ξ', η') is the successor, then ξ' is a boundary level in the strip η, η' and so $\langle \xi, \xi' \rangle \langle \eta, \eta' \rangle$ is the interior cell associated with the side of Γ joining the points (ξ', η) , (ξ', η') , and the path associated with this side is the anticlockwise curve (x_1^p, y_1^p) , $0 \leqslant r \leqslant 4$.

If (ξ', η^*) is the successor, then, since η is a boundary level in the strip (ξ, ξ') , $\langle \xi, \xi' \rangle \langle \eta^*, \eta \rangle$ is an exterior cell and so $\langle \xi', \xi'' \rangle \langle \eta^*, \eta \rangle$ is the interior cell associated with the side joining the points (ξ', η) , (ξ', η^*) and the path associated with this side is the anticlockwise curve (x_r^4, y_r^4) , $0 \leqslant r \leqslant 4$, with ξ' replacing ξ and ξ'' replacing ξ' .

The same analysis may be applied to a consideration of the successor of the points (ξ, η) , (ξ, η') . Thus if the path round one interior boundary cell, described in the same sense as the curve Γ , is anticlockwise, then so too is the path, described in the same sense as Γ , round any other interior boundary cell. And if one is clockwise, then all are clockwise.

10. If Γ_{p+1} is the closed curve on a network F_{p+1} which is equivalent to a curve Γ_p on a network F_p , then the interior (p+1)-cells of Γ_{p+1} are the (p+1)-cells of the interior p-cells of Γ_p . For if y_r^p is a boundary level in the strip x_r^p, x_{r+1}^p then $y_{2r}^{p+1} = y_r^p$ is a boundary level in each of the strips $x_{2r}^{p+1}, x_{2r+1}^{p+1}, x_{2r+1}^{p+1}, x_{2r+1}^{p+1}$. Similarly for boundary levels in horizontal strips.

11. Γ and γ are simple closed curves on a network F_p . If all the interior cells of γ are interior cells of Γ , and all the interior cells of Γ which have a vertex in common with Γ , i. e. the interior boundary cells of Γ , are exterior to γ , then γ is said to be completely contained in Γ .

 γ and Γ are said to be *completely exterior* to each other if no interior cell of one is interior to the other and no boundary p-point of one is a boundary p-point of the other.

11.1. If γ is completely contained in Γ , all the cells exterior to γ , with a vertex in common with γ , are interior to Γ .

Let $\langle \xi, \xi' \rangle \langle \eta, \eta' \rangle$ be a cell exterior to γ , and (ξ, η) a boundary p-point of γ . If ξ is a boundary level of γ in the strip η, η' then the cell $\langle \xi^*, \xi \rangle \langle \eta, \eta' \rangle$ is an interior cell of γ , and so of Γ ; hence neither (ξ, η) nor (ξ, η') are boundary points of Γ and so ξ is not a boundary level of Γ in η, η' . Therefore $\langle \xi, \xi' \rangle \langle \eta, \eta' \rangle$ is interior to Γ . The corresponding result holds if η is a boundary level of γ in the strip ξ, ξ' .

If ξ is not a boundary level of γ in η, η' and η is not a boundary level in ξ, ξ' , then $\langle \xi, \xi' \rangle \langle \eta^*, \eta \rangle$ is exterior to γ ; since (ξ, η) is necessarily contained between (ξ^*, η) and (ξ, η^*) , in γ , therefore $\langle \xi^*, \xi \rangle \langle \eta^*, \eta \rangle$ is interior to γ , and so interior to Γ . Hence (ξ, η) is not a boundary point of Γ , and so ξ is not a boundary level of Γ in the strip (η^*, η) and η is not a boundary level of Γ in ξ, ξ' ; accordingly both $\langle \xi, \xi' \rangle \langle \eta^*, \eta \rangle$ and $\langle \xi, \xi' \rangle \langle \eta, \eta' \rangle$ are interior cells of Γ .

11.2. If $\gamma_1, \gamma_2, \gamma_3$ are simple closed curves, and if γ_1 is completely contained in γ_2 and γ_2 is completely contained in γ_3 , then γ_1 is completely contained in γ_3 .

For the interior cells of γ_1 are interior cells of γ_2 , and the interior cells of γ_2 are interior cells of γ_3 , so that the interior cells of γ_1 are interior to γ_3 . Moreover, any cell which has a vertex in common with γ_3 , is exterior to γ_2 and so exterior to γ_1 .

11.3. A vertex of an interior *p*-cell of a simple closed curve which is not also a vertex of the curve, is called an *interior p-point* of the curve. A vertex of an exterior *p*-cell which is not a vertex of the curve, is called an *exterior p-point*.

If L is an interior and M an exterior p-point of a simple closed curve γ , then any simple p-curve joining L to M has a vertex in common with γ .

Let k be a simple p-curve from L to M. There are boundary p-points of k which are exterior to γ (e. g. M); let (a_{r+1},b_{r+1}) be the first point of k which is not an interior p-point of γ , so that (a_r,b_r) is an interior p-point. Of the two cells with vertices (a_r,b_r) , (a_{r+1},b_{r+1}) one at least is an interior p-cell, and so (a_{r+1},b_{r+1}) is a boundary p-point of γ .

and

12. Γ is the simple closed curve (x_r^p, y_r^p) , $0 \le r \le k$, on a network F_p , and γ is a simple closed p-curve (a_r^p, b_r^p) , $0 \le r \le \lambda$, such that each point (a_r^p, b_r^p) , $0 \le r \le \lambda$, is an interior point of Γ . Then γ is completely contained in Γ .

Let b_r^p be a boundary level of γ in the strip (a_r^p, a_{r+1}^p) with $b_r^p = b_{r+1}^p$; we may without loss of generality suppose that $a_{r+1}^p > a_r^p$. Since (a_r^p, b_r^p) and (a_{r+1}^p, b_{r+1}^p) are interior points of Γ , b_r^p is contained between consecutive boundary levels of Γ in the strip (a_r^p, a_{r+1}^p) , say η_1 , η_2 where $\eta_1 < \eta_2$, and let

$$x_{\varrho} = a_{r}^{p}, \quad x_{\varrho+1} = a_{r+1}^{p}, \quad x_{\sigma} = a_{r+1}^{p}, \quad x_{\sigma+1} = a_{r}^{p},$$

 $y_{\varrho} = \eta_{1}, \quad y_{\varrho+1} = \eta_{1}, \quad y_{\sigma} = \eta_{2}, \quad y_{\sigma+1} = \eta_{2}.$

We denote by $2^{p+1}e_r$, $0 \le r \le h$, the integers from $2^p\eta_2$ to $2^p\eta_2$ respectively, and by D the simple closed (p+1)-curve (X_r, Y_r) where

$$\begin{split} X_r &= x_{r+2\varrho+1}^{p+1}, \qquad Y_r = y_{r+2\varrho+1}^{p+1}, \qquad 0 \leqslant r \leqslant 2 \, (\sigma - \varrho), \\ X_r &= x_{2\varrho+1}^{p+1}, \qquad Y_r = e_{2(\sigma - \varrho) + h - r}, \qquad 2 \, (\sigma - \varrho) + 1 \leqslant r \leqslant 2 \, (\sigma - \varrho) + h, \\ x_{2r}^{p+1} &= x_r^p, \qquad x_{2r+1}^{p+1} = \frac{1}{2} \, (x_r^p + x_{r+1}^p), \end{split}$$

$$x_{2r}^{p+1} = x_r^p, x_{2r+1}^p = \frac{1}{2}(x_r^p + x_{r+1}^p),$$

$$y_{2r}^{p+1} = y_r^p, y_{2r+1}^{p+1} = \frac{1}{2}(y_r^p + y_{r+1}^p),$$

(so that (x_r^{p+1}, y_r^{p+1}) , $0 \le r \le 2k$, is equivalent to Γ).

Further, L is the simple (p+1)-curve (a_r^{p+1},b_r^{p+1}) , $2(r+1) \leqslant r \leqslant 2(r+\lambda)$, joining the points (a_r^p,b_r^p) , (a_{r+1}^p,b_{r+1}^p) , where (a_r^{p+1},b_r^{p+1}) , $0 \leqslant r \leqslant 2\lambda$, is equivalent to (a_r^p,b_r^p) , $0 \leqslant r \leqslant \lambda$, and both a_r^{p+1},b_r^{p+1} are periodic with period 2λ .

The only boundary level of D, between a_r^p and a_{r+1}^p , in any of the strips $e_r, e_{r+1}, 0 \le r \le h-1$, is X_0 , and so one of the points (a_r^p, b_r^p) , (a_{r+1}^p, b_{r+1}^p) is interior to D, and the other exterior to D. Hence by 11.3, L and D have a boundary (p+1)-point in common. It may be shown that Γ and γ have no point in common, and so the common points of Land D are (X_0, e_r) for some values of r. Let the common points be $(a_r^{p+1}, b_r^{p+1}), r=2(r+1)+r_m, 1 \le m \le n, \text{ where } r_{m+1} > r_m \text{ and } r_n < 2\lambda. \text{ The }$ relation of (a_r^{p+1}, b_r^{p+1}) to (a_r^p, b_r^p) shows that, for $r=2(r+1)+r_m$, $1 \le m \le n$, b_r^{p+1} is a boundary level of γ in the strip a_r^p, b_{r+1}^p , and a boundary level of L in each of the strips $a_{2\nu}^{p+1}, a_{2\nu+1}^{p+1}$ and $a_{2\nu+1}^{p+1}, a_{2\nu+2}^{p+1}$. It follows that for $r=2(\nu+1)+r_m+(-1)^m$, $1 \le m \le n$, the points $(a_r^{\nu+1},b_r^{\nu+1})$ lie on the same side of D as a_{r+1}^p , and those for which $r=2(\nu+1)+r_m-(-1)^m$, $1 \le m \le n$, lie on the same side as a_r^p ; but $2(r+1)+r_n$ is the greatest value of r (below $2(\nu+\lambda)$) for which $(a_r^{\nu+1},b_r^{\nu+1})$ is a common point of L and D, and so $r_n + (-1)^n < r_n - (-1)^n$, which proves that n is odd. Since b_n^p itself is also a boundary level of γ in the strip $a_{\nu}^{p}, a_{\nu+1}^{p}$, it follows that there are

an even number of boundary levels of γ in the strip a_r^p, a_{r+1}^p which lie between the consecutive boundary levels of Γ , η_1 and η_2 .

Thus between any two consecutive boundary levels of Γ , in a strip ξ, ξ' lie an even number of boundary levels of γ , (and no boundary level of γ lies outside Γ since the vertices of γ are interior points of Γ) so that, if f_r , $1 \le r \le 2i$, are the boundary levels of Γ in ξ, ξ' (in increasing order of magnitude) then the interior cells of γ in this strip lie between f_{2r-1} and f_{2r} , $1 \le r \le i$, and are therefore all interior cells of Γ , and the boundary cells of Γ are exterior cells of γ . Thus γ is completely contained inside Γ .

13. The p-curve of a relatively continuous function.

13.1. A rational recursive function (see [1]) f(n,x) is convergent in n, and continuous in x, relative to n, (op. cit., p. 174) in the interval $\langle a,b\rangle$, if there are recursive functions N(k,x), $a^k(r),\beta(k),\sigma(k,r)$ and C(x,y,k) such that, for all positive integers k,

$$\left|f(n,x)-f(N(k,x),x)\right|<1/2^k$$

for all integers n not less than N(k,x), and all rational x in $\langle a,b \rangle$, and, for $0 \leqslant r \leqslant \beta(k)$,

$$|f(n,x)-f(n,a^{k}(r))|<1/2^{k}$$

for all x satisfying $a^k(r) \le x \le a^k(r+1)$, and $n \ge C(x, a^k(r), k)$, where $a^k(0) = a$, $a^k(\beta(k)+1) = b$, and $a^k(r) < a^k(r+1)$, $0 \le r \le \beta(k)$, and $a^{k+1}(r) = a^k(\sigma(k, r))$.

13.2. f(n,x) is convergent in n, and continuous relative to n, in $\langle a,b\rangle$; then each of the differences

$$\begin{split} & \left| f(n, a^{k+2}(r)) - f(N(k+2, a^{k+2}(r)), a^{k+2}(r)) \right|, \\ & \left| f(n, a^{k+2}(r+1)) - f(N(k+2, a^{k+2}(r+1)), a^{k+2}(r+1)) \right|, \\ & \left| f(n, a^{k+2}(r+1)) - f(n, a^{k+2}(r)) \right| \end{split}$$

is less than $1/2^{k+2}$, whence

$$\left|f(N(k+2,a^{k+2}(r+1)),a^{k+2}(r+1))-f(N(k+2,a^{k+2}(r)),a^{k+2}(r))\right|<3/2^{k+2}$$

and so, if

$$f_k(r) = \left[2^k f(N(k+2, a^{k+2}(r)), a^{k+2}(r))\right]/2^k$$

(where [x] denotes the greatest integer not exceeding x, if x is non-negative, and [x] = -[-x] if x is negative) then

$$|f_k(r+1)-f_k(r)| \leq 1/2^k$$

and so the integers $2^k f_k(r)$ are equal or consecutive for consecutive values of r. $f_k(r)$ is called the lacing of the function f(n,x); the lacing depends, of course, upon the subdivision $a^k(r)$.

13.3. f(n,x) and g(n,x) are both convergent in n, and continuous relative to n, in $\langle a,b \rangle$. By combining the subdivisions of (a,b) associated with f(n,x) and g(n,x) respectively we may form lacings of these functions, $f_k(r)$ and $g_k(r)$, on a common subdivision $a^k(r)$, $0 \le r \le \beta(k) + 1$, say. Let

$$\Theta(0) = 0, \qquad \Theta(r+1) = 2^{p} \{ f_{p}(r+1) - f_{p}(r) \} ,
\varphi(0) = 0, \qquad \varphi(r+1) = 2^{p} \{ g_{p}(r+1) - g_{p}(r) \} , \qquad 0 < r < \beta(p) ,$$

so that $\Theta(r)$ and $\varphi(r)$ take only the values 0, ± 1 .

Further, let $r_0=0$, and let r_{r+1} be the least integer greater than r_n , if any, such that $|\Theta(r_{n+1})|+|\varphi(r_{n+1})|>0$; otherwise $r_{n+1}=r_n$. μ_p is the greatest positive integer, if any, such that $\mu_p\leqslant\beta(p)+1$ and $r_{\mu_p}>r_{\mu_p}-1$; otherwise $\mu_p=0$.

Hence if $f_p^*(i) = f_p(r_i)$ and $g_p^*(i) = g_p(r_i)$, $0 \le i \le \mu_p$, and

$$\begin{split} & \Theta^*(0) = 0 \,, \qquad \Theta^*(i+1) = 2^p \{ f_p^*(i+1) - f_p^*(i) \} \\ & \varphi^*(0) = 0 \,, \qquad \varphi^*(i+1) = 2^p \{ g_p^*(i+1) - g_p^*(i) \} \end{split}$$

then $\Theta^*(i)$, $\varphi^*(i)$ take only the values 0, ± 1 , and are not simultaneously zero for i > 0.

Next, let $k_1+1, k_2+1, ..., k_r+1$ be the values of i, (if any) in increasing order of magnitude, where $|\Theta^*(i)\varphi^*(i)| > 0$, then we define:

$$\begin{array}{ll} f^p(k_r+r) = f_p^*(k_r+1), & f^{\ell}(j) = f_p^*(j-s) \\ g^p(k_r+r) = g_p^*(k_r), & g^p(j) = g_p^*(j-s) \end{array} \right\} \begin{array}{l} 1 \leqslant r \leqslant \nu, \\ k_s+s+1 \leqslant j \leqslant k_{s+1}+s, \\ 1 \leqslant s \leqslant \nu-1 \end{array}$$

and

$$\begin{split} f^p(j) &= f_p^*(j), & g^p(j) = g_p^*(j), & 0 \leqslant j \leqslant k_1, \\ f^p(j) &= f_p^*(j-\nu), & g^p(j) = g_p^*(j-\nu), & k_\nu + \nu + 1 \leqslant j \leqslant \mu_p + \nu. \end{split}$$

If $\Theta^*(i)\varphi^*(i)=0$ for all $i,\ 0\leqslant i\leqslant \mu_p,$ then we define

$$f^{p}(i) = f_{p}^{*}(i), \quad g^{p}(i) = g_{p}^{*}(i), \quad 0 \leq i \leq \mu_{p}.$$

In either case

$$2^{p}\{|f^{p}(i+1)-f^{p}(i)|+|g^{p}(i+1)-g^{p}(i)|\}=1$$

and therefore

$$(f^p(r), g^p(r)), \quad 0 \leqslant r \leqslant \mu_p + \nu,$$

(where ν is the number of values of i for which $|\Theta^*(i)\varphi^*(i)| > 0$) is a plane p-curve, which we shall call the p-curve derived from f(n,x), g(n,x).

Thus a pair of functions f(n,x),g(n,x), each convergent in n, and continuous in x, relative to n, determine a sequence of curves, the p-curves derived from the pair, for all positive integral values of p.

- **14.** If f(r) is the lacing of a function f(n,x) on a subdivision a(r), $0 < r < \beta + 1$, then $\sum_{r=0}^{\beta} |f(r+1) f(r)|$ is called the *relative variation* of f(n,x) on the subdivision a(r).
- **14.1.** If V^1 , V^2 are the relative variations of f(n,x) on the subdivisions $a_1(r)$, $0 \le r \le \beta_1 + 1$; $a_2(r)$, $0 \le r \le \beta_2 + 1$, and if there is a positive integer function v_p such that, for $k \ge 1$,

$$|V^{_1}\!\!-\!V^{_2}|\!<\!1/k$$

for any subdivisions $a_1(r)$, $a_2(r)$ satisfying

$$\max_{\substack{0 \leq r \leq \beta_1 \\ 0 \leq s \leq \beta_2}} \left\{ \left(a_1(r+1) - a_1(r) \right), \left(a_2(s+1) - a_2(s) \right) \right\} < 1/v_k,$$

then (anticipating the following theorem) f(n,x) is said to be of convergent variation relative to n.

14.2. If f(n,x) is of convergent variation relative to n, and if V_p is the relative variation on a subdivision $a^p(r)$, $0 \le r \le \beta(p) + 1$, such that $\max_{0 \le r \le \beta(p)} \{a^p(r+1) - a^p(r)\} \to 0$, then V_p is convergent.

For we can determine p_k such that $\max_{0 \le r \le \beta(p)} \{a^p(r+1) - a^p(r)\} < 1/v_k$ for $p \ge p_k$, and so if q is any positive integer, then by 14.1,

$$|V_{p+q}-V_p| < 1/k$$

which proves that V_p converges.

14.3. If f(n,x), g(n,x) are of convergent variation relative to n, then the sequence of p-curves derived from the pair of functions is said to be *rectifiable*.

Reference

[1] R. L. Goodstein, Recursive function theory, Acta Math. 92 (1954), p. 171-190.

UNIVERSITY COLLEGE OF LEICESTER

Reçu par la Rédaction le 10.10.1954