Models of axiomatic theories admitting automorphisms

by
A.Ehrenfeucht and A, Mostowski (Warszawa)

The present paper is concerned with models of axiomatic theories
baged on the first order logic with identity and more gpecifically with
automorphisms of such models. The main results of the paper are con-
tained in section 5 and in particular in theorem 5.7 which says that if
a theory possesses at least one infinite model, it also possesses a model
with a “very large” automorphism group. It is a corollary to this theo-
rem that axiomatic systems of arithmetic possess models which admit
non-trivial antomorphisms. This corollary solves a problem formulated
by G. Hasenjaeger. :

From the point of view of methods it may be interesting to note
that the proofs of our fundamental results are not constructive and that
for two reasons: First we use a theorem which states that if a theory
is consistent, then the set of its axioms can be extended to a consistent
and complete set. Secondly we use the so called ordering principle, i. e.
an axiom stating that every set can be ordered. Since in the whole paper
we are dealing with theories containing an arbitrary (not necessarily
denumerable) number of constants, we see that the first non-constructive
theorem mentioned ahove is equivalent to the so called fundamental
theorem of the ideal theory in Boolean algebras (Henkin [2], especially
p. 89 and Lo$ [4]). Since the ordering prinsiple is known to follow from
that theorem (Lo¢ and Ryll-Nardzewski [6]), we conclude that the non-
-eonstructive tools used in the proofs of our principal theorems are all
reducible to the fundamental theorem of the ideal theory in Boolean
algebras.

It should also be mentioned that our proofs provide another instance
of what has been called by Tarski [10] “the principle of condensation
of singularities”: The existence of a model admitting a large group of
automorphisms is equivalent to the simultaneous satisfiability of an
infinite number of sentences. We secure the satisfiability of these sen-
tences by showing that the adjunction of an arbitrary finite number
of them to the axioms does not render the theory incongistent.
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In order to make the paper self-contained we have colleeted in the
introductory sections 1-3 all the notions and lemmas which are necessary
to an exact formulation of the main theorems and to their proofs. None
of these sections contain new results: in seetions 1 and 2 we lay down
the terminology and recall some well-known facts concerning models. In
section 3 we expound the general method (due to Henkin [1], Novak [7],
and Rasiowa [9]) of constructing models for arbitrary theories. In sec-
tion 4 we recall some properties of automorphisms and prove a theorem
stating that for each group G there is a theory some models of which
Possess an antomorphism-group isomorphic with @ (this is the only theo-
rem in our paper in whose proof the full axiom of choice is used).

It seems to us that the automorphism-groups discussed in the pre-
sent paper deserve a closer study. We intend publishing some of their
applications in subsequent papers.

1. Axiomatic theories and their syntax. We consider axio-
matic theories based on the functional ealculus of the first order. Every
such theory §is determined by three sets: 1° F(S), the set of functors
(symbols for functions), 2¢ P(8), the set of predicates (symbols for rela-
tions (. e., for propositional functions)), 3° A(S), the set of axioms. We
make no assumptions as to the cardinal numbers of these sets, which
may be finite or denumerable or even non-demumerable. We assume
however that P(S) contains at least one symbol, viz. the identity pre-
dicate « If p is a funetor or a predicate, then we denote by a(p) the
number of arguments of p. We do not exclude the case where a{p)=0;
in this case ¢ is called a comstant. Of course we assume that a(;)=2.
Finally we asgume that all the theories which will be considered below
contain the same individual variables and we denote these variables 1)
by &1,éa,6s,..

By W(8) we denote the class of terms of S. Thus W(S) is the smal-
lest class that contains all the variables and contains the expression
B(w1y... o)) (Where @ e F(S)) whenever it containg wy,wy; ..., 0a.

By Z(8) we denote the class of (sentential) matrices of 8. Thus
Z(8) is the smallest class satisfying the following conditions: 10 If xe P(8)
and @y, 0 € W(S), then n(wy,..,wum) e Z(8); 20 if {,0 ¢ Z(8),
then ~3,, §-ZaeZ(8); if (e Z(8), then (HE)eZ(8) for n=1,2,,.2.

%) The letters & are not variables but names for them. In a similar way we con-
strue the symbols “~"’, “5’’ ete. which we shall use below as names for symbols actually
occurring in 8. .

) Other logical operations can be defined in an obvious way in terms of negation,
eonjunction, and existential quantifier.
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An expression which results from an expression ae W(8)oZ(8)
by a substitution of a term o, for a variable §; (j=1,2,...) will be de-
noted by

substa ( fo by )

ey Wayoee

or, in cases where no misunderstanding is possible, more simply by
substa(ew,,my,...). We omit the explicit formulation of the well-known
conditions which. must be satisfied in order that the operation subst be
performable.

A matriz £ e Z(8) is open or closed according as it containg no bound
or no free variables. A ferm w ¢ W(8) is called constant if it contains no
variables. The set of constant terms will be denoted by W*4).

The class of theorems of § will be denoted by T(S). The following
matrices are agsumed to be contained in 7'(8) for each §:

Ektfk, kaEIDEILEky (fklfl)(éltfm):)(gklfm)ﬁ
£ct& D wisubsto (Z‘) v kt&D [c = subst¢ (?‘)] )
, !
(e W(8), LeZ(8), k,l,m=1,2,..).

A theory 8’ is called an extension of § if F(S)CF(S8"), P(8 '

, y JCP(S
and T(S)CT(8'). The extension is called inessential if.’ P(S’):P(;;;

and T(S')~Z(8)=T(8).
% theorth is called open if all matrices that belong to 4 (8) are open.
rom the so called second e-theorem (Hilb '

5. 1899 Gollums (Hilbert and Bernays [3],

‘ T@om 1.1. For every theory 8 there exists an open theory 8’ which
is an inessential extension of S.
2. Models o.t axiomatic theories. Let § be a theory and X
20 ;;t. We consulgr a function M with the following properties:
assigns a function M, (with a(p) arguments) defined in X and taking
on vall}es which are elements of X to each ¢ « F'(8); 2° M assigns a relation
1{1111’2 (Wllt:;]' a(:lz% agguments) defined in' X to each n e P(8); 3° M assigns
relation of identity in X to the predicate «. Every such f i
we call a pseudo-model of § over X. v nnetion
Let M Dbe a pseudo-model of § over X. A function

j= (El b EZ! "‘)
" . Byy gy e
which assigns an element of X to each variable we call a valuation. We

put valpéy=ax; and i initi
by assuj];lﬁ njg i extend this definition over the whole clags W(S)

Valpp ey, ..., up) =M (Valproy, ..., Valp o) -
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Tustead of valpo we shall usually write

vatga(r507)

' Dy yBayee
or simpler valyo (@, Te,...)-
Tet e P(8), Oy s Qo e W(S), and e=a(wy, ) Bam)- We de-
fine %)
StSffMC = Z'[,,(Valmwl, ceey Va:lwaa(,,))
and extend this definition over the whole set Z (8) by assuming %)
StSffM( NC) = NStSffMg, stsffM(Cl . 52) ‘:‘“Stsfmcl . Stsijcz,
st (TLE) L = (Ef)[(f' ~f) - stisfrael] s

where the formula f'~,f means that f'(&,)=7(£;) for jsEn.
Instead of ststn we shall usually write

sttt )

DyyLayonr
or simpler stsfal (®y,re,..0)

We denote by Vi the set of matrices ¢ which are valid in M, 4. e.
are such that stefa, holds for all f. If A(8)CVy, then we say that M is
a model of 8.

Tet S be an extension of § and let M’ and M be pseudo-models
of & and § over the same set X. We call M’ an extension ) of M if
M,=M, for pe F(8)oP(8).

The following theorem is an immediate consequence of the above

- definitions:

TuporEM 2.1. If 8 is an extension of 8 and M’ an extension of M,
then st l=stsfpl for each valuation f and each e Z(8).

- 3. The construction of models. Let S be an open theory which
possesses a model over an infinite set and let X be an arbitrary set. We
assume that there iz a one-to-one correspondence between the elements
of X and certain symbols which do not oceur in 8. For simplicity we
shall identify the elements of X ‘with the corresponding symbols.

We extend the theory § to a theory §*(X) by adding the elements
of X' to the set F(§) and the matrices ~ (% 12"} where #',2"" ¢ X, o' FEa
to the set 4 (8). We assume that a(z)=0 for we X, 1. e that each » is
2 constant term of the theory 8*(X).

3y Here, as in many places below, we use the logical symbols as abbreviations
of certain expressions of the informal language.
4) Note that in these formulas logical symbols have double meanings: they occur
28 names of symbols of § and as abbreviations of expressions in the informal language.
5) This meaning of the word «oxtension’ is narrower than the meaning attributed

to this word by Tos. Cf. J. Los [8).
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LEMMA 3.1. The theory 8*(X) is constistent,

Proof. Let M be a model of § over an infinite set V. Let us firgt
assume that X is a finite set consigting of the elements Bryeeyiby,. Let
Y15-+;Yn be different elements of ¥. We extend the model M of Sover ¥
to a pseudo-model M* of §*(X) over ¥ by putting

My=M, for pel(S), Mi=y; for i=1,2,..,m,
Mi=M, for =meP(8).

From theorem 2.1 it immediately follows that if {ed(S), then
£ € Var. Since the formula ~(a'1a”) e Vase i evident, we conclude that
M* is a model of S*(X) over Y. Hence S*(X) is consistent.

The general case can be reduced to the case of g finite X by the
observation that an Inconsistency of S%X) would entail the inconsig-
tency of S*(X;) where X, is o finite Subset of X.

Now let I be an arbitrary consistent and complete subset of Z (8(x )
containing A (S*(X)). The existence of I is secured by lemma 3.1. We
denote by §8(X,I) atheory §' such that F(8)=F(8"(X)), Z(S’):Z(S*(X))

and 4 (8)=1. Two constant terms @y, of the theory 8(X,I) will be

called equivalent if oo, eI. We write then w; ~m,. The following pro-
Derties of the relation ~ are obvious:

LeMma 3.2, ~
Ly Fy. .

LeMuma 3.3, If ¢ eF(S(X,I)), neP(S(X,I))
terms of the theory S(X N
for i<a(y), k<a(x), then

18 an equivalence relation and nnon~Zy for my,meX,

1 Wjy0F, Ty, Th are constant
) (<alp), k<a(n)), and if W) R 0f, T T,

(@, ..., Do) ~ @ (i ... 1 Daty) s

We denote by &y the set of equivalence classes of W*(S(X ;I))
under the relation a. The equivalence class containing a congtan
will be denoted by [w].

We assign to a functor p e F(8) a function M, such that

7!(1‘1, ...,1:“(,,)) EH(T{, ...,‘l',;(,.)) el.

t term w

mw([ml]i seny [wa(np)]) == [‘P (wla .

-y wn(w))] ’
and to a predicate 7 e P(8) a relation M,

such that
mn([wljy oy [@agm]) =mn{wy,... 1@agmy) € I,

It follows from 3.3 that t

he values of M, and of M, do not depenil
on terms w; but on the equi

valence clagges [w;]. Since
M, ([on], [w,]) = Oty el =y Wy=

[eo]= [w.] )
‘we obtain
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TEMMA 3.4. The function M is a pseudo-model of S over the set Xx.

The psendo-model M depends on the sets X and I and .wﬂl hherf—
fore be denoted by M (X,I) if its dependence on X and I will have to
e emphasized. . . '
’ Ffom the definitions we obtain by an easy induection

LEMMA 3.5. If o ¢ W(8) and 7,7y, ... are constant terms of 8(X,I},

4B RN
then valggw([7:],[7e], ) =[subst w (7, 75, ...)]-

LEMMA 3.6" If ¢ is an open matriz of S and Ty,Ts,... are constant
terms of S{X,I), then stsfacd([7y],[7e],...)=50bStE (71, Tay...) € 1.

Since I contains the axioms of § and these axioms are open ma-
{rices, we obtain from lemma 3.6 s .

i del o over Ex.

THEOREM 3.7. M(X,I) is a mo -

Again let 8 be an arbitrary theory and X a,nl aarbli?ra,ly seb. Le; ilﬁ
be a pseudo-model of § over a set ¥ and lc?t M be its ‘extensw L
a p;eudo-model of 8¥(X) over Y. The following theorem will be ne
in section 5: ‘ _
1 TaEoREM 3.8. If o e W(8), { e Z(8), { is open, cm,,d if @y Lgyene eX;
then o'=subst o (2, Ty, -.) 18 a constant term of S*(X) and '=substi(wy,Ls, ---
is a closed matriz of S*(X); moreover

(3.8.1) valy o' =valyo (M, Miy,...),
(3.8.2) stisfarE’ = stsfpl (M5 ) Mgy onn)
Proof. If w=§;, then both the left and the right hand side§ o;f (i‘; 18“;()3
‘ . e r___ ’
are equal to M. I D=0, ,0a), ThEDL @ -—qof(wlé.g,f;a@],;oms e
the accents denote the operation subst(%y,@s,..}. T (3.8.
the terms w; (j<a(g)), then
valy (@) =My (valyy o1, .-, Vol 0up) , / ))
=JI;,(V&]ML01(]'I;1, ‘WI;B?“')"'W Va‘lea(m)(—Bley -Z‘Ixai T § I

Since M,=M,, we obtain (3.8.1) for the term o.
Proof of (3.8.2) is similar.

er X
t 1M be a model of 8 over
rphisms of models. .Le . 2
A 400?1: trz:;);hfg f of X onto itgelf is ca,]leq an autow;rghwzzeop(s)
if :11 foliowing equations are satisfied for arbitrary @ ¢ F(S),

and @;,%,... € X:
f(ﬂ[’/)(nﬂly 7wn(¢))):MW (f(wl) yere ’f(m“(‘P))) !

ﬂIn(mly ..A;«’I/'a(n)) EMn(f (3}‘1) 3o 7f(ma(n))) .
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The group of automorphisms of M is denoted by Gu.
In the following two lemmas we note some well-known proje
of automorphisms:

Lovma 4.1, If fe Gy 0 e W(S), £ Z(8), and ZyyTpyeee € X,y then

srties

f(Va'IM‘U(mumz: )) =V311Mw(f(w1)7f(w2) ’ ) ’
stsEarl (21,5, ...) EstSfMC(f(wl),f(%)v--) .

Lemma 4.2. If 8 is an extension of 8, M is a model of S vver X
and M’ a model of 8 which is an extension of M, then GapC Gy

We shall now show that each group can be represented ag G, for
a suitably chosen model M of a suitable theory S§.

THEOREM 4.3. For cach group G there is a theory 8 and o model M
of 8 such that the groups Gy and @ are isomorphic.

Proof. We call, as nsual, a left translation of @ a mapping ! of ¢
onto itself defined by means of the formula Hg)=gog, where g rans over ¢
and g, is a fixed element of G.

We ta,keﬁ as F(8) the empty set and as P(
and of binary predicates z; where f runs over one-one mappings of @
onto itself that are not left translations of @. The set 4(8) is to consist
exclusively of the axioms of identity emumerated on p. 52,

If f is a one-one mapping of & onto itself that iz not a left trans-
lation of @, then there are two elements g,,9, of @ such that Flg) - gt
#f(g:) g5. We select for each 1 a pair gir,gar of elements of @ satistying
:ﬁu; condition and denote by M,,f the binary relation defined in G such

a

(4.3.1) Mofld'9") =) (g € &) - (' = gg1) (9" = gga )] .

Denoting by M, the relation
of § over @.

Let 7 be a left translation of a, 1l
we immediately obtain

8) the set consisting of &

of identity in @, we obtain a model

(9)=9vg Where g, ¢ G. From (4.3.1)

(4.3.2) Melg',g") =M fig),0(g")  for  mpeP(S)
and hence 1 Gy,. ’

If 1 is not a left translation of &, then (4.3.2) does not hold for all
7 ¢ P(§). Indeed, suppose that (4.3.2) is true for f=1. 8ince Mo (g1e,900),
we obtain ZVI,,,(l(gu),l(gg,)) and hence we infer that there ig g g € G such
that 1(gi)=g.¢,; and Ugs) =g gty i e Hgu) - 91 =1(gu))- gi7*, which

contradicts the choice of the elements g, g5;. Hence 7 ig 1not an auto-
morphism of M,

. 5
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1t follows that @y is identical with the group of all left translations
of @ and hence isomorphic with @.

5. Models with non-trivial antomorphism groups. Th.e fol-
lowing theorem due to Ramsey ([8], theorem A on p. 384) is basic for
all theorems given in this section:

TaEorREM 5.1. Let ¥ be an infinile set and ¥" the set of sul;se?n OJf g:'

i 1 "=Cyu.w O 8 a partition o into
having exactly n elements. If ¥ 15 @ par
mutually disjoint seis, then there is a j <k and an infinite sel Y, CY such
that Y"CC].

]n1 the sequel we consider an open theory § and a model M(X,I)
of 8 (cf. gection 3). . . t

LEMMA 5.2. A one-one mapping h of X onto itself o_letermmes at Mmos:
one automorphism f of M(X,I) satisfying the condition f{{£])==[h(x)]
for we X .

o mPero of. A constant term = of §*(X) has the form rzsubstw(wl,mgé .:.)

where o ¢ W(8) and ;¢ X for j=1,2,... H()ancel‘:).yh&i and tigi\:}(ieo:a?;r;
shows

the formula f([7])=valgw (f([mﬂ),f([mz]),..‘ , whic :

of f([7]) is determined by the values of f([#]) for « ¢ X. This proves the

lenmfflhh is a one-one mapping of X onto itself for which there exists

an automorphism f with the properties described in 1emm2‘» 5. fz,dtlzzg
we shall say that h,induces an automorphism. The automorphism indu
by k will be denoted by fi. ‘
Y LEMMA 5.3. If hy#h, and the automorphisms Fas Ty c0ist, then fo 7 fhae
i i 3.2.
Proof follows immediately from lemma ‘ ' _
LEMMA 5.4. A one-one mapping b of X onto dtself z.114uce§ an 'au?od
morphism of M{X,I) if and only if the following condition &3 satisfied

; . i 515527"' .
by each open matriz ¢ and each assignmen A A
R N TR )Ez.
(5.4.1) subst{ (Jl’,m:...)="“b“(h(x1>,h(wa>,-~

Proof. From the cbmpleteness of T it follows that exalctly o:}m (}f
. s to I.
the closed matrices subst{ (wl,_wz,...) , ~8ubstl{a,,®,,...) belongs
We can assume that it is the first. ‘ o
e‘By 3.6 we obtain the formula stsf“;nl,‘([aﬂl],[wg]3 ...}, whence ;L_‘[l)nfeihzi
lemma 4.1 that if h induces an automorphism Oj}i M ),E I, phen
stafa s ([B (@)1 [h(z)]s-r), 4 €, Dy 3.6 subste (R (1) h(22), ) € L.
the formula (5.4.1). )
})I"OViSet us now assume that (5.4.1) holds for each open ma,.trﬁ:e: Oafng
let = be a constant term of the theory 8*(X). We assign varla
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to the elements of the set X occurring in = in such a way that different
variables are correlated with different elements. Let Z denote the va-
riable assigned to » and let 7 be a term of 8 obtained from 7 by replacing
each z by the corresponding variable Z.

Now let 7,7, be two constant terms of the theory 8% X) and let
Lyyeey @y be all the elements of X which oceur in 7 or in 7, or in both
of them. We shall show that

_ Ty yeeny X, — T ey
5.4.2) If 1,~1,, then substz ( 1oy T )m subst T ( A )
(5.4.2) If nmm, Wniay), ..., him) bz, .., B(m)

Indeed, ,~7, means that v, ¢ 7, eI, whence
[

substrlwg( B ")eI.
Dyyoeey By

Now we use (5.4.1), in which we take (=177, and replace the
variables &,&,,... by %,%,,...,%,. In this way we obtain

- = T Ty yuesy X, .
substT Lo TR ") I
‘ 1”2(h(w1),h(w»,...,h(w,.) <h
which proves (5.4.2).

From (5.4.2) it follows that defining f, by means of the formula

f,,([r])_[subbt't(h( ), ”h(ﬁ;n))]

(where y,...,3, are all the clements of X that ocour in ), we obtain
a function defined on Fy.

-Bach element [7] of &’ x Is the value of f, for a suitable argument.
Indeed, if

z’—subsﬁ( Wy B )
h'—l(ml) geur ,h“l(w,,) !
then

% .., &
z _substz(w—— 7_"...-)

Y ’
and hence Cp (w,,)

v ol BH@) ey By
T[7'])= | subst .
' [ i (h(h'_ (ml))y'“!h(h—l(wn)))]

- AN
= [substr (991’ - ’,wn)]=[-;] .

In a similar way we show that the mapping f, is one-one. Indeed,
it fullml)=7ul7.]) and ,...,4, have the same meaning as in (5. 4.2),

then
sub.st?( Ty ey By )N ( By ey Ty
W)y @) > TP ) )
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and heuce

‘ e = Ty yeery Ty
mlb.sth”z(h(_pl), ...,h(mn)) <

Using (5.4.1) we obtain
subst?lt?z(x“'"’ x,,) el
Ty yeery Ty

whence i1, I, Ty 21, and [7]=[7].
Finally we shall show that f, is an automorphism of EM(X,I). For
@ e F(8) we have
fh( ALT]s e [Ta]) ) fh([‘P(Tla y Tatg) ]}

By putting w=@(%1,..,%am) and observing that o=@ (71,..,%Tan) we
obtain further

AT, s [T ]) = T [w])—[substw(,(“ ’hZZ,))]

2y)

Z,

Ll B e, B e (:T;l yeees ))]
—["’(“‘b““(h<w1>,...,h(mn>)"“’b“b"“"(*’ B(), o ()

ot ez, [, 7 ] st [ 0
=PMI[2]) s o r fil[Te]) -

This is the required automorphism-property for ¢ F(S).
If 5 e P(S), then

Mal[71], o s [Tae]) =7 (Try ey Tam) € L

— Ty 5 T
= 8nbsta(Tyy ooy Tagm) ( i m") el,
n,

where @q,...,, arve all the elements of X that occur N 7 (Tyy e Tam) -
Using (5.4.1) for {=a(7y,...,7aw) We obtain therefore

- = Ty yeeey Zn 1.
MALT1]y e, [Tatmy]) = SUDBEA(Try von s Tal) (h (@), h(m,,))

The right-hand side of this equivalence means precisely the same as
Mea(f([7s], s Fl[Tatm])) - Lenmna 5.4 is thus proved.

In order to express conveniently the content of lemmas 5.2, 5.3,
and 5.4 we shall adopt the following

Definition. A group G, of transformations of a seb X; strongly
contains a group G of transformations of a set X if X,0X and each fe@
can be extended to at least one function f, €' G.
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It e is a cyclic group generated by a transformation %, then instead
of saying that @, strongly contains @& we shall say that G; strongly con-
tains h.

From lemmas 5.2, 5.3, aud 5.4 we obtain

THEOREM 5.5. Let S be an open theory and X a sct. In order that
there exist a model M of 8 over a set X,0X such that Gy strongly contains
a group @ of transformations of X it is necessary and sufficient that the
theory S*(X) remain consistent after the adjunction of all equivalences
(5.4.1) to its awioms where h is an arbitrary element of @ and § an arbitrary
open matriz of 8. ‘

Proof. If the condition is satisfied, we can extend the set I’ (S*<X))
to a complete set I satisfying (5.4.1). On using lemma 5.4 we obtain
a model M(X,I) whose automorphism group strongly contains the
group of transformations [&]—[h{x)] of the set [X]=J [x e X]. Since

[£1]

there is a one-one correspondence between the elements of X and those
of [X], we can exchange the clagses [«] for the elements # and obtain
thus from M(X,I) (which is a model of § over &y) a model M of §
over a set X,;0X such that Gy strongly contains the group @.

Conversely, if there is a model M of § over a set X;0X such that
Gy strongly contains &, then we use 4.1 and find that formulas (5.4.1)
bellong to Vi for each open matrix ¢ ¢ Z(§) and each he @. Since fhe
axioms of 8%X) are evidently elements of Vi, we obtain the desired
consistency.

THEOREM 5.6 ¢). Each theory 8 (not necessarily open), which possesses
at least one model over an infinite set, possesses a model M, such that the
group G, strongly contains an infinite cyclic group.

Proof. Let us first assume that § is open and consider an infinite set

K=oy @y y Bty By, By g ey By 0.}

where @;7%x; for ¢+£4§. Let A be the ¢ on |
i . ransformati ) =
(=0, &1, 2,..). o o=
In order to prove our theorem we hav

_ J ¢ to show that the adjunction
%fr equlyalences (8.4.1) (where ¢ € Z(S) and a,,...,x, are to be i‘epl&ced
13 :irbltrary elements of .X ) does not render theory 8*(X) inconsistent.
t will of course be sufficient to show that no incongistency occurs it we

adjoin an arbitrary fini X
o ]S"‘(X). itrary finite number of equivalences (5.4.1) to the axioms

*) Theorem 5.6 is contained as a i i

. special case in the theorem 5.7 which follows

f;:cteil (l)xov;;v?: the proof of_ theorem 5.6 is much simpler than the proof of t]:eor:mo‘g’;
ught it useful to give an independent proof of theorem 5.6. '
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Tet ug therefore consider s open matrices {y,...,0, ¢ Z(8) and assume
that no variable different from &, &, ..., & occurs in any of these matrices.
We consider further s sequences of integers cach containing exaetly 1 (not
necessarily different) terms:

TR U M PO, PO L S 2 L

We may assume thatb the terms of these s sequences lie in the interval
— L PR, .

We extend 8 to a theory &* such that P(8¥)=P(8), F(8)
=F(8) w{Lyeoyuia} (Where a(z)=0 for —n<j<n+1) and A(S*) is
obtained from A(S) by adjunction of the matrices
51752?"'5§f 517 52 13 Et )

5.6.1 substl =gubstl
(8.6.1) g >’(m,-,,mj,,...,mm,) ’(h(mil),lp,(m,-x),...,h(mml)

(1=1,2,...,8),
(5.6.2) ~{prey)  —n<i<j<ntl.

Note that the only symbols of §* that do not oceur in 8§ are
L_pyren 3@y Ppt1s

Tn order to prove the consistency of §* we shall construct a medel
for this theory. To this effect we first assign on+1 different variables
of § to the elements &y, ...,Zy41 and denote by 7, the variable correspond-
ing to z,. We consider further 2° matrices

(5.6.3)  Wepe,= SUDSELT (a_f“ bayeens i )...substc‘," (f“f“*"“’ i )
1 (]

;l,iv'h,...,xm CI?,-‘,.’X?‘;‘,...,EM
where g,=11 for p=1,2,...,8 and ¢° stands for ¢ or ~{ according as
g=--1 or e==—1. These matrices evidently belong to Z(S); their free
variables aré T_,,...,T, Or some of these variables. It is also evident that
the matrices (5.6.3) possess the following properties:

(5.6.4) ~(YPops,” Yopoms) € T(8) for (8y+00 &) = (1geeeWs) »
(5 6.5) the alternation of 2° matrices (5.6.3) belongs to T(S).

Now let M be & model of § over an infinite set ¥. The exixztence
of M is secured by the assumptions of the theorem. We assume Y‘to
be ordered by an arbitrary velation < which, in.general, has nothing

in common with relations definable in S. Let Y2+ pe the set consisting
of subsets of Y with exactly on-+1 elements and let C,..., b® the

set containing as elements all ‘those sets {(Y_ny...,Yay CY for which
Yor € ... €Y, a0d

(5.6.6) Sf:SfMy,‘l‘“al(x.._ny-..,Zl'n)‘

Y—nyeesYn
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From (5.6.4) and (5.6.5) it is clear that the sets Co..s, determine
a partition of Y**% Applying theorem 5.1 we infer that there is
a Zﬁlizled system of indices ey,...,5 and an infinite set .YIC Y such‘ that
¥.,"'ce,,..,. We choose from Y, 2n+2 elements YnyeeorsYny Ynan suc:,h

that Yer L 4 Y < Kl +1. I‘IGHCG we ha Ve the formula 00 ar
n n 4 (At
( ). € 6) nd aAISO

(5.6.7) stsfM%,_ue,< B gees B )
f’/—n+17-'-):’/n+l

We now define a pseudo-model M* of §* over ¥ by assuming
Mi=M, for @ecF(8), Mi=y; for J==nyn,nd1,
Mi=M, for = eP(8).

) £f le A&S), thex} { eV and hence { e Vi (ef. theorem 2.1). Axioms
(0.6..‘.) .of 8* are evidently contained in Var because Mi=ry sy, =2
for i%j. Formulas (5.6.6) and (5.6.7) prove that T

RSP (z,-,,...,x,,,,) and stsfME'}‘(ii’ s T )
. .’ljl,-}-l, siey ?/m;—f—l
fgr 1=1,2,...,5 and hence, in accordance with theorem 3.8,

iy, &
stsfM.(substh’(m“ ’ ‘)) and stsme(snbsté}”(h (51 peey & ))

iy eeey &
Iy eeey Ly "Iz'],),.. ,h(m,,,l)

il""5?/'"l

From these two formulas it follo i
: ws that axioms (5.6.1) are valid i *
t. e. belong to V. Thig proves the consistency of S‘Z v n A

TheOIGm 5.6 18 bhus rove he cage of 1 Ol)e t CO. Y C[h(’
:p d for t
8 & 1L h *Ory.

oo 1 be o case of an open theory by means of
‘ The folloviving example shows that theorem
if we replace in it the words “infi
arbifrary transformation group”’.

Assume that § is a consiste
; 4 nt theory and t
nary predicate m such that the ma‘trieesy hat P

] : 5.6 ceases to be true
nite cyclie group” by the words “an

(8) contains a hi-

(517552)'(527553)3(51353), ~(& 7w,

belong to T(g).

If ¥isan arbitrary
does not contain functi
formations of finite or
f(2)#2, and §,

G &) V(E ) V(g nE)

model of § over an arbitrar

! 8 Y set X,, then @
dons TVthh, limited to a subset X of X, ,1 ;mre t:raam:f
- de.: different from identity. For assume that feQy
ed to a set XCX, containing z, is a transformation,

icm
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rder n. Since X is ordered by the relation M., we have either
Ma(w,f(x)) or M(f(x),s). It will be sufficient to consider only the first
case. We have evidently M,(f(2),f" (@) for j=0,1,2,...,n—1 because
f is an automorphism of M. By the transitivity of M, we obtain there-
fore M.(z,f'(@)), . e. Mu(2,2), which is a contradietion.

In connection with these remarks we shall introduce the following

Definition. For each set X ordered by a relation < we denofe
by G(X, <) the group of all transformations of X onto itself leaving
invariant the relation <3 (. e. satistying the condition o, <@, =1(2,)<f(x,)
for @y, € X).

THEOREM 5.7. If a theory S has ot least one model over an infinite
set, then for each ordered set X there is a model M, of S such that Gy, Strongly
contains G(X,<<).

Proof. As in the proof of theorem 5.6 we can limit ourselves to the
case of an open theory S. According to theorem 5.5 we have only to show
that the theory S*X) remains consistent after the adjunction fo its
axioms of all matrices (5.4.1) where ¢ is an open matrix of § and °
he G(X,<). This again can be reduced to the proof that the theory 8
remains consistent after the adjunction of an arbitrary finite number
of axioms of the form (5.4.1) and of a finite number of axioms of S*(X)
which are not already contained in A(S). .

Accordingly we consider a finite number of open matrices LyyCoyeensls
of § and assume that no variable different from &,§,,...,£ oceurs in
any of these matrices. We further consider s sequences each containing ¢
elements of X

(5.7.1) L1412y - 1 ity i:l,‘z,...,s

(we do not assume that @; 7w for j=£%). Finally we consider s funections
G1yes0s € G(X, <) and denote by X* the set containing all the elements
(6.7.1) and all the elements g{x;) where i=1,2,...,8 and j=1,2,...,st.
We extend S to a theory 8* assuming that F(§*)=F(8) v X*, P(8*)=P(8)
and letting A(S*) to consist of 4(S) and of matrices N

(5.7.2) ~( o,x e X*, o Fa,

(5.7.3) substci( b ""’5')ES‘1bStCi( ‘i - Et)’

D1yt y ey Bit 0@ G—1r+1) 3 <o GilB0r)
i=1,2,..,s.

Tn order to prove the theorem it will be sufficient to define a model
of 8*


Artur


64 A. Ehrenfeucht and A, Mostownli

We begin by assigning a variable Z to each element x of X* in sueh
a way that T'£%’ for 2’2", We further put p=st and introdnee the
following matrices: .

. g ,...,5,) . o
i=subst ;| i 1=1,2,..,8,
v Ci(x(i—nm:---,xir !

vy & .
"E———Qllb&tf;(———-——fl L), =120,
Ji(Ba—vyr+1) 3 -y Gil i)
Since the assignment z-—% is one-one, we eagily mee that axioms
(5.7.3) can be written in the form

R o= Fyyeny Ty By oyeeny Tp) i1
5.7.4) subst =gubst )( i==1,2,..,s,
(3.7.4) - subs W(mly--"mp) 4 91}y ey gil0,)} T

‘We have noted above that the elements (5.7.1) need not be distinet;
et us assume that they form a set with » elements

. (5.7.5) Xo“——‘{wl’---:mp}:{wgy---)mg}
where af %) for i, Bach of the sets
Xi={gi(21), ..., 0z} =1,2,...,8

has exactly n elements and is ordered similarly to X,. The set X* ix the
union of the sety X,,X;,..., X

% 0 0 0
.X*=XOUX1U...qu= {ml,...,m,,, ...,.’L‘,,,} .

Let M be a model of § over an infinite set V. We can assume that
the set ¥ is ordered and denote by < the ordering relation.

Leb U be an element of ¥", 4. ¢. a subset of ¥ with exactly » ele-
ments. A sequence (uy,...,%,) with p (not necessarily distinet) terms u;eU
will be called a distinguished ordering of U if < uy=my<w; for h,j<p.
It is evident that for each U e Y” there exists exactly one distingunished
ordering.

We now define a partition of ¥” into 2° sets Cep..o, Where g=--1
for 4=1,2,..,8 by including a set U e ¥" to Coy.., if the distinguighed
ordering (uy,...,4,) of U satisfies the condition

(5.7.6) stswa,-‘(u:m:u;’) for i=1,2,..,s.

Tt is evident that the union of all sets C,.., 18 ¥" and that two
different sets ¢, ,, are disjoint, By theorem 5.1 there is a fixed system
€558, Of indices +1 -and an infinite set Y,CY sueh that (5.7 .6) holds
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for each U e ¥Yi. We select from Y, a set {yy,...,im} With m elements
ordered (by the velation <) similarly to X*:
(8.7.7) i<y =a<2a]  i,j<m.
We can now define a model M* of §* over ¥ by taking
=M, for pecF(S), Mh=y; for j=1,2,..,m,
Mi=M,. for ! weP(8).

It is evident that axioms of 8§ and axioms (5.7.2) are valid in /™,
It remains therefore to prove that axioms (5.7.4) are valid in M*. We
first prove the following auxiliary statements:
(5.7.8) The sequence (M%,..., M%) is a distinguished ordering of the
set {M%,..., ML},
(5.7.9) The sequence (Mzc,..., M) is a distinguished ordering of
the set {Myey,..., Mip}-
(Note that both sets, {M%,..., Mi} and {Mpup,..., I, sz}, have exactly
7 elements). ,
Proof of (5.7.8). Bach @, (h<p)is identical with z? where w<an
(ef. (3.7.5)). Assume that k,j<p and z=ual, z;=2°. Hence we have
the equivalence
My, < Mz, E.Zl[:: < JI;‘:g =Y, <Y,
which together with (5.7.7) yields
g < My =m<ay=u,<a;, q.e. d

Proof of (5.7.9). Each g(zs) (h<p) is an element of X; and hence
identical with an element of the form g(zs) where uw<n. Assume that
hy<p and gim) =g(o), glw;)=glvy). Since g(al) and g(z)) belong
to X*, they ave identical with elements z),a) where w,z<<m. Hence,
on account of (5.7.7), we obtain

M ;{(xh) < 'MZ(x,) E*M;Axﬂ) <M ;g(x‘,}) =M '.*3, <M ::2

= <Y =0 < = gi(a) < gi(w0) =gi(m) < gl -
Since g ¢ G(X, <), it preserves the ordering relation < and hence
the last part of the above formula is equivalent to z;<<w;, q.e. d.
‘We can now prove that axioms (5.7.4) are valid in M*. From (5.7 .6‘),
(5.7.8), and the remark that M%,..., M% are elements of ¥, we obtain
the formulas B :
sty [ L0 T i=1,2,...,8
ﬁtsi‘M"P[ (-ZII;I; . 71'[;;) 3 1= H

Fundamenta Mathematicae. T. XLIIL ' : B
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whence, on account of theorem 3.8, we further obtain

(5.7.10) stafapesubsty®( 1), i=1,2,..)s.
Dy yeeny iy

From (5.7.9) e obtain in the same manner

stsqupf"( preey T ), 1=1,2,...,§.

5":1
M s ey Mg
Since y; containg only the variables Fg_pii1,...,%n, the last formula
can be written in the form.

T ey T .
StSfMTIJ?( *(1 De+1 7M*it )’ Z:l,?;,...,.&‘ .
By 1 oy Hgyloxy)
We now remark that 3, results from y; by a substitution of variables
9 @G—vet1)y -5 0i{wi) for the variables Fg-niy1;.., 5. Hence we ecan
write the last formula in the form

stsfapf (gi(w(iwl)t—l—l) yoery G4

), i=1,2,...,5.

* *
e I \IIS) ERLE] ‘Mgi(xn)

We simplify this formula by inserting the fictitious” wvaviables

gi@jrex) (71, k=1,2,...,8) in the upper row. The validity of the for- .

mula is unaffected since these variables do not oceur in ¥ ' We thus obtain

Stsfﬂ{@?(gi(*xl),-.., i(wp)), ’i=1,2,...,8

gg(xﬂ:---yl'[;(xp)
or, what amounts to the same,
stsszpi‘( 1o 07 i=1,2,...,8,
;t(xl)"""M:((xp) ’ T
Using theorem 3.8 we finally obtain the formula
stsfMtsubsty;?( Loy i=1,2,...,8
Gy ey M)’ e

which together with (5.7.10) proves that the matrix (5.7.4) is valid
in >
Theorem 5.7 is thus proved.

6. We shall conclude by proving one more theorem, which is not
divectly connected with the subject-matber of the present paper bub
which will be needed in one of the subsequent papers mentioned at the
end of the introduction. Tt seems appropriate to include the proof here
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because the method of proof is very close to that used in the proof of
theorem 5.7.

THEOREM 6.1. Let X be a sel ordered by a relation < and 8 an open
theory which possesses a model M over an infinite set ¥ ordered by a rela-
tion <. Further let Y* be an infinite set contained in Y and 1" an open
matriz of 8 with the free variables &1y ey &g such that

&1y, E
stsf, (“ "1)
M\ ey Y

for each sequence (Y1y-sYq) Of elements of ¥* éatz‘sfyz‘ng the conditions
Y1 €Y< ... €Y, Under these assumptions there ewists a model M, of 8
over a set X;D0X such that

(6.1.1) Gag, strongly contains the group G(X,<),

(6.1.2)  st8far,m (i”'"’i“) holds for each sequence (wy,...,x,) such that
1y eevy g
2, =L . Ly

Proof. We first show that §*(X) remains consistent if we add to
its axioms 1° all formulas (5.4.1) where h e G(X,<2), { is an open matrix
of § and @,,2,,... are arbitrary elements of X, 20 a]l matrices

517‘“7'511)

(6.1.3) substn(w”m,mq

where #,...,%, ¢ X and #,<z,<...<w,. As before it is sufficient to ex-
bibit for each finite subset X* of X a model of a theory S* such that
F(§)=F(8) o X* P(8)=P(8), and A(8*) consists of A(S) and of
those matrices (5.7.2), (5.7.3), and (6.1.3) which contain no z from -
the outside of A,

To achieve this result we repeat word for word the construetion
carried out in the proof of theorem 5.7 with the only change that we
construct the partition not of the whole set ¥” but of its part ¥*, In
this way we obtain a pseudo-model M* of §* over Y in which M* ¢ ¥*
for @ ¢« X* and in which axioms belonging A(8) as well as the axioms
(5.7.2) and (5.7.3) are valid. If ay,..,5,¢ X* and #,<<..<<w, then
M3 < M3, <... <€ MY, (cf. (5.7.7)) and, since M%,..,M% belong to ¥*
the assumptions of the theorem yield

stafymsubstyg (il e i") .
13ere3 ¥y

The consistency of §*(X) extended as indicated above is thus proved.

We now select a complete set I which contains A(S*(X)) as well

as matrices (5.4.1), and (6.1.3), and consider the model M(X,I) of §
5*
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over &y. Each function %e G(X,<) determines an automorphism §,
of M(X,I) (ef. lemma 5.4), and the formula

§1 PR ] 54 )
stst
HEED] ([wl]) <ves[#q]
holds for each sequence (@,...,z,) suchthat # <zn<...< 2, (cf. lemma
3.6). Owing to the fact that [#']+ [2"] for #'# 2", we can identify the
classes [#] where » ¢ X with the elements », and obtain thus a model 37 o
satisfying (6.1.1) and (6.1.2).
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On the extending of models (I1L)

Extensions in equationally definable classes of algebras

by
J. Stominski (Torud)

In his paper [4] V. Ptak deals with the problem of extending semi-
groups to groups. This problem was first discussed and solved by Malcev
{2, 3], who constructed a set of general sentences such that their validity
in a semigroup § forms a necessary and sufficient condition for the exis-
tence of a group & which is an extension of S.

Another solution of this problem is given by V. Ptdk in the above
mentioned paper [4]. Let § be a semigroup generated by the set 4,,
7(4,) and G(4,) the respective semigroup and group freely generated’
by the set 4,. Obviously y (4,) is & subsemigroup of G (4,). Let h(y (4,)) =8
be a homomorphism with h(a)=a for a ¢ 4, and N the least normal
subgroup of ®(4,), such that h{s;)="h(s,) implies §N=gN for s,,s,
in y(4,). Ptak has shown that for the existence of a group @ which is
an extension of § it is necessary and sufficient that for s;,s, in y(d,),
5 N=8,N imply h(sy)=h(s,).-

Tt may seem that the solution of Malcev is of a “logical” character
whereas that of Ptak is more “algebraical” and more closely connected
with the normal methods of group-theoretical researches. The purpose
of this paper is to show that this is not true. The construction of Ptak
may be generalized to the case of equationally definable classes of al-
gebras which fulfil some additional conditions (see main theorem on
P. 72) without introducing any new idea and therefore the construction
itself is not connected with groups.

On the other hand, although it is true that the solution of Malcev
iz of a logical character, it follows from the results obtained by Xio§ (see
[1], theorem 1, p. 45) that this is the correct manner of solving the pro-
blem in question. Moreover, it is easy to see that this solution is closely
connected with groups: the sentences found by Malcev express the spe-
cific properties of those semigroups which may be extended.

§ 1. Terms and notations. By a k-ary operation on the set A

we understand a function o(wzy,%s,...,%,) defined on A and with values
in A, A system {A4,04,0,,...,0,>, Where 4 is a non-empty set and o; are
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