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On the extending of models (I1L)

Extensions in equationally definable classes of algebras

by
J. Stominski (Torud)

In his paper [4] V. Ptak deals with the problem of extending semi-
groups to groups. This problem was first discussed and solved by Malcev
{2, 3], who constructed a set of general sentences such that their validity
in a semigroup § forms a necessary and sufficient condition for the exis-
tence of a group & which is an extension of S.

Another solution of this problem is given by V. Ptdk in the above
mentioned paper [4]. Let § be a semigroup generated by the set 4,,
7(4,) and G(4,) the respective semigroup and group freely generated’
by the set 4,. Obviously y (4,) is & subsemigroup of G (4,). Let h(y (4,)) =8
be a homomorphism with h(a)=a for a ¢ 4, and N the least normal
subgroup of ®(4,), such that h{s;)="h(s,) implies §N=gN for s,,s,
in y(4,). Ptak has shown that for the existence of a group @ which is
an extension of § it is necessary and sufficient that for s;,s, in y(d,),
5 N=8,N imply h(sy)=h(s,).-

Tt may seem that the solution of Malcev is of a “logical” character
whereas that of Ptak is more “algebraical” and more closely connected
with the normal methods of group-theoretical researches. The purpose
of this paper is to show that this is not true. The construction of Ptak
may be generalized to the case of equationally definable classes of al-
gebras which fulfil some additional conditions (see main theorem on
P. 72) without introducing any new idea and therefore the construction
itself is not connected with groups.

On the other hand, although it is true that the solution of Malcev
iz of a logical character, it follows from the results obtained by Xio§ (see
[1], theorem 1, p. 45) that this is the correct manner of solving the pro-
blem in question. Moreover, it is easy to see that this solution is closely
connected with groups: the sentences found by Malcev express the spe-
cific properties of those semigroups which may be extended.

§ 1. Terms and notations. By a k-ary operation on the set A

we understand a function o(wzy,%s,...,%,) defined on A and with values
in A, A system {A4,04,0,,...,0,>, Where 4 is a non-empty set and o; are
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kary operations on A, is called an algebra of the type <ky, k..., k).
Two algebras of the same type are called similar. In the sequel we shall
denote algebras by the same letter as their sets. Thus for example the

algebra <A ,0;,0,...,0,> Wwill be denoted by A. Let % he the class of

* all similar algebras of the type <ky, k..., k).

The notion of an -term is defined by induection:

10 each variable #;,%,,... is an U-term;

20 it 7,,..,7, are U-terms, then Ofzy,...,7) 18 also an A-term.

An expression of the form “r=49"" where v and ¢ are A-terms is c¢a)-
led an YU-equation. The set of all W-equations is denoted by Hy.

There is no need to explain what we understand by the validity of
an A-equation in an algebra. For a given class Ay CA we denote by Ey(¥,)
the set of all Y-equations which are valid in every algebra of %,. Far
a given set B, of A-equations we denote by W (X,) the class of all algebras
in % in which every equation of the set Z, is valid. A class W,CU is called
equationally definable if %IO:QI(E,,(‘JID)).

We shall now consider two classes of similar algebras. The first — 9,
consists of all algebras of the type (k,k,,...,%,», the second — B, of all
algebras of the type <ki,kyy ..., k0, U,lay.cy lmy. An algebra A e U is called
subalgebra of the algebra B e W B if 4 is a subset of B and moreover,
if the operations o; of A and B are, for 1< n, identical on 4. If 4 is a sub-
algebra of B, then B is also called an emtension of A.

By a homomorphism of an algebra A <% in an algebra B Ao B
we understand each mapping #(4)CB, such that & (of(al,...,akt))=
=o0(h(ay), ..., k(@) for a;,...,a, in A and i<n.

A binary relation ~ defined in 4 e AU B is called a congruence in A,
if it is symmetric, reflexive and trangitive, and if Uy Qg oeny Oy Oy 3,5 ., O € A,
Uy 81 5 Gy~ G,y .. g, ~ G, implies og(a,l,az,...,ak‘)Nol(ai,aé,...,a,,;‘) for every
t<n or 1<<ntm.

If ~is a congruence in 4, then by A/~ we denote the class of all

partition sets of ~ in' 4. By a/~ is denoted that partition set to which a -

belongs.

Let ~, and ~, be congruences in an algebra 4. We say that the
comgruence ~, is smaller than the congruence ~o,: ~y K~y i g~
implies a~b for a;bed.

Let €CA or CCB be an equationally definable class of algebras
and C an arbitrary set. We shall say that the algebra 4 e € is freely
generated by the set ¢ if

I C is a set of gemerators for A;

2° every mapping h(C)CB < € may be extended to a homomorphism
hofdin B
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§ 2. Lemmas. The following lemmas either are known or result
from the definitions by simple verification.

(2.1) If A and B are two similar algebras, A, and B, sets of generators
of A and B vespectively, h — a homomorphism of A in B with
h(Ao)=DBy, then h(A)=B. Moreover, if h(A)=B is a homomor-
phism such that h(a)=h(a) for a in Ay, then hy=h. ’

(2.2) If h{4d)=B is a homomorphism, 4 and B <%, then the relation
ar~a’ if and only if h{a)="h(a'), is a congruence in A.

(2.3} For every binary relation R(a,a’) defined in A « Wo B, there exists
a least congruence ~ in A such that R(a,a') implies a~a’.

(2.4) If ~ is a congruence in an algebra A, then A/~ may be considered
as an olgebra similar to A, with operations defined by the formulas:
oi{ay ) ~,... 2 ~=)=0i(ayy ... o)~y (i=1,2,..,n).

(2.5) If i{(A)=B is a homomorphism, A,B e and ~ the congruence
defined in (2.2), then A/~ is isomorphic o B.

(2.6) If Ae¥W, BeB, A is a subalgebra of B, ~ a congruence in A
and ~ the least congruence in B, such that a~a' implies a~a’,
then the mapping flaj~)=af~, is a homomorphism of A~
in BJ~,. This homomorphism is reversible if and only if for
a,a’ e d, a~na’ implies a~a'.

(2.7) If ~y and ~, are two congruences in an algebra A, and if for
every a,a’ e 4 it follows from a~a’ that a~0', then the mapping
h{a)~)==a]~, s a homomorphism of Al~r on A]~,.

(2.8) If € is an equationally definable class of algebras, then:

10 A]/~¢cQ, for every A @ and every congruence ~ in A;
20 gpery subalgebra of am algebra in € is also in E.

(2.9) If © 45 an equationally definable class of algebras, then for every
set O there ewists a C-free algebra, freely gemerated by C; two such
algebras are always isomorphic.

(2.10) If A, CUA and B,CB are two equationally definable classes of al-
gebras, A and B algebras Wy-free and B-free generated by the set C
and if moreover By~ BEy(Bo)=FEy (W,), then there exists a reversible
homomorphism h(A)CB with h(c)=c¢, for ¢ in C; therefore A may
always be considered as contained in B.

(2.11) Let W,CUA and B,CB be two equationally definable classes of al-
gebras, 4 and B two algebras in W, and B, respectively, such that
A is a subalgebra of B. If A, generates both the algebra A and the
algebra B, A and B are respectively Wo-free and By-free algebras
generated by A, and if moreover A is a subalgebra of B, ithen the
homomorphism 1*(B)=B with h*(a)=a for a in A, is an extension of
the homomorphism h(A)=A for a in 4,,4. e. h*(a)="h(a) for ain A.
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§ 3. The main theorem. Let %,CY and B,CB be two equation

ally definable classes. Under what conditions is it possible to extend an
algebra 4 <%, to an algebra B < B,, 4. e. when does there exigt for an
algebra 4 e, an algebra B e B, such that h(4)CB with a reversible
homomorphism A?

Let 4, be a set of generators of the algebra 4 and let 4 and B re-
spectively be an U-free and a Byfree algebra, both generated by the
same set A, (the existence of these algebras follows from (2.9)).

If By~ BEo(By)=Byn(¥;), then we may assume, following (2.10)
that 4CB.

Let 2(4)=A be a homomorphism with h(a)=a, for a4 in A, (it fol-
lows from (2.1) that such a homomorphism is unique) and let ~ be the
congruence in A4 defined in (2.2). This congruence is of course a binary
relation in B, hence, following (2.3), there exists a least congrnence ~*
in B such that a~a’ implies a~*a’ for a,a’ in B. If

H

(B) a~*a’" implies a~a', for a,a’ in A,
then we shall say that A satisfies the condition (P).
It should be noted that (9, and B, being fixed) the condition (P)

is imposed upon 4 and 4, but we easily see that the choice of A4 i ir-
relevant in this case.

THE MATN THEOREM. If W, CH. and B,CB are equationally definable
classes of algebras, and if moreover By By(Bo)=Bu(U,), then an algebra
A e, may be extended to an algebra B e B, if and only if A fulfils the
condition (P). .

Proof. Let us assume that (P) is fulfilled by A. From (2.5) it fol-
lows that 4/~ iy isomorphic to 4. From (2.6) it follows that B/~* ig
an extension of 4/~ and therefore also of A. From (2.8) it follows
B/~* ¢ B,, therefore the sufficiency of (P) is proved.

‘We shall now prove the necessity of (P). Let B e B, and let 4, be
a set of generators for 4. Without limiting the generality of our con-
siderations we may assume that A, 18 also a set of generators for B. Let
1B)=RB be a homomorphism with h%a)=a for a in 4, and ~p & con-
gruence defined by the relation BO(by=1ob") in B. Tt follows from (2.11)
that the homomorphism k(B)=B is an extension of the homomorphism
h(A)=A with h(a)=a for ¢ in A,, and therefore h%a)="h(a) for a in A.
Hence a~a' is equivalent to g~a’ for a,a’ in 4. The congruence ~* is
the least congruence such that g’ implies a~*a', therefore if a~*a’
then a~ga’ for a,q’ in 4. Finally, a~*a' implies a~a', for a,a’ in A,
and thus the necessity of (P) is also proved.

In conclusion we note, that the extension B of 4 is a homomorphic
image of the extension B/~* Indeed, a~>*a’ implies a~a, and therefore,
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i =af~y 1 hic mapping with
ing (2.7), h{a/~*)=a]~, 18 a ho‘momorpl
i()(lg/‘:-.ag:B/ N’,,. However, as B/~, is isomorphic to B, therefore
h{B|~*)=B with k(a)=a for ¢ in 4,.

§ 4. The theorem of Ptik. The assumptions of the main the(?—
rem are fulfilled when 9, is the class of multiplicatively written semi-
groups, and B, the class of multiplicatively written groups supplementefl
by the’ operation of forming the inverse elemen 1, As.we know,
every congruence in & group is of the form al\*:a,’l\",. Where‘N is a normal
gubgroup, therefore from the main theorem we obtain precisely the theo-
rem of Ptak. .

§ 5. B,-free extensions. We say, that the algebra W e B, is a
B,-free extension of the algebra 4 U, if

10 W is an extension of 4 and W is generated by 4;

20 if B e B, is an extension of 4 and B is generated by 4, then ‘the
fanction fla)=¢ for ¢ in A may be extended to a homomorphism
R(W)=B. . ‘

It is easy to verify that two Bg-free extensions of an algebra 4 U,

e always isomorphic. _ .
v The };roof of the main theorem yields at once the following corollary:
(3.1) If UCUA and B,CB are equationally definable classes and if ]97?071

. reover By By(Bo)=Eu(W,), then for every algebra A ey whee

i i - ctension.
fulfils (P), B|~* is a Byfree e : -

Thus we see that the eriterion of the emstel?ce of an extension biseli

upon the condition (P) is of an entirely tautological ch?ra@tf)r. TlfSiv(;fel(; ¢
i 4 i hould therefore be co ;

construction of Ptak, generalized above, s t .
not as & criterion but‘j as & general method of for¥nmg SB,,-fre'ze extens;ox;sli

Tt we wanb to limit ourselves only to stating the existence o 1;
extension it is more convenient to make use of a weaker theorem, namely:

(5.2) If A CU and B,CB are equationally definable classes of algebﬂgsé
o and _OE' A~ Es(Bo)=Eu(y), then an algebra A eQIf, may be emt.en e
to an Zlgebm B e B, if, and only if, there ewists i1 B a congruence
~, such that | o d
’ ~a’ is equivalent to a~da, for a,a’ A, . .
") Zhealfa‘ f;s Ig and ~ have the’same meaning as in the main theorem.
? i )
Proof. Let us assume that there exists & congru<;=nce Whl?hmfuBl
fils (P'); then A also fulfils (P), since a~*a' 1m}1)h§s a;;ae; ::zs?o, ];z 2 %0.
i in theorem as .
Therefore, on the basis of the main , exte P
Evidently’, from (2.6) it follows that B/~ is an extensmn- in ]Q?;;n (()) | the
algebra A and moreover, from (2.7 ) it follows that B/~ isah

phic image of B/~*.
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§ 6. Examples. By applying (5.2) it is possible to solve at o im

the problem of extension in the following examples:

(6.1) [Each distributive structure mag/‘ be extended to a Boolean algebra

Without limiting the generality of our considerations we may discuss
only distributive structures of 0 and 1.

‘ Let A,CA and B,CB denote the class of distributive structures
with 0 and 1, and the class of Boolean algebras.

Let 4 ¢, be a distributive structure generated by .4,, and let 4
and B respectively be an U,-free distributive structure with 0 and 1
and a By-free Boolean algebra generated by 4,. Each element of A’
and B may be written in the form

i - 1
( ) Z xkl-;rk,_,...mk",
Chyskaseenk,?
il i iy ]
( ) Z $ki-xk,_:...(l!;€:
{Eepslgennfey)

“;here th(z variables &y ,..., %, run through the set 4, 4=0 or 1, and
L=, Bp=1— =1},

The formula (ii) may also be written in the form
iii
( ) d:'kll- mklg"'mkx,' (wkl,-1+ L, ,,+ “'+mkx )(
(kl,kg """ kn> T r+2 n

where I,,1,...,1, denotes a permutation of the numbers 1,2,...,m such that

l:[O for s=1,2,..,r,
¢ ll for s=r+1,r+2,..,n.

svrgngxii)nzngh éﬁ();oif follows tha,i? ACB, hence EyrBy(B,)=Fu(Uy).
MAI=A, B(@)a, for 0.5y f0 e congrLERCE o 1y 3 1 s T
M) =4 ~iin B in the following
(6.1.1) a,bed, a~d if and only if a~b.
{6.1.2) a,b enB—A, “Nlljn if and only if there exist such representations
a,=k é: “ak”ék s b:k gl ubkvgk, where Uy s Wby y Vagy Doy € A (the existence

0’ such, 76?77 esentations 18 ascertained 1 tha,t W="1, s, ~U
2 a LE( b‘l 11
N Y ( ))7 " s tay U bt
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6.1.3) acd, be B—A, a~b if and only if there exist representations
n m
m

=3 Ugyy b= Un 01 Uays Uy Vg€ A sUCh hat n=1; g, ~Upys
k=1 k=1

UkaO.

Tt is easy to verify that the relation ~ is a congruence in B. This
congruence fulfils of course (P’), hence it tollows from (5.2) that Bj~
i an extension of A.

(6.2) Each semigroup may be extended to & ring.

Let A,CA denote the class of multiplicatively written semigroups,
and B,CB the class of rings written as usually with help of addition
and multiplication and moreover with the operation of substraction.
In these operations B, is an equationally definable class.

Let 4 €9, be a semigroup generated by the set A, A and B a free
semigroup and & free ring, respectively, generated by 4,. The elements
of A and B may be written in the form

(1) Ly Ly -+ Lk,
(ﬁ) S h(kl,kg ----- kpmkl DBy -+~ B,
(kysKarknd ’

- Ky sKgaees k.
where the variables @, Tk, -, Tun through the set A, pkukgeka? 1

or —1. We shall denote the elements of A of the form X ®x,.. %k, by the
letter f, hence the formula (ii) may be written in the form

1 for 4=1,2,..,7,

@) 3o, where tied, h":{ 1 for dmrdl,r42,.nn.

i=1

Obviously ACB, therefore we have Eu~By(Be)=FEu(ly).
The congruence ~ in A4 (induced by the homomorphism h(A)=A4,

_h(a)=ua,0 e Ay) may be estended to the congruence ~; in B as follows:

H
(6.2.1) a~yb if and only if there exist such representations a=g,1h,,,tal,
m =
b= hyts, (the existence of these represen‘ations is ascertained
i=1
by (iil)), that n=m, o=l =1 for §=1,2,.0098, hg=hs=—1
for i=g—1,...,n and to~ts.

It is easy to verify that the relation ~ is a congruence ip B which
fulfils (P') and therefore, following (5.2), Bf~; is an extension of the
semigroup A.
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Some remarks on 7.-sets *
by
L. Gillman (Lafayette, Ind.)

An ordered set § was called by Hausdorff ([6], p. 180-185) an Na-Set
provided that:

(i) S has no “neighboring” subsets of power <s,, that is, if 4 and B
are subsets of § of power < x,, with A <B 1), then there i3 an z ¢ § such
that A <a<B1); and

(ii) § is neither coinitial nor cofinal with any subset of power < ..

Clearly, every (nonempty) open interval of an #,-set is itself an 5,-set.

On the basis of his general theory of ordered sets, Hausdorff establ-
ished the following facts:

1. Any n.-set 8 is a universal order set fm; the cardinal s,, that is,
for every ordered set M of power x,, 8§ has a subset similar to M.

II. There exists an 1ppr-seb Spiy of power 2%,

IIT. The set Spin of IL has no well-ordered subset (increasing or de-
creasing) of power >>Kgiy.

IV. Bvery ngr-set 8 has a subset similar to Szy1. (Hence, from II,
every 7. i-seb is of power >2%.)

V. Any ne-set for singular s, is also an f,.1-set.

Sierpiniski {8] has shown how to derive Hausdorff’s results by direct
methods. Let Uy denote the lexicographically ordered set of all sequences
2=(2e)s<0 Of 0’s and 1’s; and let H, denote the subset of U, consisting
of all &=(®¢)scm, 0 U, for which there exists an ordinal g(z)<w,, such
that @,u=1, while ;=0 for all & with @(z)<é<w,. Sierpinski shows
that:

I U, isa witversal order set for .

II'. Hypy 48 an ngro-set of power 2% (hence, by I, a universal order
set for mgiq).

* The preparation of this paper was sponsored (in part) by the National Science

Foundation (U. S. A.).
Y} By Ad<B (resp. A<z<B), we mean that a<b (resp. a<w<b) for all aed

and all beB.
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