Some remarks on η_a -sets *

by

L. Gillman (Lafayette, Ind.)

An ordered set S was called by Hausdorff ([6], p. 180-185) an η_a -set provided that:

- (i) S has no "neighboring" subsets of power $< \aleph_a$, that is, if A and B are subsets of S of power $< \aleph_a$, with $A < B^1$), then there is an $x \in S$ such that $A < x < B^1$); and
- (ii) S is neither coinitial nor cofinal with any subset of power $< \mathbf{x}_a$. Clearly, every (nonempty) open interval of an η_a -set is itself an η_a -set. On the basis of his general theory of ordered sets, Hausdorff established the following facts:
- I. Any η_a -set S is a universal order set for the cardinal κ_a , that is, for every ordered set M of power κ_a , S has a subset similar to M.
 - II. There exists an $\eta_{\beta+1}$ -set $S_{\beta+1}$ of power $2^{\aleph_{\beta}}$.
- III. The set $S_{\beta+1}$ of II has no well-ordered subset (increasing or decreasing) of power $> \aleph_{\beta+1}$.
- IV. Every $\eta_{\beta+1}$ -set S has a subset similar to $S_{\beta+1}$. (Hence, from II, every $\eta_{\beta+1}$ -set is of power $\geqslant 2^{\aleph_{\beta}}$.)
 - V. Any η_a -set for singular κ_a is also an η_{a+1} -set.

Sierpiński [8] has shown how to derive Hausdorff's results by direct methods. Let U_{θ} denote the lexicographically ordered set of all sequences $z=(z_{\xi})_{\xi<\theta}$ of 0's and 1's; and let H_a denote the subset of U_{ω_a} consisting of all $x=(x_{\xi})_{\xi<\omega_a}$ in U_{ω_a} for which there exists an ordinal $\varphi(x)<\omega_a$, such that $x_{\varphi(x)}=1$, while $x_{\xi}=0$ for all ξ with $\varphi(x)<\xi<\omega_a$. Sierpiński shows that:

- I'. $U_{\omega_{\alpha}}$ is a universal order set for κ_{α} .
- II'. $H_{\beta+1}$ is an $\eta_{\beta+1}$ -set of power $2^{\aleph_{\beta}}$ (hence, by I, a universal order set for $\aleph_{\beta+1}$).

^{*} The preparation of this paper was sponsored (in part) by the National Science Foundation (U. S. A.).

¹⁾ By A < B (resp. A < x < B), we mean that a < b (resp. a < x < b) for all $a \in A$ and all $b \in B$.

III'. U_{Θ} has no well-ordered subset (increasing or decreasing) of power $> \overline{\Theta}$.

As a particular consequence of III', we have

(1) H_a has no well-ordered subset (increasing or decreasing) of power \aleph_{a+1} .

IV'. Every $\eta_{\beta+1}$ -set has a subset similar to $U_{\omega_{\beta}}$.

The object of this paper is to extend some of these results. Following this, we shall make some remarks about similarity of η_a -sets.

THEOREM 1. If a is a limit ordinal, then H_a is a universal order set for the cardinal s_a .

Proof. The result is well known for a=0, so we assume a>0.

For every $\beta < \alpha$, we denote by K_{β} the set of all elements $x = (x_{\delta})_{\xi < \omega_{\alpha}}$ of H_{α} for which $\varphi(x) < \omega_{\beta}$. Obviously, $K_{\beta} \simeq H_{\beta}$; and $K_{\gamma} \subset K_{\beta}$ for $\gamma < \beta$. Furthermore, it is evident that $H_{\alpha} = \bigcup_{\beta < \alpha} K_{\beta+1}$; it follows (see II') that

(2)
$$\overline{\overline{H}}_a = \sum_{\beta < a} 2^{\aleph_\beta} \geqslant \aleph_a.$$

Let M be any ordered set of power \aleph_a . Since $\aleph_a = \sum_{\beta < a} \aleph_{\beta+1}$, there exist disjoint subsets $M_{\beta+1}$ ($\beta < a$) of M, whose union is M, and such that $\overline{M}_{\beta+1} = \aleph_{\beta+1}$ ($\beta < a$). For every $\sigma < a$, define $N_{\sigma} = \bigcup_{\alpha < a} M_{\beta+1}$.

Consider any ordinal $\tau < \alpha$, and suppose that for every $\sigma < \tau$, there has been defined a subset N_{σ} of K_{σ} such that (a) $N_{\varrho}' \subset N_{\sigma}'$ for all $\varrho < \sigma$, and (b) there is a similarity f_{σ} of N_{σ} upon N_{σ}' that agrees with f_{ϱ} on N_{ϱ} ($\varrho < \sigma$).

If τ is a limit ordinal, define $N'_{\tau} = \bigcup N'_{\sigma}$.

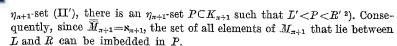
Define $\pi = \tau$ or $\tau - 1$, according as τ is or is not a limit ordinal. In either case, we have

$$(3) N_{\pi} = \bigcup_{\beta < \pi} M_{\beta+1} = \bigcup_{\beta < \tau} N_{\sigma},$$

and $N'_{\pi} = \bigcup_{\sigma < \tau} N'_{\sigma}$. Since $K_{\pi} = \bigcup_{\sigma < \tau} K_{\sigma}$, we have $N'_{\pi} \subset K_{\pi}$. It is seen without difficulty that there is a similarity f_{π} of N_{π} upon N'_{π} that agrees with f_{σ} on N_{σ} ($\sigma < \pi$). Using (3), we find that

$$\bar{\bar{N}}'_{\pi} = \sum_{\beta < \pi} \aleph_{\beta+1} = \aleph_{\pi}.$$

We shall now imbed the set M_{n+1} in the set K_{n+1} . For every Dedekind cut [L,R] of N_n , we proceed as follows. Let [L',R'] denote the corresponding cut of N'_n . Since $\overline{N}'_n < \mathbf{s}_{n+1}$, $N'_n \subset K_{n+1}$, and K_{n+1} is an



By an evident modification of this procedure, we see that the set of all elements of M_{n+1} that precede L (resp. follow R) can be imbedded in K_{n+1} so as to precede L' (resp. follow R') therein.

In this way, we imbed M_{n+1} in K_{n+1} so as to preserve, not only the order of M_{n+1} itself, but also all its order relations with N_n . We have thus constructed a subset N'_{n+1} of K_{n+1} that contains N'_n , and is similar to N_{n+1} ; moreover, there is a similarity f_{n+1} of N_{n+1} upon N'_{n+1} that is an extension of the mapping f_n of N_n upon N'_n .

This completes the induction step. Finally, we define $M' = \bigcup_{\sigma < a} N'_{\sigma}$. Obviously, $M' \subset H_{\sigma}$; and, clearly, $M' \simeq M$.

THEOREM 2. If a is a limit ordinal, then H_a is an η_a -set if and only if κ_a is regular.

Proof. Suppose, first, that κ_a is singular, and assume that H_a is an η_{a} -set. Then, by V, H_a is an η_{a+1} -set, hence, by I, a universal order set for κ_{a+1} . But this is impossible, since, by (1), H_a cannot have a subset of type ω_{a+1} (cf. Sierpiński [8], Théorème II).

Suppose, now, that κ_{α} is regular. Assume $\alpha > 0$, the case $\alpha = 0$ being well known. Let A, B be any two subsets of H_{α} , whose union is of power $\langle \kappa_{\beta} \langle \kappa_{\alpha} \rangle$, and such that $A \langle B \rangle$. Since κ_{α} is regular, the set of ordinals $\{\varphi(x): x \in A \cup B\}$ has an upper bound that is $\langle \omega_{\alpha} \rangle$. Since α is a limit ordinal, there is, in fact, an initial ordinal $\omega_{\gamma} \langle \omega_{\alpha} \rangle$ that is an upper bound.

Let $\delta = \max\{\beta, \gamma\}$. Then $\delta + 1 < \alpha$, and both A and B are subsets, of power $\langle \aleph_{\delta+1}$, of the $\eta_{\delta+1}$ -set $K_{\delta+1} \subset H_a$. Therefore there are elements u, v, w of H_a such that u < A < v < B < w. Therefore H_a is an η_a -set.

Remark. Alternative proof of Theorem 1 for regular cardinals: I and Theorem 2.

THEOREM 3. Let a be a limit ordinal. Then an η_a -set of power κ_a exists if and only if κ_a is a regular cardinal such that

(4)
$$2^{\aleph_{\beta}} \leqslant \aleph_{\alpha} \quad \text{for every} \quad \beta < \alpha.$$

When this condition is fulfilled, then the set H_a is an example of an η_a -set of power s_a . In particular, this is the case whenever s_a is strongly inaccessible.

Proof. If κ_{α} is singular, then an η_{α} -set is also an $\eta_{\alpha+1}$ -set (V), hence must be of power $> \kappa_{\alpha+1}$. (This also proves Theorem 2 for those singular cardinals κ_{α} such that $\overline{H}_{\alpha} = \kappa_{\alpha}$ (see (2).)

²) Alternatively, we could reach this conclusion by utilizing Sierpiński [8], Lemme I.

Suppose, now, that s_a is regular (hence inaccessible). Then H_a is an η_a -set (Theorem 2); and if (4) holds, then, from (2), we have $\overline{H}_a = \aleph_a$. If s_a is strongly inaccessible, then (4) holds (in fact, with the strict inequality — cf. Tarski [9]); however, if s_a is weakly, but not strongly inaccessible, then condition (4) is in doubt.

For the remainder of the proof, consider any $\beta < a$. Then $\beta + 1 < a$. Therefore, any η_a -set S is also an $\eta_{\beta+1}$ -set, hence of power $\geq 2^{\aleph_{\beta}}$ (IV): so if (4) fails, then $\overline{S} > \aleph_a$.

THEOREM 4. Every n_a -set S has a subset similar to the set H_a .

Proof. Case 1: $\alpha = \beta + 1$. For every $\sigma < \omega_{\beta+1}$, denote by V_{σ} the set of all elements $z=(z_\xi)_{\xi<\omega_{\partial+1}}$ of $U_{\omega_{\partial+1}}$ such that $z_\xi=0$ for all ξ with $\omega_{\beta}\sigma \leqslant \xi < \omega_{\beta+1}$. Obviously, $V_{\sigma} \simeq U_{\omega_{\delta}\sigma}$; and $V_{\rho} \subset V_{\sigma}$ for $\rho < \sigma$.

Consider any ordinal τ , with $0 < \tau < \omega_{\beta+1}$, and suppose that for every $\sigma < \tau$, there has been defined a subset V'_{σ} of S such that (a) $V'_{\sigma} \subset V'_{\sigma}$ for all $\varrho < \sigma$, and (b) there is a similarity f_{σ} of V_{σ} upon V'_{σ} that agrees with f_o on V_o ($\varrho < \sigma$).

In case τ is a limit ordinal, define $\pi = \tau$, and put

$$W_{\pi} = \bigcup_{\sigma < \pi} V_{\sigma}, \quad W'_{\pi} = \bigcup_{\sigma < \pi} V'_{\sigma}.$$

Then $W_{\pi} \subset S$. It is seen without difficulty that there is a similarity F_{π} of W_{π} upon W'_{π} that agrees with f_{σ} on V_{σ} ($\sigma < \pi$).

It is easily verified (cf. Sierpiński [7]) that W_{π} is dense in V_{π} . Now by III', every well-ordered subset (increasing or decreasing) of V_{π} is of power $\langle s_{\beta+1} \rangle$. The same then holds for W'_{π} . Hence, since S is an $\eta_{\beta+1}$ -set, there is, for every gap [L,R] of W'_{π} , an element $s \in S$ such that L < s < Ras is seen by a cofinality argument 3). Likewise, there are elements $a, b \in S$ such that $a < W_{\pi}' < b$. It follows that S has a subset V_{π}' such that

(5) $V'_{\sigma} \subset V'_{\pi}$ for all $\sigma < \pi$,

and

(6) there is a similarity f_{π} of V_{π} upon V'_{π} that agrees with the mapping F_{π} of W_{π} upon W'_{π} .

If τ is not a limit ordinal, we define $\pi = \tau - 1$, $W_{\pi} = V_{\pi}$, $W'_{\pi} = V'_{\pi}$, and $f_{\pi} = F_{\pi}$. Evidently, (5) and (6) hold in this case as well.

We shall now imbed the set V_{n+1} in S. For each element $x = (x_{\xi})_{\xi < w_{n+1}}$ of V_{π} , define $V_{\pi+1}(x)$ to be the set of all elements $u=(u_{\xi})_{\xi<\omega_{\theta+1}}$ of $V_{\pi+1}$ for which the segment $(u_{\xi})_{\xi < \omega_{\theta}\pi}$ coincides with the corresponding segment $(x_t)_{t < \omega_0 \pi}$ of x. Obviously, $V_{n+1}(x) \simeq U_{\omega_0}$. Also, we have $x \le v < y$

for all $v \in V_{n+1}(x)$, and all $y \in V_n$ with y > x. Furthermore, it is evident

that

$$\bigcup_{x \in V_{\pi}} V_{\pi+1}(x) = V_{\pi+1}.$$

We pass now to the η_{B+1} -set S, and recall once more that every (nonempty) open interval of an $\eta_{\beta+1}$ -set is itself an $\eta_{\beta+1}$ -set. By the cofinality device used before 3), we find, referring to IV', that S has a subset V'_{n+1} that contains V'_n , and is similar to V_{n+1} ; moreover, there is a similarity f_{n+1} of V_{n+1} upon V'_{n+1} that is an extension of the mapping f_{π} of V_{π} upon V'_{π} .

This completes the induction step. Finally, we define $W' = \bigcup V'_{\sigma}$.

Obviously, W'CS. And it is evident that W' has a subset similar to H_a .

Case 2: a is a limit ordinal. We dismiss the trivial case $\alpha = 0$, and assume a > 0. For every $\sigma < a$, we denote by X_{σ} the set of all elements $z=(z_{\xi})_{\xi<\omega_n}$ of U_{ω_n} such that $z_{\xi}=0$ for all ξ with $\omega_{\sigma}\leqslant\xi<\omega_{\alpha}$. We observe that S is an $\eta_{\sigma+1}$ -set for every $\sigma < \alpha$. The proof now continues much like that of Case 1.

We turn now to the question of similarity. Hausdorff ([6], p. 180-185) proved that

VI. Any two η_a -sets of power s_a are similar.

VII (from II and IV). There exists an η_{n+1} -set of power \mathbf{x}_{n+1} if and only if $2^{\aleph_{\beta}} = \aleph_{\beta+1}$.

The problem arises as to whether one can prove that any two $\eta_{\beta+1}$ -sets of power $2^{\aleph_{\beta}}$ are similar – without using the hypothesis $2^{\aleph_{\beta}} = \aleph_{\beta+1}$. I have shown (cf. [3]) that this is not the case. More generally, let x_{μ} denote the smallest cardinal p such that there exists an η_a -set of power p; and define $v_a = a$ if s_a is regular, $v_a = a + 1$ if s_a is singular. Then, on combining various of the above results, we find that

(7) $H_{r_{\alpha}}$ is an η_{α} -set of power $s_{\mu_{\alpha}}$.

We have $\kappa_{\mu_{\alpha+1}} = 2^{\kappa_{\beta}}$, $\kappa_{\mu_{\alpha}} = 2^{\kappa_{\alpha}}$ for singular κ_{α} , and $\kappa_{\mu_{\alpha}} = \kappa_{\alpha}$ for strongly inaccessible κ_{α} ; the values of $\kappa_{\mu_{\alpha}}$ for the other inaccessible numbers κ_{α} , however, remain in doubt.

THEOREM 5. If α and δ are such that $\delta \geqslant \mu_{\alpha}$ and $\delta > \nu_{\alpha}$, then there exist two η_a -sets of power \mathbf{s}_b that are not similar.

Proof. Let P and Q be sets whose order types are

$$\bar{P} = \bar{H}_{r_a}(\omega_{\delta} + 1), \quad \bar{Q} = \bar{H}_{r_a}(\omega_{\delta} + 1)^*.$$

Then (see (7)) $\vec{P} = \vec{Q} = \mathbf{s}_{u_a} \mathbf{s}_{\delta} = \mathbf{s}_{\delta}$. The conclusion that P is an η_a -set follows easily from the facts that P is both coinitial and cofinal with \overline{H}_{r_n} ,

³⁾ Replace L (resp. R) by a well-ordered cofinal (resp. coinitial) subset.

that \bar{H}_{τ_a} is an η_a -type, and that $\omega_{\delta}+1$ is an ordinal. Likewise, Q is an η_a -set.

Now P obviously has a subset of type $\omega_{\delta} \geqslant \omega_{r_a+1}$. On the other hand, since H_{r_a} has no subset of type ω_{r_a+1} (1), it follows at once that Q has no such subset either. Therefore P and Q are not similar.

COROLLARY. If $2^{\aleph_{\beta}} \neq \aleph_{\beta+1}$, then there exist two $\eta_{\beta+1}$ -sets of power $2^{\aleph_{\beta}}$ that are not similar.

Proof. The hypothesis implies that $2^{\aleph_{\beta}} > \aleph_{\beta+1}$. Hence the theorem applies with $\nu_{\alpha} = \alpha = \beta + 1$, and $\aleph_{\delta} = \aleph_{\mu_{\alpha}} = 2^{\aleph_{\beta}}$.

Added in proof. Remark 1. For the inaccessible \mathbf{x}_a that satisfy (4), I propose the term *semi-strongly* inaccessible. As I have observed elsewhere ([2], Lemma 3.2 ff.), the semi-strongly inaccessible cardinals are precisely those limit cardinals \mathbf{x}_a for which $\mathbf{x}_a^{\mathbf{x}_{\beta}} = \mathbf{x}_a$ for all $\beta < \alpha$. I have encountered these cardinals again in another paper on ordered sets [4]. One may note that under the *Hypothesis of inaccessible numbers* proposed by Erdős and Tarski [1], every inaccessible cardinal would be semi-strongly inaccessible.

Remark 2. Since H_a is dense in U_{ω_a} (cf. [7]), U_{ω_a} has no gaps ([8], Lemme I), and $U_{\omega_a} = 2^{\aleph_a}$ (obviously), we obtain the following result of Hausdorff ([5], Satz XXI) as an immediate corollary to our Theorem 4:

Every continuous η_a -set is of power at least 2^{\aleph_a} .

References

- [1] P. Erdös and A. Tarski, On families of mutually exclusive sets, Ann. of Math. 44 (1943), p. 315-329.
 - [2] L. Gillman, On intervals of ordered sets, Ann. of Math. 56 (1952), p. 440-459.
 - [3] Remarque sur les ensembles η_a , C. R. Acad. Sci. Paris 241 (1955), p. 12-13.
 - [4] On anti-homogeneous sets, Michigan Math. J., to appear.
- [5] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1908), p. 435-505.
 - [6] Grundzüge der Mengenlehre, Leipzig 1914.
- [7] W. Sierpiński, Sur un problème concernant les sous-ensembles croissants du continu. Fund. Math. 3 (1922), p. 109-112.
 - [8] Sur une propriété des ensembles ordonnés, Fund. Math. 36 (1949), p. 56-67.
 - [9] A. Tarski, Über unerreichbar Kardinalzahlen, Fund. Math. 30 (1938), p. 68-89.

PURDUE UNIVERSITY

Recu par la Rédaction le 17.5.1955

Dimension of metric spaces

b,

C. H. Dowker (London) and W. Hurewicz (Cambridge, Mass.)

- **1.** It is to be shown that a metric space has dimension $\leq n$ if and only if there exists a sequence $\{a_i\}$ of locally finite open coverings, each of order $\leq n$, with mesh tending to zero as $i \to \infty$, such that
- (a) the closure of each member of a_{l+1} is contained in some member of a_l .

For a compact metric space, every sequence of coverings of order $\leq n$ with mesh tending to zero contains a subsequence satisfying condition (a). But condition (a) can not in general be omitted, as is shown by K. Sitnikov's example [8] of a two-dimensional metric separable space which has a sequence of coverings, each of order one, with mesh tending to zero.

In the course of proving the above proposition, we incidentally give a new proof of the theorem of M. Katětov (see [4]; also [5], theorem 3.4 and also K. Morita [7], theorem 8.6) that for an arbitrary metric space X the covering dimension (dim X) is equal to the dimension (Ind X) defined inductively in terms of the separation of closed sets.

2. By a covering of a topological space X we mean a collection of open sets of X whose union is X. A covering β is called a *refinement* of a covering α if each member of β is contained in some member of α .

The order of a collection of subsets of X is the largest integer n such that some point of X is contained in n+1 members of the collection, or is ∞ if there is no such largest integer.

Definition 1. The dimension of a space X (dim X) is the least integer n such that every finite covering of X has a refinement of order $\leq n$, or the dimension is ∞ if there is no such integer.

A collection of subsets of X is called *locally finite* if every point of X has a neighborhood meeting at most a finite number of members of the collection. If X is a metric space, it is known ([9], corollary 1, and [3], theorem 3.5) that dim $X \le n$ if and only if every covering of X has a locally finite refinement of order $\le n$.