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Some remarks on 7.-sets *

by
L. Gillman (Lafayette, Ind.)

An ordered set § was called by Hausdorff ([6], p. 180-185) an Na-Set
provided that:

(i) S has no “neighboring” subsets of power <s,, that is, if 4 and B
are subsets of § of power < x,, with A <B 1), then there i3 an z ¢ § such
that A <a<B1); and

(ii) § is neither coinitial nor cofinal with any subset of power < ..

Clearly, every (nonempty) open interval of an #,-set is itself an 5,-set.

On the basis of his general theory of ordered sets, Hausdorff establ-
ished the following facts:

1. Any n.-set 8 is a universal order set fm; the cardinal s,, that is,
for every ordered set M of power x,, 8§ has a subset similar to M.

II. There exists an 1ppr-seb Spiy of power 2%,

IIT. The set Spin of IL has no well-ordered subset (increasing or de-
creasing) of power >>Kgiy.

IV. Bvery ngr-set 8 has a subset similar to Szy1. (Hence, from II,
every 7. i-seb is of power >2%.)

V. Any ne-set for singular s, is also an f,.1-set.

Sierpiniski {8] has shown how to derive Hausdorff’s results by direct
methods. Let Uy denote the lexicographically ordered set of all sequences
2=(2e)s<0 Of 0’s and 1’s; and let H, denote the subset of U, consisting
of all &=(®¢)scm, 0 U, for which there exists an ordinal g(z)<w,, such
that @,u=1, while ;=0 for all & with @(z)<é<w,. Sierpinski shows
that:

I U, isa witversal order set for .

II'. Hypy 48 an ngro-set of power 2% (hence, by I, a universal order
set for mgiq).

* The preparation of this paper was sponsored (in part) by the National Science

Foundation (U. S. A.).
Y} By Ad<B (resp. A<z<B), we mean that a<b (resp. a<w<b) for all aed

and all beB.
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III'. Uy has no well-ordered subset (increasing or decreasing) of
power > 6.

As a particular consequence of III’, we have
(1) H, has no well-ordered subset {increasing or decreasing) of power s ;.
IV', Every ng.i-set has @ subset similor o Us,.

The object of this paper is to extend some of these results. Following
this, we shall make some remarks about similarity of #.-sets.

THEOREM 1. If a 15 a lmit ordinal, then H, is a universal order set
for the cardinal Sq.

Proof. The result is well known for ¢=0, so we assume «>0.

For every f<a, we denote by K, the sef of all elements @= (#);cu,
of H, for which ¢(#)<<ws. Obviously, Kz~=Hs; and K,CKg for y<}p.
Furthermore, it is evident that Ha=ﬁU Kgp1; it follows (see II') that

<a

: = i
@) H,= 2 PA-
f<a

Let 3 be any ordered set of power x,. Since x,= 2' Nz11, there

exist disjoint subsets Mpy, (f<<a) of M, whose union is M and such
that Mppi=sp41 (B<a). For every o<<a, define N,=(J M;,,.
B<a

Congider any ordinal t<(e, and suppose that for every o<z, there
has been defined a subset N; of K, such that (a) N,CX, for all ¢<a,
and (b) there is a similarity f, of N, upon N; that agrees with f, on N,
(o<o).

If 7 is a limit ordinal, define N,=(JN..

o<t

Define z=1 or v—1, according as 7 is or is not a limit ordinal. In

either case, we have

(3) AT:':: U -Mﬁ-{—l =J -N-cn
- B<n <t

and N,= U N;. Since K,=JK,, we have N.C K,. It is seen without

a<T et
difficulty that there is a similarity f., of N, upon N, that agrees with 7,
on N, (o<=). Using (3), we find that

Fi= Y spaamti.
f<n

We shall now imbed the set M,,; in the set K,.,. For every De-
dekind cut [L,R] of ¥,, we proceed as follows. Let [L',R'] denote the
correspondmg cut of N;. Since N;<Nyp1, NiCH,p1, and K., is an

Some remarks on 1q-sets o

Aarr-86t (IL'), there I8 an 9,41-8et PCH 4, such that L'<P <R’ ). Conse-
quently, sinee M, 1=x~,,1, the set of all elements of 7 M.y, that lie between
L and B can be imbedded in P.

By an evident modification of this procedure, we see that the set
of all elements of I, that precede I (resp. follow R) can be imbedded
in K.y1 80 a8 to precede L' (resp. follow R’) therein.

In this way, we imbed M,y in K..i 50 as to preserve, not only the
order of M., itself, but also all its order relations with ¥,. We have
thus constructed a subset N;,; of K., that contains N, and is similar
t0 Niy1; moreover, there is a similarity f,o of N..; upon N..; that is
an extension of the mapping f, of ¥, upon N..

This completes the induction step. Finally, we define M'=(JN,.
Obviously, JM'CH,; and, clearly, M'~ M. e

TEEOREM 2. If « is a limit ordinal, then H, is an 1.-set if and only
if s, 48 regular.

Prooi. Suppose, first, that s, is singular, and assume that H, is
an n.set. Then, by V, H, is an 9,.;-set, hence, by I, a universal order
set for n.41. But this is impossible, since, by (1), H, cannot have a subset
of type w,y1 (cf. Sierpinski [8], Théoréme II).

Suppose, now, that x, is regular. Assume a >0, the case a=0 being
well known. Let A, B be any two subsets of H,, whose union is of power
<Rp<<¥;, and such that 4 <B. Since x, is regular, the set of ordinals

~{p(x): e AUB} has an upper bound that is <w,. Since « is a limit

ordinal, there is, in fact, an initial ordinal «,< w, that is an npper bound.
Let d=max{f,y}. Then é+1<a, and both 4 and B are subsets,
of power <Insy1, Of the n;y,-set Ky, CH,. Therefore there are elements
u, v, w of H, such that w<A <v<B<w. Therefore H, iz an 7,-set.
Remark. Alternative proof of Theorem 1 for regular cardinals:
I and Theorem 2.
THEOREM 3. Leét o be a limit ordinal. Then an n,-set of power N, ewists
if and only if N, 8 a regular cardinal such that

(4) 2% N, for every f<a.

When this condition is fulfilled, then the set H, is an example of an n.-set
of power %, In particular, this is the case whenever 8, 18 strongly inaccessible.

Proof. If %, is gingular, then an #,-set is also an 7,..-set (V), hence
must be of power >s,.1. (This also proves Theorem 2 for those singular
cardinals x, such that H,=x, (see (2).)

%) Alternatively, we could reach this conclusion by utilizing Sierpinski [8].
Lemme I.
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Suppose, now, that s, is rvegular (hence inaccessible). Then H, is
an 7,-set (Theorem 2); and if (4) holds, then, from (2), we have H,=x,.
If %, is strongly inaccessible, then (4) holds (in fact, with the striet in-
equality — ef. Tarski [9]); however, if », is weakly, but not strongly
inaceessible, then condition (4) is in doubt.

For the remainder of the proof, eonsider any f<<a. Then f+41<a.
Therefore, any 7,86t § is also an 1p;1-set, hence of power >2% (IV);
50 if (4) fails, then §>x,.

THEOREM 4. Bvery n,-sel 8 has a subset similar fo the set H,.

Proof. Case 1: a=p+1. For every o<wg;i, denote by ¥V, the set
of all elements z=(2)s<uy,, Of Uopy,, such that 2:=0 for all ¢ with
w50 <E<wgya. Obviously, VooxUnes and V,CV, for p<o.

Consider any ordinal z, with 0<<t<Cwp.1, and suppose that for every
o<1, there has been defined a subset V, of § such that (a) V,CV; for
all p<o, and (b) there is a similarity f, of V, upon V, that agrees wit
Je on ¥, (9<o). .

In case 7 is a limit ordinal, define =17, and put

W.=UV,, Wi,=UTV;.
o<n o<
Then W,CS8. It is seen without difficulty that there is a similarity F,
of W, upon W, that agrees with f, on V, (o<x).

It is eaxily verified (cf. Sierpinski [7]) that W, is dense in V,. Now
by III', every well-ordered subset (increasing or decreasing) of V, is of
power < Nz41. The same then holds for W,. Hence, since S is an #g1-set,
there is, for every gap [L,R] of W}, an element s ¢ § such that L<s <R —
as is seen by a cofinality argument 3). Likewise, there are elements a,b € 8
such that a<<W,<b. It follows that S has a subset V, sych that

{3) V.CV} for all o<z,
and

{6) there is a similarity f, of V, upon V. that agrees with the mapping
F. of W, upon W,.

If 7 is not a limit ordinal, we define m=v—1, W=V, W.=V,,
and f,=F,. Evidently, (3) and (6) hold in this case as well,

We shall now imbed the set V.41 in 8. For each element o= (#)e<apyy
of V,, define V,..(z) to be the set of all elements u:(u;)ka,ﬁ w1 OF Vo
for which the segment (#e)e<ugn coincides with the corresponding seg-
ment (ac‘f),=<.,,ﬂ‘1 of x. Obviously, V,,+1(w):-'U,,,ﬁ. Also, we have z<v<y

3) Replace L (resp. R) by a well-ordered cofinal (resp. coinitial) subset.
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for all » € V..a(2), and all y T, with y>.x. Furthermore, it is evident
that
UV aa@d)=V,a.

"
xeVy

e pass now to the s ;-set §, and recall once more that every
{(nonempty) open interval of an #.s-set is itself an 7,.,-set. By the co- -
finality deviece used before 3), we find, referring to IV’, that S has a sub-
set V., that contains V7, and is similar to V..y; moreover, there is
a similarity f,.: of V... upon V.., that is an extension of the mapping
fo of ¥, upon V..

This completes the induction step. Finally, we define W= U V.

o< wpL
Obviously, W'CS. And it is evident that W’ has a subset similar to H,.

Case 2: « is a limit ordinal, We dismiss the trivial case a=0, and
assume o >0. For every o¢<a, we denote by X, the set of all elements
2= (2)s<w, 0L U,, such that z;=0 for all £ with w,<&{<w,. We observe
that § is an #.41-3et for every o<a. The proof now continues much like
that of Case 1.

We turn now to the gnestion of similarity. Hausdorff ([6], p. 180-185)
proved that

VI. Any two n,-sets of power s, are similar.

VII (from IT and IV). There exists an #z;;-set of power sz, if and
only if 2%¥=xs_;.

The problem arises as to whether one can prove that any two 1s;1-5ets
of power 2% are similar — without using the hypothesis 2%=1,,.
I have shown (cf. [3]) that this is not the case. More generally, let x,,
denote the smallest cardinal p such that there exists an 5,-set of power p;
and define v,=« if &, is regular, v,=a+1 if &, is singnlar. Then, on com-
bining various of the above results, we find that
(7) H,, is an n,set of power x, .

We have w,,, . =2, 8, =2" for singular s,, and s, ==, for strongly
inaccesgible »,; the values of x, for the other inaccessible numbers s,
however, remain in doubt.

THEOREM 5. If « and & are such that 6> u, and 6>wv,, then there
exist two n.osels of power s, that ave not similar.

Proof. Let P and @ be sets whose order types are
I_)=I:_[,,u(w5+l) y Q:E,H(wa—i—l)*.

Then (see (7)) P= q?: 8, Np="s;. The conclusion that P is an 7ns-set iol—
lows easily from the facts that P is both coinitial and cofinal with H, ,
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that H, is an 7,-type, and that wa-}—l is an ordinal. kaemse, @ is an
-5€
e :G\Tow P obviously has a subset of type ws;>o, . On the other
hand, sinee H, has no subset of type @, (1), it follows at once that
¢ has no such subset either. Therefore P and @ are not similar.
COROLLARY. If 2% £ wpy1, then there exist two 1py1-sets of power 2%
that are not similar.
Proof. The hypothesis implies that 2
applies with v,=a=F4+1, and ==y, ==2".

%6 >wp.:. Hence the theorem

Added in proof. Remark 1. For the inaccessible s, that satisfy (4),
I propose the term semi-strongly inaccessible. As I have observed else-
where ([2], Lemma 3.2 if.), the semi-strongly inaccessible cardinals
are precisely those limit cardinals %, for which W=y, for all.f<a.
T have encountered these cardinals again in another paper on ordered
sets [4]. One may note that under the Hypothesis of inaccessible numbers
proposed by Brdss and Tarski [1], every inaccessible cardinal would be
semi-strongly inaccessible.

Remark 2. Since H, is dense in U,, (ef. [7]), U,, has no gaps
([8], Lemme 1), and U, = 2% (obviously), we obtain the following result
of Hausdorff ([3], Satz XXTI) as an immediate corollary to our Theorem 4:

Every continuous n-set is of power at least 2%.
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Dimension of metric spaces
by
C. H. Dowker (London) and W. Hurewicz (Cambridge, Mass.)

1. It is to be shown that a metric space has dimension <# if and
only if there exists a sequence {z;} of locally finite open coverings, each
of order <n, with mesh tending to zero as i—»oo, such that

(a) the closure of each member of 4,4, is contained in some mem-
b,eI' of a;.

For a compaet metric space, every sequence of coverings of order
<n with mesh tending to zero contains a subsequence satisfying con-
dition (a). But eondition (a) can not in general be omitted, as is shown
by K. Sitnikov’s example [8] of a two-dimensional metric separable space
which has a sequence of coverings, each of order one, with mesh tending
to zero.

In the course of proving the above proposition, we incidentally give
a new proof of the theorem of M. Katétov (see [4]; also [5], theorem 3.4
and also K. Morita [7], theorem 8.6) that for an arbitvary metrie space X
the covering dimension (dim X) is equal to the dimension (Ind X) de-
fired inductively in terms of the separation of closed sets.

2. By a covering of a topological space X we mean a collection of
open sets of X whose union is X. A covering 8 is called a refinement of
a covering « if each member of § is contained in some member of a.

The order of a collection of subsets of X is the largest integer » such
that some point of X is contained in n--1 members of the collection,
or is oo if there is no such largest integer. ’

Definition 1. The dimension of a space X (dim X) is the Ileast
integer n such that every finite covering of X has a refinement of order
<%, or the dimension is oo if there is no such integer.

A collection of subsets of X is called locally finite if every point
of X has a neighborhood meeting at most a finite number of members
of the collection. If X is a metric space, it is known ({9], corollary 1,
and [3], theorem 3.5) that dim X<« if and only if every covering of X
has & locally finite refinement of order <.
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