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On a concept of dependence for continuous mappings *
by
K. Borsuk (Warszawa)

The present note is concerned with a concept of dependence of map-
pings. This concept, belonging to the homotopy theory, is extremely
elementary, but it quickly leads to hard problems. Our knowledge of
the relations between the dependence of mappings and other concepts
of the algebraic topology is meagre. Only in the clagsical case (of H. Hopf),
concerning the mappings of a compactum of dimension <n into the
Fuclidean n-sphere, the concept of dependence is partly reduced o the
homology theory. In other cases only partial results arve obtained.

1. Only metric spaces will be considered. We denote by Y& the
et of all eontinnous mappings of a space X, into subsets of another
space Y,. If X, is & compactum, we define 2 metric in Yo° by setting

olf,9)=supe(flz),g(a)) for every  frge 5.

Tn this paper we shall restrict ourselves to the case where X, is
a compactum and ¥, is an ANR set (= absolute neighbourhood retract).
Then the space Y¥ is locally connected (even locally contractible). The
component of Yi® containing a given function fe ¥¥ will be denoted
by [f] and called the homotopy class of . Two funetions f,g e Y belonging
to the same homotopy class are said to be homotopic.

A funection f e ¥3° is said to be extendable over a space XDX, (with
respect to ¥,) provided that there exists a function f e Y¥ (called ex-
tension of f) satisfying the condition

f(@)=1(2) for every we X,. _
It is known (see for instance [9], p. 86) that if f is extendable over X

and g e[f], then ¢ is also extendable over X. The functions fe Y ex-
tendable over every compactum X DX, will be called zero-functions (cf. [4]).
Evideutly, they coincide with the functions homotopie with functions

mapping X, onto singular points of ¥,.

* Most of the results were published without proof in a preliminary report [5].
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Let @ be a subset of the space ¥Ya° A function ge ¥7° is said to
be dependent on the set @ provided for every compact space XDX, the
existence of; an extension over X (with respect to ¥,) for every func-
tion fe g implies the existence of an extension over X (with respect
to ¥,) for g. The set of all functions g ¢ ¥;° dependent on the set & will
be denoted by K(P). In the case where @ containg only a finite number
of functions f;,f;,...,fr we shall write K(f,,fss...,fs) instead of K(®).

Obviously, fe &(®) implies [fJCR(P). On the other hand, if [P]
denotes the union of all homotopy classes [f] with fe®, then K([&))
=8K(P). Consequently, the relation of the dependence ge R(P) is in
fact a relation between the homotopy class [¢] and the homotopy clas-
ses [f], where fe®.

The following relations are immediate consequences of the defini-
tion of the K(P):

BCR(D)=R(K(D)),

R(D1w Py) D R(D)) o K(Dy),
KDy~ By) C R(Py) ~ R(P,).

Moreover, let us observe that R(0) coincides with the set of all zero-
-functions belonging to Fa° and that K(f) is the same ag the set of all
funetions g e ¥3°® such that for every compact space XX, the exten-
dability of f over X (with respect to ¥,) implies the extendability of g
over X. The functions g with the last property are called mulliples of f
and f is said to be a divisor of ¢ (symbolically: flg; of. [4]).

Example. Let ¥, be a topological group. Then ¥ iy also a topo-
logical group. For every f,g e Yoo let us denote by feog the product of f
and ¢ (considered as elements of the group ¥3°) and /™ and ¢* the in-
verses of the elements f and g. Let us observe that for every set GCYY
the set R(®) is a subgroup of ¥7°. In fact, if frg € R(®) and if every
function belonging to @ is extendable over X (with respect to Y,) then
there exist also the extensions f*,g* ¢ ¥3° of f and g over X. But Y¥
is also & topological group and the functions f*og* and 7% g* ' are
extensions over X of fog, f and g%, respectively. Hence fog, f,
g7 e 8(D). It follows that if (@) denotes the intersection of all subgroups
of Y3° containing @, then (G)CRK(®). Moreover, if ¢ ¢ (@) and pe ¥q°,
then yp ¢ R(QP), since the extendability of ¢ over a space X implies the
extendabilify of yp over X, The question whether every function f ¢ & (P)
is homotopic with a function of the form wp with ype (D) and pe ¥Y°
Temains open.

2. It is sometimes convenient to modity a little the concept of de-
pendence. We shall say that a function ge Y2 is dependent on the set
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im GCYF in the dimension m if for every space X X, satisfying the con-

dition

dim(X— X <m
the existence of an extension over X (with respect to ¥,) for every func-
tion f ¢ @ implies the existence of an extension over X of the function g.
The set of all functions g ¢ ¥3° dependent on @ in the dimension m will
be denoted by K,(D); if @ contains only a finite number of functions
fisfayeeeyfi we shall write K,(f1,fs,..,fx) instead of K,(D).

Evidently, the relation ¢ ¢ R,(®P) of dependence in the dimension m
is in fact a relation between the homotopy class [g] and the homotopy
classes [f], where f ¢ @. The functions belonging to K,(0) are said to be
zero-functions 4n the dimension m, and the functions belonging to K, (f) —
multiples of f in the dimension m. If g e K,(f), then 7 is said to be a di-
visor of g in the dimension m (symbolically: f,/g; see [1]). Moreover, we
have:

DC KDY= Ku Kn( D],

KDy Do) DR D1) w Kl Da)
Rm(@1 la (pz)CRm(@l) m Rm(djz) 3
Ku(P) IR )(PYOKR(P) for every m,l1=0,1,2,..

It is easy to show by examples that for m <dim X, the sets K,(P)
differ in general from the set §(®). The question whether for m >dim X,
the set K,(®) may differ from the set {(P) remains open.

3. Let f1,fs,---,fx e o finite sequence of funetions belonging to e
‘We shall say that these functions are separate if there exist a point y ¢ ¥,
and disjoint open subsets Gy,Gy,...,G of X, such that

fi@w)=y, for every seX,—Gi.

Then we shall say that the point y, and the sets Gy,6h,...,G realize
a separation of the funetions fy,fs,-.-;fe-

The funetions fy,fe, ... fx € ¥a© are said to be separable provided that
there exist separate functions fi,fs,...,fi homotopic respectively to
Fusfayees - , '

Examples. Obviously, one function is always separate. It is easy
to observe that in the case where X, is a Euclidean sphere and Y, is
connected every finite set of functions f1,fz; -, f € Y ¥ i5 separable (ef. [7],
. 10, and also [37, . 234). Moreover, it is known (see {13, (21, [3] and [11])
that in the case where ¥, is a Euclidean n-sphere and dim Xo<<2n every
two functions f,,f, ¢ Ya° are separable. On the other hand, it is k%lOWJl
(see [8] and [2]) that if X,=¥,XX,, where ¥, denotes 2 Buclidean
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n-sphere and n is even, then the functions fi,fse Y defined by the
formulas

Fyn v =91, fal¥Y)=Y:

for every (yi,¥.) ¢ Y, X ¥, are not separable.

Remark. A system of %k functions fi,fsy..57% € Y5 may be consi-
dered as one continnous funection

(]9(50)=(f1($),f2(£17),,fk(m))
with the range X, and the values belonging to the Carfesian product

Z=Y,XY;xX..X ¥, where Y;=Y¥, for i=1,2,...,k.

Tt is clear that if f,f5,..,fi ¢ ¥2° and
q’l(m):(fi(m):ﬁ(m)}7.fIIC(m))7

then the homotopy of ¢ and ¢’ (in 2% i equivalent to the homotopy
of f; to fi for every i=1,2,..,k.

Let us choose a fixed point y « ¥, and let us denote by Z(y) the
subset of Z consisting of all points (¥;,%s,...,¥:) such that at most one
of the coordinates ¥;,%s,..., ¥ differs from y. It is manifest that a neces-
sary and sufficient condition for the functions fisfas--rsfe 10 be separate
is that ¥, contain & point y, such that ¢(X,)CZ(y,). Then the separa-
tion of fi,fs,-.-,fx is realized by the point 4, and the open sets

G’i=fi_1(yo'_ (?/o)) .

It follows that a necessary and sufficient condition for f,fs,..}7/k
to be separable is that there exist a point y, ¢ ¥, such that the function
@ is homotopic to a function ¢’ ¢ Z*° with values belonging to the seb
Z(Yo)-

THEOREM. Let fiyfasesfr and  ¢1,0sy-,0x b€ functions mapping
a compactum X, into o connected ANR set Y,. If f1,fs,...,frx are separable
and if filg:, for 1=1,2,...,k, then ¢1,0s,-..,gr are also separable.

Proof. Without loss of generality we may assume that fy,f,...,
are separate and that a point y, e ¥, and the open sets Gy,G,,...,Gx
realize the separation of fi,f.,...,fz. By fi/g; there exists (see [4], p. 81)
a function y; ¢ ¥ ° such that v,f; is homotopic to g,. Evidently, v, may
be replaced by any function homotopic to itself. Since ¥, ig connected,
we may assume that iy, =y,. Hence

Pfd)=pyo0) =10

for every xeX,—Gy,
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i. e., the point ¥, and the sets Gy,6,,..., G realize the separation of the

funetions iy, ofs -, Wifx homotopic respectively to the functions
J13G2s e s Gk

4. Now we shall prove a theorem concerning the separability of

functions mapping X, in a Enclidean sphere Y,. We begin with the
following

Levia 1. Let Q" be the Buclidean mn-cube consisiing of points
(Eryle; ey ba) with 0<H <L for i=1,2,...,n and lei

Q=01 X Qs X ... X @y, Q.=0Q  for

Let us choose, for v=1,2,...,k, a point b, lying in the interior of Q,. Let
M denote the subset of Q consisting of all points (@,,,,... 2 Tg) € @y X Qo X oo X Qe
such that at most one of the coordinates , belongs to the interior of Q,, and let
N denote the subset of Q consisting of all points (iy, %y, ..., %) € Qg X QX . X Qp
such that for some two indices u=%v we have ,=b, and ©,=b,. Then there
exists a retraction by deformation) r(x,t) of the set Q— N io the set M
satisfying the condition

where y=1,2,..,k.

(1) T(m;t)’_‘(yl(myt)!yz(wat),-~-7."fk(wat))7 where £= (xlymﬂ'"amk) EQ“‘N and
if for an'index v the coordinate x, of x lies on the boundary of Q,, then
ylz,t)=u, for every 0<i<1.

Proof. Tet M;, where 0<l<k, denote the subset of @ consisting
of all points (,,%;,...,2) such that for at least I indices » the point «,
belongs to the boundary of @,. Hence My=¢@ and My ;=M. Let us
prove that ’ :

(2) If 1<k—2 then there ewists a retraction by deformation r(x,t) of the
set M;—N to the set M;.,— N satisfying condiiion (1).

Let vy,vs,..5% be a system of 1 different patural indices <k. Con-
sider the set M (vy,v,,...,%)CQ of all points (y,2,,...,2) €@ such that
each of the coordinates =,, j=1,2,...,I, lies on the boundary of @,,.
It is evident that the sets M(w,vs,...,) are closed, that their union
coincides with Jf;, and that the intersection of any two of them is
@ subset of M;.,. We infer that to complete the proof of (2) it suffices
to show that there exists a retraction by deformation »(x,t) of the set

1) A funetion r e X% ig said to be a refraction of X, if »(x)=x for every z ¢z (X).
The set of values 7(X) of a retraction r e X% is said to be a retract of X. By a vetraction
by deformation of X to a set ¥YcX we understand a continuous function r{(x,?) defined
for z ¢ X and 0<{#<C1l with values belonging to X such that r(x,0) is the identity and
7{x,1) is a retraction of X to T. Then the set ¥ is said to be a deformation refract of X.

T¥
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M (vy,v3y.0eym)— N to the set IMppa[M(v,2s...
dition. (1) and the condition

,v)— N] satisfying con-

(8) 7@, t)y== for every &e A an[IM (v,vp,...,v)—N] and 011,

To simplify the notation we shall consider the case where the indices
Py Vg, ¥ coincide with 1,2,..,1. Hence M (v,v,,...,%) is the set of
all points (21,25, ...y &y Brs1, .- mk) QX @y X... X0 with ; belonging to
the boundary of @;, for i=1,2,...,7, and with ; belonging to @;, fo
j=1+1,...,k. For fixed coordmates 21,%3,...,21 the points of this fonn
constitute a Buclidean cube Q(»i,%,...,2)) of dimension (k—1I1)n > 2n,
and the point

DL, By ey XY= (T1, Xay oe y 81y by oo Die)

belongs to the interior of it.

Let y(x) denote, for every point .l?eQ(.ﬂl,.L'g, &) —
the projection of x from the point p(xi,xs,...,x;7) on the boundary of
the cube Q(w;,rs,...,4). It is evident that y(x) depends continuously
on all coordinates of the point z= (2,3, ..., s @), that w(x) e M;.,,
and that for e M;., we have y{x)=x. Moreover, let us observe that
M y=(@1, @2y cey ¥y Yrs1seeey Yi) ZD (D1, X2y .ooytf) I8 a point lying on the
straight line joining z with p(x1,4s,...,4,;), then the jth coordinate ¥,
of y is equal to b; if and only if the jth coordinate of the point x is equal
to b . It follows that for xe M (vy,v,...,m)—N the segment zw(z) lies
in the set M (»,7s,...,7)—N. Hence setting

P(TL @y ...y T),

’
LpydLpsry--e

7(@,f)=point which divides the segment ry(x) in the ratio :(1—1),
we obtain a retraction by deformation of the set M (v,u,,...
the set My ~[M (v1,7,...
and (3).

Thus (2) is proved. Starting from the set M,— N=¢— N we infer
by a finite induction that there exists a retraction by deformation r»(z,1)
of the set @ — N to the set M, — N =2 — N=W satisfying condition (1),
i. ¢, the proof of the lemma is finished. .

s 1/1) —N to
,7)— N]and this retraction satisfies conditions (1)

5. Since the Euclidean n-sphere may be obtained from the Fucli-
dean n-cube by identification of all points lying on its boundary we obtain
from lemma 1 the following

Levya 2. Let T=8,X8,X... X8, where §, is a Buclidean n-sphere
and let a,,b, be two different points belonging to 8,, for v=1,2,...,%k. The
subset A of T consisting of all points (&y,2y,...,3) € &y X Sy X. .XSA such
that af most one of the coordinates w, differs from a,, is a deformation re-
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tract of the set T— B, where B is the subset of T consisting of all points
(@1 s %y ey k) € 81X 83 X oo X 8 such that for some two indices pv we have
Bu=bp, &=,

Proof. We can assume that S, is obtained from a Euclidean n-cube
(), by the identification of its boundary with the point a,. Hence b, is
a point lying in the interior of @,. It follows that the set I may be con-
sidered as the set obtained from the cube Q@=@,X@,X...XQ; by the
identification in every term ¢, of the boundary with the point a,. By
this identification the sets A and B correspond, respeetively, to the sets
M and N considered in section 4. To the retraction by deformation r(z,?)
of the set Q— N to the set M, satisfying condition (1), corresponds the
vetraction by deformation of the set 7—B to the set 4. Thus the proof
of the lemma 2 is finished.

Remark. It is easy to observe that the set T is a (kn)-dimensional
manifold which can be triangnlated in such a manner that the sets 4
and B of the statement of lemma 2 are subcomplexes of this triangulation.

6. Leva 3. Let X be a compact k-dimensional space and P — an
I-dimensional rectilinear polytope lying in the Euclidean n-space B, with
n>k-+1, and let @ be a closed subset of E, disjoint with P. For every funec-
tion | e By and every ¢ >0 there exists a function f, € EX satisfying the fol-
lowing conditions:

4)  elf(@),folz) <e
(5) fD(X)CEn_"-P)
6) if fl@eQ, then fx)=f(=).

Proof. Since @ is closed and PCE,—@ compact, there exists a po-
sitive » such that

for every xed,

0<n<lo(p,q) Tfor every peP and geQ.

Tt is known (see, for instance, [10], p. 207) that there exists a function
f1e BY satistying the conditions:

(8)  elf),hlz))<n
(9)  £(X) is a subset of a k-dimensional polytope WCE,.

(1) 0<n<ie,

for every xeX,

Since dim W=£F, dirﬁ P=1 and n>k+1, we infer that there exists
an isometric mapping « of the space E, onto itself satisfying the con-
ditions:

(10)  efa(p),p)<7
(11) «(W)CE,—P.

for every  p ek,
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Setting

(12)  ffw)=a[fi(x)] for every wxeX, I
we infer by (8)-(12) that

(13)  o(f(@),folw)) <2y for every zeX,

(14)  f(X)CE,~P.

Consider now the 2p-neighbourhood of the set Q, i. e., the set U of

all poi i z (U) i
ol ‘1;01&11;; P e B, with o(p,Q)<2n. The set G=77"(T) is an open subset

(15) e(ful),Q) <2y

By (13) the compact set f7YQ) is contained in G.

Consider the function # defined in the compact set £
g et ;—
by the formulas : @ =6

(16) . B(@)={(z)—fs(z)
(17 . B@)=0

for every ze@.

for every xef {Q)CEH,

for every 2¢X-—@.

W in (133171(16%%11(1 (17) we have |(x)| <2y for every wefs'(Q)u (X — &)
e infer that there exists an extension 8’ ¢ EX isfyi .

el B eBy of B satisfying the

(18) 1B (%) <29 fof evevry' relX.
Let us set:
(19) fol@)=fy(z)+ (@) for every xelX.

It follows by (13) and (18) that off (@), (@)
] 0 <dn for ever X.
We infer by (7) that condition (4) is satisﬁéd’f ) ok

Moreover, by (18), (19) and (15) we have for every ze G:

o(fol@), Q) <e(fol@), Fo(®@) + o (ful@),Q) <2+ 25— 4n.
It follows by (7) that

(20) Iz) e BE,—P for every ge@.

For ¢ X—@, we infer by (17) and (1
9) that fo(z)=7fz
lows by (14) that fy(z) ¢ ,—P. With respect to (20) e
condition (3) is satisfied.

Finally, we infer by (16) and (19) tha i
hat the relation impli
fol®)=Ff(2), hence condition (6) is also satisfied, (o) €Q implies

. It fol-
we conclude that

7. A subset B of an n-dimensional mani i i
A s g anifold T is said to be locall
polytopical if for every point P e B there exist an open neighbom‘hoog
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G of p in T, a compact neighbourhood PCG of p in B, and a homeo-
morphism » mapping @ onto the BEuclidean n-space E, in such a man-
ner that h(P) is a rectilinear polytope.

LeEMMA 4. Let B be a locally polytopical, l-dimensional, compact
subset of an n-dimensional manifold T and A o compact subset of T—B.
If X is a compact space with dimension <n—1 and ¢ € T%, then there exists
a function ¢ e T* homotopic to ¢ and satisfying the conditions:

(21)  ¢'(X)nB=0,
(22) i e@@ed, then

Proof. For every point p ¢ B there exist an open neighbourhood
G,CT—A of p in T, a compact neighbourhood P,CB~@G, of p in B
and & homeomorphism % mapping &, onto the Euclidean n-space z,
in gueh a manner that h(P,) is a rectilinear polytope. Let ¥, be an open
neighbourhood of the set P,in T such that the closure V, of V, lies in Gy.
Since B is compact there exists a finite system of points pi,pe,...,Pre€ B
such that

¢ (@)=p(x).

(23) B=U Py,
p=1
Let us set
(24) By=0, Bi:opﬁ, for i=1,2,..,k
y=1

We shall show by induction that for every positive ¢ and i=0,1,...,k
there exists a function g;e T* satistying the following conditions:
(25) (X))~ Bi=0,
(26)  olp(@),pilm)) <e—ef2
(27) if ¢@@)ed then

Tn the case of i=0 we set p,=p and then propositions (25;), (26:)
and (27,) are obvious. Assume that 0<i<k and that g, is a function
satisfying (25;), (26,) and (27)). Since the sets B; and @{X) are compach,
we infer by (25;) that there exists a positive 7 such that

pi{w)=o{x).

(28) it X and yeB;, then olpi),y) >

Applying lemma 3 to the function ¢; considered only .in t.he set
Xy=¢i (Vp,)s and to the sets P=Py,,, Q=G ~Vp,, lying in the
set G,,, homeomorphic with E,, we infer that there exists a continuous

-+

funetion ¢y, defined in the set X, and satistying the conditions:
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(29)  ofpira(®), o @) < min (y,6/2"),
(30)  giri(x) e Gpi+1_13p
(31) if ‘P:(M) € Gpi+l “‘Vpﬂ_lr then (Pi-i»l(m) =(pl(m) .

i+1?

Setting g;ya(x)=gi(x) for every ze¢ X—X;, we infer by (31) that
the mapping @:.,, extended in this manner over X, is continuous and
satisfies moreover conditions (29), (30) and (31). Since Gy, nAd=0, the
extended function ¢, satisfies condition (27;). Moreover, by (29) and
(26;) it satisfies condition (26;,). From (28;) and (29) we infer that
Fiz{x) ¢ B; for every z e X. It follows by (24) and (30) that condition
(25,41) is also satisfied.

Thus we have shown that for every 4=0,1,...,% there exists a func-
tion ¢; satisfying conditions (23,)-(27;). Consider the function @ = qy.
By (23) and (24) it satisfies condition (21) and, by (27:), condition (22).
Moreover, it follows by (26,) that Q(tp(m),(]?l(il?))<8 for every x ¢ X. Since
the space T¥ is locally connected, we infer that for positive ¢ sufficiently
small the funetion ¢’ is homotopic to ¢, which completes the proof.

8. TueorEM. If X, is a compact space of dimension <9 and Y, —
the Euclidean n-sphere, then every finite system of functions f1,fs, .., fr e ¥
1s separable. X

Proof. The statement is obvious for k=I1. Assume now that & >1.
Let us assign to every point @ e X, the point

¢(w)=(f1(w)!f2(m)s -"7fk(m))€ Sl XSg X X Sk,

where 8;=X, for ¢=1,2,...,k. We obtain a function @ e T* where T
denotes the (nk)-dimensional manifold 8, xS, X... X 8.

Now let us choose an arbitrary point Yo € Xy. For every v=1,2,... %
let us denote by @, the point y, and by b, another point of 8,. Consider
the sets 4 and B defined as in lemma 2. It is clear that B is a locally
polytopical (k— 2)n-dimensional compact subset of the (nk)-dimen-
sional manifold 7. Applying lemma 4 we infer that there exists a fune-
tion ¢ e T*° homotopic t0 ¢ and such that ¢'(X,)~B=0. Hence we
can assume that the given functions f,,f,,...,/ satisfy the condition

(fl(w),fg(m),‘..,fk(m)) «T—B for every zelX,.
But by lemma 2 the set A is a deformation retract of the set 7'—B.

It follows that for every »=1 12,..,k there exists a function # ¥

homotopic to f, and such that 7

{ﬁ(ll‘) ’ fé(il:') pase 77‘12(1‘)) ed for every &Tre ;-YO .
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By the remark in section 3 it follows that the point y, and the sets
Gy, @s,..., G Tealize a separation of the functions 7,,fsy...,f-

Remark. Applying a theorem of Hopf ([8], p. 436, theorem V),
one can easily show that for every even n there exist two non-separable
functions mapping the Cartesian product of two Euclidean n-spheres
8% 8 into 8 (cf. [2], p. 736). Consequently, the hypothesis dim X,<2n—1
in the lagt theorem ecannot be dropped.

9. Let f1,fay...,fx e & separable system of functions belonging to Y.
Congsider & point y, ¢ Y, and a system Gy, G, ..., G, of open subsets of X,
realizing the separation of f,,f,,...,fx. Hence for every i=1,2,...,%& there
exists a function fje ¥5® homotopic to f; and such that fiz)=y, for
every #eX,— G, 1=1,2,...,k. If we set

fo)=fix) for ze@, 1i=1,2,..,k,
k
fa)=ge  for zeX,-UG,
we obtain a funetion 7 e ¥ which we shall call the join of the func-
tions fufz:---;fk (cf- [1]7 [2’]5 [3] and [11]). . )

THEOREM. If f is a join of the functions fy,fay...,fx e Yo where Ty is

connected, then for every true cyele y of X, we have

(32) TG~ + i+ ) in Yoo

Proof. We can assume that the functions fi,fs,...,fr are separate
and that the point y, and the open sets &;,Gs,..., G, realize thei?' sepa-
ration. Let 5= {y,} where 7, is a g-cycle (with arbitrary C.‘Ofolele]l.tS)
of X, and lim &,=0. One easily sees that y is homologous in X, with

PrnOO

a true eycle " ={y.} such that every simplex of y; lies either in the set

Xo—LkJG,- or in one of the sets Gy, Gs,..., Gx. Without loss of generality
=1

we may assume that y satisfies the last condition. Let

V== Qyy, 'Av1+ a,,g'Ayz+ ...—l—a,,,,, 'A,.,,,”.

then Fr) = F(du)+ iz F( )+ oo G F{ i)

k
It 4, lies in G then f(4,)=7Fd{4.;), and if A4,; lies in Xo——iglG,,.
then f(4,;)=1,. This gives us homology (32) for true cycles y of positive
dimension. If however 7 is of dimension 0, then f(r)r.w() a.pd also f,-(g-)NQ
for i=1,2,...,k, and consequently (32) holds also in this case. ‘
Two functions f,g € ¥o° are said to be homologou.é? provided that fc‘n
every true cycle 7 of X, we have 7(r)~g(r) in ¥,. It is known that two
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homotopie mappings are necessarily homologous. In the case where
dim X,<n and Y, is the Buclidean n-sphere (we shall quote this case
as the n-dimensional case of Hopf) the inverse is also true: two homo-
logous mappings are necessarily homotopic.

COROLLARY 1. AUl joins o a given system of functions fy,fa,...,fr € Y0
are homologous.

Every function ¢ e Y3 induces a homomorphism y™? of the n-di-
mensional group of homology H*(X,, %) of X, with coefficients belonging
to an arbitrary Abelian group U into the group H"(Y,,%).

CoROLLARY 2. If f ds a join of funclions fi,fs,e,fee Y30 then
x}‘ﬂ,n): Z}:”")‘}‘ Zj(;’")+ e z}:l,n) .

10. By the theorem of section 8 if dim Xy<2n and ¥, is the REucli-
dean #-sphere, then there exists a join for every system f;,fs,...,fx € To0.

If dim X,<2n—1, then we can prove the following, somewhat stronger
theorem:

THEOREM. If X, is @ compact space of dimension <2n—1 and Y, —
the Euclidean n-sphere, then for every system fi,fay..,fce Yo the joins
Of Jisfayersfr constitute one component of ¥io.

Proof. We may assume that # >0 and that there exist a point yq ¢ ¥,
and & system of open and disjoint subsets Gi,G,,...,6; of X, realizing
the separation of fi,f,,..., /. Setting

fw)=filz) for every we@, i=1,2,..,k,
k

@)=y, for every 2eX,—\UGy,
f=1

we obtain a join fe Y3 of fy,fayen. s fu-

Consider now another point % of ¥,. It is evident that e may
define & continuous rotation ¢(xz,t) of the sphere ¥, such that

9(y,0)=y for every yeX,,
. Py 1)=y3. .
Setting for every se X, and 0<{<1:
f(x)=79(f(w)7t)7
ﬂ(m):ﬁ(f(a;),t} for i=1,2,..;k,

We obtain continuous families of functions ', fi Dbelonging to ¥3° and
such that fo=f, 0= 1 for every i=1,2,..,k, and that {' is a join of
the functions fi,fi,...,f5. It follows that ft constltutes a join of the fune-
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JAons f1,f2; -, fk and that this join is homotopic to f. Moreover, it is clear

that the pomt yo and the sets Gy,6,,..., G, realize the separation of the
functions fi,fs, .., s

It follows that to i}love another join f' of functions f;,fay...,fx € ¥o°

to be homotopic to the join f we may assume that f' is defined in the
following manner:

There exist functions fi,7,...,ft homotopic with f,,fs,...,fx, Tespect-
ively, and open disjoint subsets G3,G4,...,G% of X, such that
fil@)==y, for every 2eX,—@ and 1=1,2,..,k,
F@\=fi{x) for weG and i=1,2,..,k,
)=y, for every xe X—-QG;'
Sinee f; and f; are homotopic, there exists a continuous function g{x,t)
defined for (z,t) e X,x<0,1), with values belonging to ¥, and such that
gi(®,0)=f(2); gdz,1)=fiz) for every weX, and i=1,2,..,k.
Setting
g(a,1)=(q:(2,1), 0a(2,1), .o gl 1)) for every  (2,8) € X;x (0,15

we obtain a function g e TP where T'=8,%8;% ... x 8, and 8;=7Y,
for ¢=1,2,...,k. Let a,=y, and b, e §,—(y,) for »=1,2,...,k and con-
sider the subsets A and B of T defined as in the lemma 2 (section 5).
By this lemma A4 iy a deformation retract of 7'— B. Since dim TI'=Fkn,
dim B=(k—2)n, and dim(X,x<0,1>)=dim X,+1<2n we infer Dby
lemina 4 that there exists a function g’ e T°*“” homotopie to ¢ and
such that

g'(Xpx<0,13)~B=0,

§'(2,0)=g(z,0) and g'(x,1)=g(x,1)

for every (i,f) e X,x<0,1)>. If we apply the retraction by defou]llya,)t(l((o)g
of T—B to A we infer that ¢' is homotopic to a funetion. g’ ¢ I
satisfying the conditions: _

g'(@,t)e A for every (x,1)e X% (0,13,

¢(®,0)=0(2,0)={/1@),1{(®),..,Jw)) for every zeXo,

¢ (@, =g (z, 1)z(f1(m ), fa(@), .., file))  for every zeX,.

The points p e A are of the form p= (¥1,¥s, .,¥x), where there exists

at most one index 4, such that ;Y- Setting y(p)=1y:, We define a eon-

tinuous mapping v e V4. It is evident that the functions pdm)=yg" (z,1)
constitute a continunous family {p} CY& joining the function @g(z)
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=g (2,0)=p[f(®), /), ..., ful)]=] (x) with the function g(@)=yg"(x,1)
=yp[fi(x),[2(®), ., K@) =71 (2). Hence f and f° are homotopic and the
theorem is completely established.

11. The following. theorem states a relation between the notion of
join and the notion of dependence of functions:

TerOREM. If:

10 the fumctions fy,fay...fe€ Xor* are separable and

20 m>dim Xy m+1>dim Y,,
then every fumction ¢ e Kpmii1(fryfeyeyfe) 18 a jein of some multiples of
flafz:'“afk'

Proof. Let y,¢ Y, and let the open sets Gy,G,,...,G; realize the
separation of the functions f,7,...,fxr. We may assume that

filx)=y, for every =zeX,—@;, i=1,2,..,k.

Consider the Cartesian products X,=X,x<0,1> and Y;=¥,x% (i) for
i=1,2,..,k. We may assume that X,, X, and ¥,, ¥;,..., ¥, are disjoint
subsets of a metric space. Let us identify every point (x,0) e X, with
the point z e X,, every point (y,,7) ¢ ¥; with the point y,e ¥,, every
point (z,1) € G: X 0,1>CX, with the point (fi(x},4) ¢ ¥;, and every point

k
(x,1) e (X,—UG)%x<0,1>CX; with the point (¥,,%)=1%,. In this manner
i=1

we obtain from the set XywX;w Y, u..u¥; a spacé X of dimension
<m-1, eontaining each of the sets X,,X;,¥,,..., Y, 2. Let us observe
that each of the functions f;,f,,...,fx is extendable over X. In fact, setting

f;(m,t):f,(.'r) for (w:t)EXDX<071>,
fiy,d)=y for  (y,i) e ¥YoX (§)=1,,
1y.9) =4, for (g, e Yox ()=Y, for i=£j,

we obtain a continuous extension f; of f; over X with respect to ¥,.

It follows that for every function ge R,i1(fi,72,....fc) there exists
an extension g'e Yi. Setting

yly)=g'(y,i) for every ye¥,,

we obtain a function y, e Y. But the function g(z)=¢'(x,0) is homo-
topic to the function ¢'(x,1) and one sees immediately that the last fune-
tion is a join of the functions wfi(x,1) identical with the functions wifr
respectively. Evidently, the point g'(y,) and the sets Gy,@s, ..., G vealize
the separation of the functions v:f. Hence the theorem is proved.

%) The construction of the space X constitutes a slight modification of the con-

struction of the so called mapping eylinder, due to J. H. (. Whitehead [12], p. 259.
Cf. also [6], p. 43.

B
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It is known [4] that if 7,0 ¢ ¥ and flg, then there exists a fune-
tion e Y3 such that g is homotopic with yf. If ; denotes the endo-
morphism of the group H"(Y,,%) induced by y, then Z;!m)zz[x}um)].
By virtue of corollary 2 in section 9 we have

COROLLARY 1. If the junctions fy,fa,isfie Yo' arve separable and
> dim Xy, m+1>dim Y, then for every function g€ Rmealfisfay-sfi)
there emist endomorphisms yy,%ay-,xx 0f the group H'(X,,) such that

k
xf;’”’)_:g; 2577 for every mn=0,1,... and for every Abelian group U

Tf ¥, is an orientable n-dimensional pseudomanifold (i. e., a simple
n-civeuit), then for every funection pe Y¥ there exists an integer (the
degree of p) m such that for every n-dimensional tn}e cycle v of Y, we
have p(y)~m-y in ¥,. Hence we obtain the following

COROLLARY 2. Let X, be am orientable n-dimensional manifold, X,
a compact space and m — an integer such that n<m-+1 and dim X°<?n-.
If the funclions fl,fz,...,fkng(" are separable, then for every fumction
g € Spaalfesfares fi) there exist some integers my,May... M such that for
every n-dimensional true cycle v of X, we have

k
g(r) NZ mifdy) in Y.
i=%
Applying the theorem of section 8 we obtain
COROLLARY 3. If fi,fzy-fu € Xo° where dim Xo<2n and ¥, 48 the
Euclidean n-sphere, and if m s an integer satisfying the inequality
m>max [dim X,+1, dim ¥,], then for every function g € 8alfrrfayeesTe)
there exist integers My, Myy... My such that for every true cycle r of X,

it s
k
gy~ Y mifir) i Yo

i=1

Since R(fl,fg,...,fk)CR,,,+1(f1,f2,...,fk) fc.)r.every system of ffl;nctl:;ls
fiofaserfr e Y& and for every integer m (fm%te or not) we get from the
corollaries 1, 2 and 3 the following corollaries: '

CopoLLARY 1. If ge¥ Yo depends on the separable functions
frafageees fre X3", then ihere ewist endomorpRising yis Yz -y Ak of the group
H'(X,,N) such that

k
1 {9t,n)
x?,um: Z%i[li 1.

f=1
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CoroLrARY 2'. If Y, is an orientable n-dimensional pseudo-manifold
and if ge Yo depends on the separable functions f,,f,, ... JJee Y{,Y", then there

LISt INTEgers my, My, ..., My such that for every n-dimensional true cycle »
of X, we have

L .
9~ mifdy)  in X,
i=1
COROLLARY 8'. If fi,fs;...,fr € X5 where dim X,<2n and if T, is
I{he Buclidean n-sphere, then for every function g e K(f1,fay.e,fe) there emist
integers my, My, ... my such that for every true cycle v of Xy we have

k
9@~ mifly) in X,

I=1

12. ¥or the mappings into Euelidean spheres we have the following
theorem, stronger than the theovem of section 11:

THEOREM. If f1,fs; ..., fx € T3 where dim X,<2n and Y, is the Bucli-
dean n-sphere, and if m is an integer such that dim Xo<m<2n, then
f e Kulfasfas s Fe) if and only if f is a join of certain multiples gy,qs, ..., g
of fisfaseees fre- ’ v

PI:Of)f. By virtue of theorem of section 11 it suffices to show that
every join of the functions g,,g,,..., 9 belongs to R,.(f,,fs,...,7x). Since
917925, gr are separable '3,1.1(1 Rz,,_l(gl,ga,...,gk)CR,,,(fl,fz,...,fk), it suf-
fices to show that every join f of the functions fisfas s fr belongs to
Rona(fysfas s fr) - Obviously we may assume that there exist a point

Yoe ¥, and open subsets GGy Gy of X, realizin i
g the separation of
fisfay e sfr and such that ' '

f@=7f(@) for every we@,
@)=y, for every 'msXO—LkJ G

=1
Let X be a compact space such that X,CX, that dim (X — X, 0)<2n—1

and that for every i=1,2,..,% there exists i te ¥F
bvor T Settin 525000 an extension f;e ¥§ of f:

(@) =(fi(2),fi(@),...,ful®)) for every xelX,

we obtain a continuous function ¢ mapping X onto the Cartesian pro-
duct T=Sl><AS’2><...><Sk, where 8,=Y, for v=1,2,..,k. Let us set
&=y, and let b, be a point of 8, different from a,. Con’sider as in the
proof of lemma 2 (section 5), the set 4 of all points (z m’ w)eT
such that. at most one of the coordinates z, differs from « lain?l’ th,e get B
of all points (1 %2sey ) € T such that for two indieeg’ #5=r we have
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2,=b, and @,=b,. By lemma 2, there exists a retraction by deforma-

tion #(p,t) of the set T'—B to the set ACT—B. But dim T=Fkn,

dim B=(k—2)n and dim X<2n—1, hence lemma 4 implies that there

exists a function ¢’ ¢ 7% homotopic to ¢ and satisfying the conditions
¢'(X)~B=0,

i g@)ed then ¢'@)=g@). \
Since p(x) e A for every we X,, it follows by the last condition that
@' e T* constitutes an extension of the funetion ¢ congidered only in X,.
It follows that setting

¢'(e)=7r[p’'(®),1] for every weX

we obtain an extension ¢'" ¢ A*CT* of the function ¢ (considered only
in X,) and this extension is homotopic to ¢. Let

tp”(m):( (@), f2 (@) ey ,’;(w)) for everyr 2eX

and let @} denote the subset of X consisting of all points # <« X such
that fi'(#)#y,=a;. It is evident that the sets G¥,6%,...,G% are open
and disjoint and that G;C@{. Setting

'(@)=fi'(x) for every weGY, 4i=1,2,..,Fk,
k
' (@)=1y, for every 2eX—UJGY
i=1
we obtain a join §' ¢ ¥¥ of the funetions fi,f4,...,fi. Since ¢/ (@)=¢{z)
for # e X, and G;CGY, the function "/ is an extension over X of the fune-
tion f. Thus we have shown that f has an extension over X and con-
sequently fe Ronas(fisfoseesfe)-

13. In the n-dimensional case of Hopf, 4. e. in the case where
dim X, <% and Y, is the Euclidean n-sphere, the classes of homotopic
functions bélonging to ¥ constitute the so called Hopf group of X,
(it is a special case of the cohomotopy group studied by Spanier [6]).
In the Hopf group the sum of two classes of homotopy [#],[f.]CYa"
is defined as a class [f;] such that for every true eycle » lying in X, we
have fy(y)~Fi(r)+7/(y). By virtue of the theorem of section 12 and of
corollary 3’ of section 11 we obtain the following '

COROLLARY. In the n-dimensional case of Hopf the set of classes of
homotopy contained in the set Ku(fiyfay-- i), where n<m<2m, coincides
with the subgroup of the Hopf group of Xy generated by the classes of homo-
topy [f1dsTfed, ey [fid-

14, A subset @ of ¥§® will be said to be a sg}stem of generators of Xaos
if &(®)=YZ Since the set of all components of I3° is at most enumer-
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able, there exists o finite or ennmerable system of generators of Y3
for every X, and ¥,. If there exists a finite system of generators, we
denote by I(X,,Y,) the minimal number of elements in such a system.
If, however, a finite system of generators does not exist, then we set
I(X,, Yy)="x.

It is easy to give examples of X, and Y, such that I(X,,Y,) has
an arbitrarily given integer value » with 0 <v<xn,.

Similarly, if s is an integer >0, then a subset @ of Y50 with
K D)=TF will be said to be a system of generators at the dimension m
of ¥ By I.(X,, ¥,) we shall denote the minimal number of elements
in sueh a system. It is evident that I,(X,,Y,) is finite or equal s,
and that

I(-XO’ YO) >Im+k(X-|Zly Yo) >1,,,(X0, YU)

for every integers k,m>0.

In the n-dimensional case of Hopf and under the hypothesis that
X, is a polytope the Hopt group of X, has a finite system of generators.
It follows by the corollary of section 13 that in this case the number
I.(X,,Y,), where n<m<2n, is finite (equal to the minimal number
of the generators of the Hopf group) ?).

Problem. Is it true that for every polytope X, the number I(X,,Y,)
8 necessarily finite?
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