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The aim of this paper is to present the well known Godel-Rosser’s
Theorem on the undecidability of arithmetic as a consequence of the
representability in arithmetic of recursively enumerable non-general re-
<cursive sets of positive integers.

The new features of this paper are: 1. the systematization of the
proof by formulation of Lemmas 2-4 concerning representability and
2. the application of two recursively enumerable non-general recursive
sets, namely of a diagonal set and of 2 simple set.

) 1. General lemmas. A theory T is said to be decidable if there
exists an effective method (called the decision procedure) which allows
us to decide after a finite set of simple operations whether a given sen-
tence is or is not a theorem of T. The notion of the method is not quite
exact. A strict metamathematical definition of decidability is obtained
for example by mapping the set of expressions of a formalized theory
o.nto the set of positive integers. Any formalized theory T can be con-
sidered as containing only a finite set of primitive signs: B;,f.,..., 5.
Each expression I can be considered as & finite sequence 8, ...83, of
these signs. The function No(I'), which establigshes the enuxﬁell'a,tioﬁ of
the expressions, can be defined for example as follows:

I I'=Byfufn, then No(I')=2m3".  pl.

A theory T is called decidable if the set of mumbers representing
1}he theorems of T’ is computable (generally recursive). A theory which
iz not decidable is called undecidable. If a theory T is consistent and
eﬁ}ch consistent extension of T is undecidable, then 7' is said to be essen-
tially undecidable. We shall apply the following Lemma on essential un-
decidability established by Tarski in [10]:

.LEM:MA 1. A theory T iz essentially undecidable if and only if T is
oomwtent and each consistent and recursively enumerable extension of T
28 incomplete (see [10], p. 15, Theorem 2).
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Many proofs of essential undecidability can be considered as the
applications of this Lemma. In this paper we shall give some simple
examples of such proofs.

In the following we shall consider the theories containing the iden-
tity-sign, the quantifiers, the minimum operation or the :-operation
and containing the individual constants of the lowest type (terms). A se-
quence {a,} of terms is regarded as computable if the sequence of num-
bers {No{a,)} is computable. The propositional formulas with free va-
riables will be denoted by @(x), ¥(z,y) ete. The substitutions of the con-
stants in such formulas will be denoted by ®@{a,), ¥{a, ). The quan-
tifiers in the system will be written as (z), (Hx) and in the metagystem
as []., X,. The expression “Td(a,) le T"?) in the metasystem will be
an abbreviation of the proposition “@{a,) is a theorem of 7™

We shall say that a set X of positive integers is represented in I’ by
the formmula @(x) with respect to the sequence {a,} of terms provided
that the following equivalence is satisfied:

(1) ”nn eX=TD(a,)1eT.

We shall say that a set X is strongly represented in T by a formula
@ (x) with respect to the sequence {a,} of terms if and only if the set X
is represented in T by the formula @ (x) with respect to {a,} and the com-
plement —X of the set X is represented by the negation ~®(z) of the
formula &{z) with respect to {a.}.

The notion of strong representation is identical with the notion of
T-definability introduced by Mostowski in [7].

Similarly a relation R is represented in T by a formula ¥(z,y) with
respect to {a,} if the following equivalence is satisfied:

@) 1., Bink) =" ¥(ap,a)Te T

A relation R is strongly represented if it is represented by a formula
Y(r,y) and the relation ~R(n,k) is represented by the formula
~¥(z,y).

‘We shall suppose in the continuation that the sequence {a,} is com-
putable, and fixed in all considerations.

A function f is said to be represented by a formula ¥(z,y) if the
relation k=f(n) is represented by the formula ¥(z,y).

1) T shall use the symbols I 1 not strictly in the manner proposed by Quine, but
only for distinguish between the names of the expressiens of the theory and the ex-
pressions of the metatheory.
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A funetion f is said to be strongly represented by a formula ¥(x,v)
if the relation %k=j{n) is represented by the formula ¥(z,y) and the
formula

(3) (2,1,2)|(#(2,9) A P(2,2)| >y =2

belongr to T.

We shall make use of some properties of representability. It is ob-
vieus that if T is consistent and the function j is strongly represented
in T, then the relation k=jf(n) is strongly represented in T, provided
that the sequence {a,} is discriminable in 7' (this means that for nzk,
U~(ga=ap) e T). .

Namely if ksf(n) then T~(ax=apy,) 'eT, on the other hand
¥ {an, arm) 1€ T because the relation k=7#(n) is represented in 7. Hence
according to (3) T ~¥(a,,ax) e T. Conversely if T ~¥(q,,a,) e T and
T is congistent, then "¥(a,,ax) ¢ T and ks%f(n). Thus the relation
k+f(n) is represented by the formula ~W¥(r,y).

If the system I contains the minimum operation (ur){...] (or
the coperation (wr)[...]) producing the function-formula Ty(y,..)¢
= (ux)[¥(x,y,...)]7 from the sentential formula ¥Y(xz,y,...), then the
function f is strongly represented in T if and only if there exists a fune-
tion-formula y(x) such that

(4) [l 7(@=am e T.

Indeed, if the condition (4) is satisfied then the function f is strongly
represented by the formula y(z)=y. Conversely if the function f is strongly
represented by the formula ¥(x,y), then setting ™ y(@) 1= (uy) [ (e, y)T?
{or Ty(2)1=T{)[¥(x,y)] we obtain the condition (4).

To simplify the proofs in the case of the arithmetic of positive inte-
gers we shall agsume that the considered theory contains the minimum
operator and the fonction formulas.

. We say that a theory T is recursively entumerable if the set of num-
pers: No.(l’) for I'e T, is recursively enumerable. Tf the set of axioms
is recursively ennmerable, and the rules of inference are general recursive,
then. the whole theory is recursively enumerable. If the theory 7 is re-
cursively enumerable, then each set X represented in T is fecursivelv
enumerable too. This follows immediately from the equivalence (15,
According to a well known theorem of K. Post, if the set X and its com-
plement — X are hoth recursively enumerable, then X and —X are com-
putable. Hence if X and —X are represented in a recursively enumerable
theory T, then X and —X are computable. Thus aceordjﬁg to our de-
finitions, if the set X is strongly represented in a recursively enumerable
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theory T, then X is computable. It is evident that the same is true for
the relation on two or more arguments.

If two functions f and g are strongly represented by the formulas
¢ () and y(r), then the superposition f (_q(.r)) is strongly represented by
the substitution @(y(r)}. If the theory T is the arithmetic of pesitive
integers, then it is well known that if a relation E(n,k) is strongly re-
presented in T’ by the formula ¥(x,y), and for each » there exists such &
that R(n,k), then the function (uk)[R(n,k)] is strongly represented by
the formula (uy)[¥(z,¥y)]).

These two observations are the inductive steps of the proof of the
strong representability of all computable functions and relations in arith-
metic. Hence the class of computable funetions is identical with the
class of funetions strongly representable in arithmetie. As arithmetic
we shall understand the theory Ar described later.

We shall formulate the following lemmas useful in proving essenfial
undecidability.

LEMMA 2. If a theory T is consistent and recursively enumerable,
and a non-computable set X is represenied in T, then T is nol complee.

Proof. Let X be represented in T by the formula @(x) with respect
to the computable sequence {a,} of constants. Hence the equivalence (1)
is true. If 7 is consistent, then

) [],7 @@ ¢ TV ~(@) ¢ T.

If T were complete, the following condition would be satisfied:
(6) [].7o@ e TV ~d(aeT.

From (1), (5} and (6) it follows that
{(7) nnne—XErN@(a,,)—.ET.

But (7) means that the set —X is represented by the formula ~ &(x).
Henee X and —X would be represented in T, and thus they would be
recursively enumerable and computable according to the above men-
tioned theorem of Post, and that would contradiet the supposition of
our Lemma.

LeaMA 3. If a non-computable set X is represented in each consistent
and recursively enumerable ertension of a theory T, then T is essentially
undecidable. ‘

Proof. From Lemmas 1 and 2.
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In order to obtain the shape or the undecidable sentences we can
formulate the following

Levma 4. If a formula ¥(x,y) strongly represents in a consistent
and recursively enumerable theory T a (computable) relation R(n,k), and
if the formula @(x) saiisfying the condition

(8) @ (o)1 ="(Hy) P (x,y)

represents in T a non-computable set X, then there exists such a number n
that )
{9) Ty ~(an2) e T and T ~(z)~¥(a,,z) ¢T

and for any kT ~¥(a,,0,) Ve T.

Proof. In the same manner as in the proof of Lemma 2 we find
that if the condition (6) were satisfied, then the set X would be com-
putable. Hence if X is not computable, then there exists a number =
such that TP(a,) ¢ T and I ~@(a,) e T. This means according to (8)
that {9). Now suppose that for some k&, T ~¥(a,,a) ¢ I. Moreover,
the formula ¥{z,y) strongly represents the relation R(n,k). Hence if
T ~¥(a,,a;) ¢ T, then R{n,k)and T ¥(a,, ax) 1e T. Thus M (Hy) ¥ (a,,y) e T
according to the rules of guantifiers. But this contradicts the fact that
M®(a,) ¢ T with regard to (8).

2. Applications to arithmetic. In the following considerations
we shall apply these lemmas to the proof of the essential undecidability
of arithmetic. The applications of the above lemmas have been involved
in the reasonings of some authors, for example in the reagoning of Kleene
in [4] or of Mostowski in [6]. Mostowski for example has proved that
if all computable relations are strongly represented in 7 and T is w-con-
sistent, then each recursively enumerable set is representable in 7. Na-
mely if X is a recursively enumerable set, then there exists a computable

relation R such that
nnneXszR(n,k).

Let E be strongly represented by the formula ¥(z,y); hence it is evident
that X iz represented by the formula (Ey)¥(x,y). This theorem imme-
diately implies by means of our lemmas Godel’s incompletness Theorem
for w-consistent theories, because there are many non-computable, re-
cursively enumerable sets.

It we do not assume the w-cousistency, then we cannot repeat the
above argumentation of Mostowski. It is an interesting problem whether
there exists a non-computable recursively enumerable set representable
in any theory T in which all computable relations are strongly repre-
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sented. But for some formalized theories 7' of the arithmetic of positive
integers it is possible to prove that there exist some non-computable
recursively enumerable sets represented in 7. Let Ar be the formalized
theory of arithmetic considered by Mostowski in [7]. We shall prove
the representability in Ar of two non-computable and recursively enu-
merable sets: X7" and Xi7. X7" is a diagonal set (strictly defined later}
obtained from the universal relation for computable sets. X4’ iz a simple
set (in the sense of Post) defined by Janiczak.

The notion of diagonal set is used in such a meaning that if R is
a relation and for each computable set X there exists such & that n e X
if and only if R(n.s), then the set Z=[ [~R(n,n)] is diagonal. Thus

a diagonal set ean be non-recursively enﬁmera,ble.

The notion of simple set is used also in a wide sense. Each set Z
intersecting any recursively emumerable infinite set and having an in-
finite complement is a simple set. Hence & simple set can also be non-
-recursively enumerable. From these definitions it follows immediately
that each diagonal set as well as each simple set is not computable.

We shall use in Ar our notation mentioned at the beginning. The
sequence {a,} will represent the numerals of the theory Ar, i. e. the names
of the numbers 1,2,3,... Let ay=l17} a,=T27, gg=3"L

TEEOREM 1. If the theory Ar is consistent, then there exists a formula
¥(x,y) strongly representing in Ar o relation and such that the formula
®(x), satisfying the condition (8), represenis a non-computable diagonal
set X1 in any consistent extension T of Ar.

Proof. According to the well known theorem of Kleene each conm-
putable function f can be presented in the canonical form. This fact we
can formulate as follows. For each computable function f there exists
a number k such that

(10 F)y=B((ut)[G(n,t,k)=1])
and
(11) IS é@n,t,m=1

where E(z) is one of the pairing functions, (e. g. E(m):av——[vzlz), and
@ is a computable funetion universal for the primitive recursive funetions
in two arguments 2).

The functions E and @, being computable, are strongly represented
in the arithmetic 4r by some function-formulas =(x) and y(z,¥,2).

) The function 7 can be elementary recursive in the sense of Kalmar. Cf. {2],
p. 42,
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It is easy to prove that for each computable function f there exists
such @ number k that the function-formula

{12) el(uy) [y{e, ¥, a)=1])

strongly represents the function f in Ar.

Indeed, if y(x,y,2) strongly represents the function G(n,t,%k), then
the formula y{x,y,a,) strongly represents the function F(n,t)=G(n,t,k)
for & constant. Afterwards if the condition (11) is satisfied, then the
formula (uy)[y(x,y,a)=1] strongly represents the function (ut)[F(n,t)=1].
Finally the substitution (12) of the formula (uy)[y(2,y,w)=1] in the
formula £(z) strongly represents the superposition & ((y,t)[F (n,t)=1])
of the considered functions. Thus the function f satisfying (10) is strongly
repregented by the formula (12).

For each consistent extension T of 4r let us set

1) [, 1e X ="el(wy)ly(an ¥, an)=1])71 7€ T

The set X7, as defined in (13), is represented in T by the formula
<{(p) (0¥, aa)=1}551. We shall prove that X7 is not computable.
Suppose that X7 is computable. Thus there exists a computable fune-
tion f such that

{14) nn'neX{—Ef(n)zl.

For the funetion f there exists a number k such that the formula (12)
strongly represents the function f in Ar. Hence also the formula (12)
strongly represents the function f in any consistent extension T of Ar.
This means according to (4) that

{15) ], eenlriony, a)=1] = arp 1 T
From (14) and (15) it follows that
{16) []7¢ T="el(my)ly(any, a)=1)) #£1 e T.

Namely if n ¢ X7, then according o (14) f(n)s=1. Hence Cappyzt oy e T
‘because the relation n=m is strongly represented in 7 by the formula
x=y. Thus aceording to (15) and o;=""17 we find that

rf((l‘?/)[?(anv."/y ak)=1]) #=1el.
Conversely, if Te((ny)[y(an,¥,a)=1))71 T ¢ T, then according to (15) the

consistency of the theory T implies Taymy=171¢ T. Hence f(n)#1 and
with respect to (14) n¢ X7.
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From {13) and (16) for n=% we obtain the contradiction keXT
=Fk « Xi. Therefore the set X] cannot be computable. It is easy to show
that the formula representing the set X; in T can be written in the form
(Hy)¥(x,y} where W(r,y) strongly represents a computable relation.
Namely: Te(1)=1"e Ar what implies that the formula representing X7
can be written in the following manner:

(En)e@) = 1ap(e,y,2) =11 @) <y —y(x,2,0)21)).

Xotice that the set X{* is recursively enumerable; however, if the
theory T’ is not recursively enumerable, then the set X7 may also be
not recursively enumerable. The same remark is true with regard to
the set X3 of the next proof.

THEOREM 2. If the theory Ar®) is consistent, then there emists a for-
mula ¥(x,y) strongly representing a relation in Ar and such thal the for-
mula D(x) satisfying (8) represenis in any consisteni extension T of Ar
a non-computable simple set X1.

Proof. We start from the following definition of the simple set
due to Janiczak %). Let G,(t) be a computable funetion of two variables
universal for the primitive recursive funections. A simple set & can be
defined ax the set of valiues of the partially recursive function 1,

) F ) =Gy Grlt) >30]) |

defined over the elements of the recursively enumerable set Z:
(18) Z=F [21 G(t) >3n] .

Let h be a computable function enumerating the set Z. Hence the
set § of values of the function f is identical with the set of values of the
computable funetion f(h(n)). Thus § can be defined as follows:

(19) ke SEEnk:f(h {n)).

The set & is a simple set. It is recursively enumerable according
to (19). It intersects each recursively enmmerable infinite set. Namely
with the set enumerated by the funetion G, the set S has the common
element f(n). And the complement —S is infinite, because

(20) F(n)>3n

#) For proving the Theorem 2 it is convenient to suppose that the theory Ar con-
tains the coustant 0. Such a modifieation of the theory Ar makes no difficulties.
%) Bee [3]. The notion of the simple set was introduced by Post in [8].
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according to (17) and (18). Thus between the numbers # and 3n there
are » numbers which belong to —&.

The functions G,{f) and h(n), being computable, are strongly repre-
sented in Ar by some formulas y{z,y) and y(z). Hence the computable
function f(h(n)) is, according to (17), strongly represented in Ar by the
formula @(y(x)), where

(21) Fp@) ="y (o, (u) [y (,y) >32]) .
Let us set

(22) T () =" (Te)r=g(y(2) |,

(23) Hk ke Xa=T () eT.

The set X3 is ez definitione represented in 7 by the formula @ (z).
We shall prove that the set X3 is not computable. As can easily be shown,
t su ffices to prove that 1. SCXJ and 2. the set —X3 is infinite, because
each set X containing a simple set and having an infinite complement
is non-computable. (Namely if X is computable and —X is infinite,
then —X, being computable, iz recursively enumerable and infinite.
Thus §~—X ;&O, but this is impossible if §CX.)

1. 8CX;. Indeed if % ¢ S, then according to (19) there exists a num-
ber n such that k=f{h(n)). The relation k=f{h(n)) is representable by
the formula &=g(z(y)). Hence "ox=gp(x(a)) '€ Ar and according to
the rules of quantifiers " (H2)ax=p(x(2)) ' ¢ Ar. Thus by (22) and (23)
keX] if ArCT. '

2. The definition of the set § depends on the choice of the func-
tions G,{t) and k{n). In order to prove that the set — X3 is infinite we
choose those particular functions @,(t) and k(n), for which M(z)p(y(2)
>3y(x) e T.

Let G.{t) be another function universal for the primitive recursive

functions in one argument. We suppose that

iz (1)

6oty = { if n is even,
3n41

if » is odd.

Obvicusly Gu{t)=G.(t). Hence the function G,(f) is universal for

primitive recursive functions if G,(t) is such. Let g(wx,y) strongly repre-
sent in Ar the function G;(z). Thus the function formula y{@,y) strongly
representing the fonction G,(f) can be written in the form:

(24) Ty(@,y) ' =Te(lz/2],9) (1~ (&= 2[w/2])) + (3a+1) (2 2[/2]) .

icm

[T}
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It is easy to prove that

(25) M@)o = 2[2/2]=1V (@—1) = 2[(z+1)j2]=1) Te A7
Hence if ArCT, then by (24) and (25)

(26)  Tiz,y)(y(@,9) =80+1Vy(2+1,9)=3(o+1)+1) e T
and

(27) @)y (@,2) >32vy(e—1,1) >3(x4+1)) e T.

Let x(z) and A(z) be the formulas strongly representing in Ar the
pairing functions K(n)=E(n) and L(n)_[yn] —E(n). Formula (27)
implies that

(28) Tl @) (2> 27 (x(2),4(2) > 32(2)) e T
Hence the function formula w(z) satisfying
(29) Tp(e) =" (u2) [ 32 A y(2(2), 2(2)) >3x(2)] |
strongly represents in 7' the computable funetion

j ()= (pu)|u = n A Grgy(L{u)) >3E (w)]

and the substitution x{p(z)] strongly represents the function K{i(m).
The set of values of the funetion K(j(n)) is identieal with the set Z.
Namely if n e Z, then by (18) for some ¢, G,(f)>3n. Hence

Gepma) (L(Pn,0))) >3(E (P(n,0)))  where  P(n,t)=(nttf+n.

Thus P(n,t)=4(P(n,t)), and n:K(j(P(n,t))). Conversely if n=EK (j(m))

then G,,(L(j (m))) >3n and n e Z according to (18). Thus we can suppose
that

(39) h(n)=K{(i(n))
and
(31) (@) =""xp(x)) .

From (28) and (29) we find that
(32) " @)y (+lr(a),4p (o) >3xp(@) e T
Formulas (31), (32) and (21) imply that

(33) (@) (e (2(@)) >3 (2)) 7
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When {33) is obtained we prove that — X1 is infinite in the following
manner. We ghall prove that for each n there exists such a number %
that n<k<3n and ke—Xi. This means according to (23) that
T®(ey) ¢ T. Indeed, supposing that

34) Fd(a) AD(pir) Ao AD(ase) 1T
we obtain a contradiction. Namely if (34), then according to (22)
(35) r(ﬁxm .. 7'”&1) U= EY (1‘,,) Al 1= Q% (mn-('l) A ANagg=@y (msn)_l el.

For Z,..., s, according to (33) we can prove in 7' that

{36) 0ty > 3y (Tn) A Onp1 = 3 (Lret) A vvo Atay > 3% (X3n)
Hence
(37) 2(Zn) <y A 2 {Tps) <G A wee A Y (Bam) < Gty

There exist ouly » numerals ¢; such that ¢; <a, and we have 2n formulas
x{a) for n<<i<3n, thus from (37) it can be proved in 7T that

(38)  x{rw)=x(Ens)V (L) =2(Xn12) V ..V x(a)= 7 (Baa) V ...V 2 ()
=2{2)V .V 2 {(®30_1) = 1 (X2a) for ix%7 and n<<i, < 3n.

From (35) and (38) it follows that

(39) Taw=a, V. .VNa=0;V..Vag _1=0ag, 1T

for iz%j and n<i, §<3n.

But this is impossible if T is consistent and ArC T becanse
Ta; 70 e Ar for i,

I am unable to repeat this proof with respect to theories narrower
than Ar, e. g. to the arithmetic ot Robinson, considered in [10]. There
are difficulties in proving (25).

It is an interesting problem whether it is possible to prove the re-
presentability in arithmetic of other well known recursively enumerable
non—eompu!;a,ble sets. The proof of the undecidability of arithmetic given
})y K.leene in [3], p. 308 can be considered as the proof of representability
in arithmetic of recursively non-separable sets?), ‘

The proof of Uspenski in [11] has a similar character.

From Theorem 1 or 2 using Lemmas 3 and 4 we can obviously obtain
the following )

. f)‘ The applica!‘.ion of‘ theory of computable functions to the proof of the unde-
cidability of the arithmetic was suggested by Kleene already in [4].
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TaeorREM 3. If the theory Ar is consisient, then il is essentially un-
decidable and there exisis such a formula P(xr,y) strongly representing
a computable relation in Ar that for each recursively enumerable and con-
sistent extension T of Ar there are infintlely many such numbers n; that

M@ W(ay,x) e T and T~(@)¥(a ) el
and for any k T (an,a) '€ T.

The argument of this paper ean be formulated in another form by
means of the notion of models. For example in Lemma 3 we can say
that a theory 7 is essentially undecidable provided that there exists
in T a formula which defines in any computable model of T' a non com-
putable set.

In comparision with the proof of undecidability due to Rosser [9],
the method exposed in this paper is less eonstructive. The proofs of Lem-
mas 2 and 4 are non intuintionistical. Hence the numbers n; in Theorem 3
are not “given” in the intuitionistic sense.
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