Some cofinality theorems on ordered sets
by
F. Bagemihl (Princeton, N. I.) and L. Gillman (Lafayette, Ind.)

Let o be an ordinal number. Then ef(e) is defined to be the smallest
ordinal number such that there exists an inereasing sequence of ordinal
numbers {fe)zcay, With

lim fi=wa.
E<acr(g)
For the properties of cf(e) that we shall make use of in what follows,
the reader iz referred to [2, p. 185]; for set-theoretical matters in ge-
neral, to [1].

The cardinal number of a set 4 and of an ordinal number a will
be denoted by |4}, |a], respectively. We recall that W(a) denotes the
well-ordered set of all ordinal numbers less than a.

We shall be concerned mainly with characterizing ef(a) in terms
of the cardinal number of the intersection of two sets, one being an ar-
bitrary subset, of power x,, of a certain basic set M, and the other being
any representative of a certain simple class of subsets of M. In § 1, the
set M under consideration is well-ordered; in § 2, it is power-homogeneous.

1. Well-ordered sets. LEvuma. Let {Q] <x,, t,<x, for every g¢Q,
and

W D=t
a€Q
Then there exists a sel PCQ such that |Pl=8ey and

{2) Zt =K.
pEP

Proof. An immediate consequence of the definition of cf(a) is that
there exists a sequence (Nng);cq i@ VWith

{3) De<Re (£ <o), 2 Np=—=1N,.
$<°’d'(a)
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Suppose that &< wee and that for every p<& we have defined g,eQ
in such a manner that the elements g, (¢<£) are distinct, and n,<t,,
for every p< & We define an element ¢; € @ as follows. Put @s= {gulu<s.
Then there exists an element g € @ —@; such that
{4) e <ty;
otherwise, we should have t,<n; for every ¢ «@—@,, and consequently
M=t + Y <Dt +Ql-m<x,
70 #<E €0-0;  B<E
which contradiets (1). Letting g; be any ge@—@: mtimg (4), the
set {fels<ayryqy Which we shall denote by P, is thus well-defined by tr:iuns-
finite induetion. Now it is obvious that PCQ, |P]= 84, and the relations

= 3 ms 3t (= Tn) <
f<eq)  E<acq(e) peP

yield (2), so that the lemma is proved.
COROLLARY. Let ¢ and a be ordinal numbers, with

) ct(p) # ci(a) .
Suppose that
(6) (Me)i<ac,

is a sequence of cardinal numbers such thal

N me=s
(7) o M=
i<ecr (g

Then there exists a T <<y such that

(@) ‘ D=
f<t

Proof. If cf{g)<ecf(o), there exists & y <wue such that m,==x,,
since otherwise {7) would contradict the definition of ef(a); (8) then holds
with t=y-+1.

Ii c¢f{a)<ci(g) and there is a y <wu such that m,=#,, then
again (8) holds with T=y-+1. Suppose, however, that every term of (6)
is less than x,. If there is & g < o such that me=0 for u<¢<wue,
then (8) holds with T—g; if, however, no such x exists, then the sub-
sequence of non-zero terms of (6) is cofinal with the sequence (6), and,
since were is regular, this subsequence is of type werq. We may there-
fore assume, withont loss of generality, that, for every &<<mu@, we
have m;=£0. It then follows immediately from (7) that cf(p)<q, and
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since ef(p)=a would imply that cf(p)=cf(cf(g))=cf(a), which contra-
diets our hypothesis (5), we must have cf(p) <a. Now an application
of the lemma immediately completes the proof of the corollary.

THEOREM 1. Let f= wp-+ o, with p>0 and ¢ <w,. Then a necessary
and sufficient condition that there erist a set MCW(B), with |M]=x,,
such that |M~W ()] <x, for every y <, is that ¢=0 and either ¢ be iso-
lated or ¢f{p)=ci{a).

Proof. We shall first make some preliminary remarks. In case ¢
is & limit number, there exists (as follows vreadily from the definition
of cf{p)) an increaxing sequence of ordinal numbers

(9) (qvf)ff:wc{(w b @=0 ]
such that
lim =g .
E<mprry)

Consequently, in ease we also have g=0, then

(19 Im w.pe=f ;
S2er(g)
setting 8;=W(wupsi1) —Wl(o.ge) for every £ <weq, it is evident that
the sets §: (£ <wuq) are mutually exclusive, and that
(11) Wig)= 1 8.
£ (g)

Moreover. since the sequence (9) is increasing, we have |8 =%, for
every & < Wef ()

"I‘Prning now to the theorem, let us first prove the necessity of the
condition. If g+£0, then w.g < B, and since |g| < s,, we have [ MAW(p)=2x,

for y=wg. If, however, =0 but ¢ is a limit number with cf(p)# cf(a),
then (11) holds, and
M= (M~8y,

E<wmer ()

30 that

Ny = S er\ 85[ .
i<acr(g)

According to the above corollary, there exists a t < ery Such that
sazz {M ~ S5| 3
i<z

wh?ch implf‘es that | M~W(p)|=x, for y:vwﬁﬂ,l; and clearly wyp,.q < 8.
This establishes the necessity of the condition.
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To prove the sufficiency, note first that if p=0 and ¢ is isolated,.
then f= o,{g —1)— m,, and it suffices to take M =W (wg)—W(wlp—1)).
If, however, o=0 and ¢ is a limit number with ef(p)=rcf{a). then (11}
may be written as

W)= 1) 8:.

§<eef(a)

Let {Bgecugy, be as in (3), and, for every £ < wew. choose N C8; with

N=mn;. Then it suffices to take M= {J N. The proof of the theorem.
E<mer(y

is now complete. @

2. Power-homogenous sets. If ¥ iz an ordered sef, and b and ¢
are distinet elements of M, with b preceding ¢, then the ordered subset
of M consisting of b, ¢, and all the elements of M that succeed b and pre-
cede e, is called, as usual, an inderval of M. If, for a fixed ordinal num-
ber a, every interval of M consists of &, elements, then M is said to be
so-homegeneous.

For every pair of (not necessarily distinet) ordinal numbers a and g
let T(a,B) be the lexicographically ordered set of all sequences

(12> t=(73)5<mﬁﬁ

where 7; € Wi, for every & <w;, not every v is 0, and only a finite
number are different from 0. Tt is easily seen that if a>g, then T'(a,B}
is an N,-homogeneous set of power x,. For any te T{a,f), we shall de-
note by R(1) the set of all elements of T'(a,f) that succeed i.

THEOREM 2. Suppose that f<ef(a). Then a necessary and sufficient
condition that f=ci(a) is that there exist a set MC T{a,B), with | M|=s,,
sueh that |M~R ()| <x, for every 1 e T(a,p).

Proof. The condition is necessary. For if f=cf(a), there exists an

increasing sequence of ordinal numbers (li)e<s,, With 2 < w, for
every & -y, such that
(13) ) im ;= a,.
For every y-Zw;. and every p satisfying 0 <up<{,, let t, be that ele-
ment (12) of T{a.3) such that 7:=0 for every £ <w; with £y, whereas
7,— u; denote by M the set of all elements f, thus defined. Because
of {13), |M|=y,. The subset of } consisting of all elements ?, with
7 <wg is coinitial with T(a,p), and, since every element of M is suc-
ceeded by less than x, elements of M, it is elear that |M~R({f)]<x
for every te T'(a,fp).

The condition is sufficient. For let & be a nafural number, and let

(14} & <b <. <E<ws.
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Consider the set of all elements (12) of T'(e,pf) such that z,=0 if, and
only if, £55&, Es,,...,E%&; this is a well-ordered subset, of type of,
of T{a,pB). Given k, there are 8; distinet ways of choosing a set of ordinal
numbers £,&,...,& 80 as to satisfy (14), and any two distinet such choi-
<ces lead, in the manner just described, to two mutually exclusive well-
-ordered snbsets, each of type w’;, of T'(a,B). Letting % range over the
natural numbers, we thus obtain a decomposition
{15) Tla,p)="U T¢,
f<ayg

where for every £<wj, T; is a well-ordered set of type w® for some na-
tural number k, and the sets T; (£ <wp) are mutnally exclusive.

Now let MCT(a,f), with |M]=x,, and suppose that f%cf(a). Then,
because of our hypothesis that §<ci(e), we must have

(16) B <ef(a).

In view of (15), M= {J(M~T;) and
£<mﬁ

NG:ZI.M/\ Tgl.
s<ag

17

From (16) and (17), and the definition of ef(a), we infer that there exists
a p<wg such that

(18) | M Ty =x,.
It is evident, however, from the definition of T,, that there exists a
te T(a,p) such that T,CR(t), and hence | M~ R{t)] =x,. This completes
the proof of Theorem 2.

THEOREM 3. If B<cf(a), and MCT(a,B), with | M| =1,, then MU

containg a well-ordered subset of power s, furthermore, T(a,p) contains 28=
Subsets that are similar to M,

Proof. The first part of Theorem 3 follows immediately from (18).

To prove the second part, let {M}eca, De a well-ordered subset of M,
of type w,, indexed so that £ <& <, implies that mg precedes my in M.
For every &< w,, denote by I; the ordered subset of T(a,p) consisting
of m; and all the elements ot T{a,p) that succeed ms and precede mgyy
in 7{a,p). Then, if £<& <a,, every element of I, precedes every ele-
ment of Iy, It is clear from the definition of T(a,p) that between any
two of its elements there is a subset of T(a,) similar to T(a,B). It is

also eagy to see that the sequence (Ig);<., has 2% snbsequences (I%)

such that, if £ <& < w,, .

then every element of T% precedes every element

icm
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of Ii. For every such subsequence (I{):c,, for every £<aw,, let M} be
a subset of Ip similar to M~ I;; then the set

M'=[ U (T(a )= YT o T ]

is evidently a subset of T'(a,B) similar to M, and the 2% subsets M’ con-
structed in this- manner are obviously distinct. The proof of Theorem 3
1s now complete.

Remark 1. If f=cf(a), and M CT(a,p), with |M|=x,, then M
need not contain a well-ordered subset of type w,: witness the set M
defined in the sufficiency part of the proof of Theorem 2.

Remark 2. It is of interest to compare Theorem 3 with the fol-
lowing situation. Denote the initial number of Z(2%) by w;. Then, as
is well known, cf(1)>0. Let I be any subset, of power x,=2%, of the
linear continuum C. Then M does not have any well-ordered subset of
type o,, and C containsg only x; subsets that are similar to M.

THEOREM 4. Let cf{a)<a. Suppose that M is an K.-homogenecous
set, and?) that every interval of M contains both a well-ordered subset of
ype wuw and an inversely well-ordered subset of type wke. Then there
exists a set ECM, with |E|=\,, such that B has neither a well-ordered sub-
set of type w, nor an inversely well-ordered subset of type of.

Proof. Ti some interval of M contains neither a subset of type w,
nor & subset of type o}, then there is nothing further to prove, because
M is x;-homogeneous. Let us assume, then, that every interval of M
containg either & subset of type w, or a subset of type oi.

According to the definition of cf(a), we have

fo= D) R
£<acf(g)

where x;<<a for every &<aguq. Hence, if

-3
i<ogr(a)

*
wxs y

then |p]=|v*|==x,, and an ordered set of type v or +* obviously contains
neither & subset of type w, nor one of type »}. We shall complete the
proof by showing that W has either a subset of type v or one of type v*.

Since M, by hypothesis, contains a well-ordered subset of type wer,
there exist mutually exclusive intervals J: (& <wegg) of M such that,
if E<E <o, every element of J; precedes every element of J.

') The condition that follows is automatically satisfied in case ef(a)= 0.
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If each of these infervals contains a subset of type wy, then their union
contains a subset of type v. If. however, one of these intervals, say J; ,
does not contain a xubset of type ), there exist mutually exclusive inter-
vals K; (£ <wew) of Jg such that, if &< <@, every element of Ay
succeeds every element of Ky; and, of courre, no K: (§ <Iwere) contains
a subset of type oF, so that, by our assumption, cach one must contain
a subset of type «,. Consequently, their nnion contains a subset of type v*,
and the proof iz complete. '

COROLLARY. Let a> 0. Then a necessary and sufficient condition that
cf(a)>0 is that there exrist an s,-homogeneous set such that every one of
its subsets of power %, contains a well-ordered subset of power x,.

Proof. The necessity of the condition is furnished by Theorem 3,
with g=0; the sufficiency is a consequence of Theorem 4 (see footnote 1))‘.
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Decompositions of a sphere
by

T. J. Dekker and J. de Groot (Amsterdam)

1. Introduction. A classical result of F. Hausdorff ([5], p. 469-472)
states that — disregarding a denumerable set - “a half” and “a third”
of a sphere § — defined by x2-+y?+7*=1 — may be congruent to each
other (using only rotations). This result is exploited to a great extent
in a number of problems by S. Banach and A. Tarski, J. von Neumanm,
W. Sierpiniski, R. M. Robinson and others; for references cf. [9] and [111.
The results of this paper generalize those of Robinson [9] in several di-
rections. One notable result of Robinson’s is this: 8 can be divided into
two pieces, each of which ean be divided into two pieces congruent to
itself (hy rotation). From this he derives the following “paradoxical”
result: it is possible to cut the solid unit sphere (2222 <1) into
five (but not less than five) mutnally disjoint pieces {one of which is
a point) and to reassemble these pieces (using only rotations and frans-
lations) so that two solid unit spheres are formed 1), From our resulfs
(cf. decomposition theorem below) and the material contained in [97,
1. 256, 257, it follows in particular that these pieces may have the ad-
ditional properties of connectedness and local conn ectedness. So the “pieces”
are really pieces and not necessarily some kind of “scattered’ sets.

The main result of Robinson ({9, p. 252) runs as follows: it is
possible to decompose S into n mutually disjoint, non-empty pieces
Ayoda 4, satisfring a given ('finite) system of congruences, each
having the form

(0<r<<iy, 0§,

i=

j=t

if and only if none of the given congruences and no congruence obtain-
able from them by taking complements (in §) or by using transitivity
(to derive new congruences from the given system) asserts the congruenece
of two complementary portions of §. Moreover, starting from an arbi-

1) Banach and Tarski proved that a finite number of pieces suifices; von Neu-
mann cut the number of pieces down to ¢ (without proof), Sierpifski to 8.
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