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Decompositions of a sphere

by
T. J. Dekker and J. de Groot (Amsterdam)

1. Introduction. A classical result of ¥. Hausdorff ([5], p. 469-472)
states that — disregarding a denumerable set - “a half” and “a third”
of a sphere § — defined by x2-+y?+7*=1 — may be congruent to each
other (using only rotations). This result is exploited to a great extent
in a number of problems by S. Banach and A. Tarski, J. von Neumanm,
W. Sierpiniski, R. M. Robinson and others; for references cf. [9] and [111.
The results of this paper generalize those of Robinson [9] in several di-
rections. One notable result of Robinson’s is this: 8 can be divided into
two pieces, each of which ean be divided into two pieces congruent to
itself (hy rotation). From this he derives the following “paradoxical”
result: it is possible to cut the solid unit sphere (2222 <1) into
five (but not less than five) mutnally disjoint pieces {one of which is
a point) and to reassemble these pieces (using only rotations and frans-
lations) so that two solid unit spheres are formed 1), From our resulfs
(cf. decomposition theorem below) and the material contained in [97,
1. 256, 257, it follows in particular that these pieces may have the ad-
ditional properties of connectedness and local conn ectedness. So the “pieces”
are really pieces and not necessarily some kind of “scattered’ sets.

The main result of Robinson ({9, p. 252) runs as follows: it is
possible to decompose S into n mutually disjoint, non-empty pieces
Ayoda 4, satisfring a given ('finite) system of congruences, each
having the form

1) = Jd4y (0T 0 <s<n,
1 =1

i=

if and only if none of the given congruences and no congruence obtain-
able from them by taking complements (in §) or by using transitivity
(to derive new congruences from the given system) asserts the congruenece
of two complementary portions of §. Moreover, starting from an arbi-

1) Banach and Tarski proved that a finite number of pieces suifices; von Neu-
mann cut the number of pieces down to ¢ (without proof), Sierpifski to 8.
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trary free rotation group (with a finite number of free generators), Ro-
binson proves that the decomposition is possible in such a way that
each congruence (1) is effectuated by a free generator of the group.

We extend this theorem in several directions (a summary of results
has been published in [2]). First we dispose of the assumption of finite-
ness; indeed one can use any cardinal that makes sense in our problem,
that is any cardinal less than or equal to ¢, the cardinal of the set of real
numbers. Secondly, we reduce the necessary and sufficient conditions
mentioned above to the empty set, i. e. any system of congruences (1)
can be satisfied. However, sense-reversing mappings cannot be excluded
in this case. We learned that the same idea occurred to J. F. Adams [11
(he deals with the finite case). Thirdly it is possible to require connected-
ness and local eonnectedness of the sets A; if the number of sets 4 ; and
relations (1) are both less than e.

So we can state the following theorem ?):

DecoMpostTioN THEOREM. The sphere S may be decomposed into o
mutually disjoint, non-empty pieces — a being any cardinal less than or
equal tc ¢ — salisfying any given number p<<c of congruences between non-
-emply and non-complete ®) (but otherwise arbitrary, finile or infinite) sums
of the pieces mentioned. Moreover, if o,B<c, all pieces can be chosen in
guch a way that they are connecled and locally connected *).

The proof, using the axiom of choice, follows in sections 2 and 3.
Bection 4 contains some additional resnlts. We conclude this seetion
with a few examples. Other examples (for the finite case) can be found
in Robinson [9], and in Adams [1].

Examples. 1. § is the sum of mutually disjoint sets 4, (i=1,2,..)
such that all possible sums of sets 4, (the empty sum and the sum eqnal
to 8 excluded) are congruent to each other. In Darticular, the A; them-
selves are congruent to each other.

2. 8 is the sum of an increasing well-ordered system (with potency c)
of mutnally congruent subsets of S.

3. It is possible to divide § into a<c mutually disjoint pairs of
sets By, C,, and to reassemble each Dair by congruent mappings such
that a eopies of § are formed:

B, v C,,,2=S.

*) Myeielski informed us that he also discovered independently this theorem
(the last part of it excepted). See [7] and [8]. where this theorem is stated (without
proof). See also [6] for other reaults.

) L e. sums unequal to §.

‘) More precisely: the pieces can be made lotally imperfect and are therefore, by
a well known theorem of Sierpifiski, connected and locally conrected. ’
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4. The solid spbere is for any infinite cardinal e< ¢ the sum of «
mutually disjoint sets, each of which is eguivalent by finite decompo-
sition to § (ef. [11], p. 94, and [10]).

Proof. Apply the decomposition theorem in a way similar to the
Robinson decomposition ([9], p. 236, 257).

5. There is a system of different subsets {M,} of the sphere such
that the set of indices {a} is of the order type of the econtinuum and

My~ My, M.CMy, if a<d.

Some unsolved problems. The number g of congruences may
be larger than c. To what extent does the decomposition theorem remain
valid? May the inequality «,f< ¢ in the second part of the theorem be
replaced by a,f< c?5).

2. Preliminaries. By a rotation we shall always mean a rotation
of the three-dimensional space which leaves the origin O fixed. If ¢ is
a rotation, then the transform of & point 4 by ¢ will be denoted by wup,
and the transform of a point-set A by ¢ will be denoted by Ag. We de-
note by o the inversion in 0, 4. e. the transformation which transforms
any point (z,y,#) into (—z,—y,—2). ‘

Lema I18). The rotation group about O contains a free (non-abelian)
subgroup with conitnuously many free generafors.

This lemma is essential for our proof of the decomposition theorem.
A proof, using the axiom of choice, can be found in [3]. It is also pos-
gible to define ewpliciily a free subgroup of continuous rank. Indeed,
it is proved in [4] that the rotations

R,=A(z,)-Blz) A %m) (0<i<l)

fl@) —gl@) O 1.0 0
A(x)z(g(m) F(x) 0). Bl{z)=[0 flz} —g)],
.0 0 1 0 gl@y  fla)

with

1—22 22
fe=ire 9@=1T5

= 223[m]_2‘e (f>0).

n=0

5) Mycielski proved (in litt.) that a< ¢ can be replaced in the theorem by a<Cc.

¢) Mycielski kindly informed us that Sierpifski already. proved a lemms_. ([101,
p. 238), ﬂ;ough not stated in terms of group theory, from W_hxch Lemma I ewly]rl::;-_
lows. The proof is effective and clearly precedes the proof in [3]. On the other

these results are simplified and improved in [4].
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are the mutrix representations of a system of free generators with po-
teney .
Let o, he g (B<c) free rvotations,
{b,b",..}=8B.

Let ¢, be equal to g, for some values of b and equal to wy, for the other
values of b.
We consider the group @ of transformations, generated by

T2 Fby-ee
LeMMA II. The iransformations gp,qy,...
group .
Proof. Suppose there is & non-trivial relation:

are free generators of a free

PR =1 (L==1j.
Since @ is commutative with any rotation, this relation may he written
in the form

wmwgmg...ngj: 1.
Hence m is even, and thus w™=1, which is impossible sinee the rota-
tions g, are free generators.

Let us consider the effect of the group @ on the points of the sur-
face S of the unit sphere. & falls into disjoint classes of equivalent points,
that is, peints which may be transformed into one another by trans-
formations of the group. A point whick is fixed for some transforma-
tion #1 of the group will be called a Jired point. We notice first that
any point aquivalent to a fixed point is a fixed point. Indeed, if v is fixed
for a, then vf is fixed for faf. Thus 1 class of equivalent points con-
sists entirely of fixed points, or entirely of non-fixed points.

Consider any class U7 of non-fixed points. If some point # of the
¢lass is chosen, then, chviously, any point of the class is representable
uniquely in the form uy, where y ¢ @.

Consider any class V of fixed points. Choose a shortest (. e. having
the smallest possible number of factors ¢&") transformation # having
4 fixed point » in V. Let

d=gliol  (=+1).

Since § has a fixed point v=v8¢V, 9 is a rotation, viz. §=ypfl...yf.

Moreover, gfisy;” for otherwise the transtormation @ 0 fE, would
be shorter and bave a fixed point in V.

icm
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Lesmws IXL. If va=v, then a=19", where n is an integer.

Leasyva IV. Any point v' eV may be written in the jorm v'=uvy,
where y & and y does not begin either with the block 9 or with ¢3*. Further-
more this representation (in this specified form) is unique.

(These lemmas may be proved in the same manner as in Robin-
son [9], §2.)

The ¢ points
(2} U;%;Wﬁ‘?ﬁ,m,?’ﬁ;‘v
form a closed cycle of different points in V.

LuMwa V. (2) 48 the only closed cycle in the class V.

Proof. Otherwise the representation » =vy, where y does not begin
either with the block # or with ¢;”*, would not be unigue.

3. Proof of the decomposition theorem. Suppose we are given
a set 4 with cardinal number a< ¢ and a set B with cardinal number
p<c¢; and for any b ¢ B two non-empty proper subsets P, and @, of A.
Each of the sought « pieces of 8 will be denoted by a*, where a e A.
Furthermore we define

Pi= {Ja*
ach,
We write the given congruences in the form
{3) Pi=6@} beB.
The complement A\P, of P, will be denoted by P,. Hence
P =8 P1.

for any

Now we have to show that § may be decomposed into o disjoint
pieces a* satisfying the conditions (3).
Any eondition of (3) is equivalent to its complementary condition:

(1) ) Py~0Qf for any beB.

We divide the non-empty proper subsets of 4 into two “eamp_s” I
and IT in such a way that if Mel, then M 1T and if M eI, then M L.

Starting from an arbitrary system of free rotations {y;} with ear-
dinal number 3 (according to lemma I there exists such a system), we
define ¢, as follows:

gs=1s if Py and Q; belong to the same camp,

gp= oy, if P, and @ belong to different camps.

Let @ be the group generated by the system {p;}. Evidently & has
the properties dealt with in section 2.

Fundamenta Mathematicae. T. XLITL 13
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Now we shall prove that § may be decomposed into a digjoint pie-
ces o* satisfying the conditions:

(5} Pigp=07 for any beB.

With respect to @, § falls into classes of equivalent points. It is clear
that the distribution of points into the a sets ¢* is independent for dif-
ferent classes. Thus we need only show how to make this distribution
for any class in such a way that the conditions (5) are satisfied.

Consider any class U of non-fixed points. Choose at random a point «
of the class. Any point u’ of the class can be written uniquely in the
form u’=wuy where y ¢ @. We assign the points u’ of U to the subsets a*
by induction with respect to the number of factors of y.

Start by assigning % to any set a*.

After uu has been put into some set a*, if u'= up;, where g5 does not
cancel with the last factor of u, we put uy’ in some set a’* such that

(aePr&a Q) or (aePp&a @s).

If u'=pp;”, then we interchange the roles of P, and @, according to
the condition:
Oips =F3.

Then in U all conditions are satisfied.
Consider any class V of fixed points. Choose the shortest transfor-
mation # of @ having a fixed point # in V. Let

o=rliel-o

# is a rotation (cf. section 2).
Consider the cycle

0,008 VR e O gl = B =,
R N o4

the ecycle may be written in the form
(6')

(e=241);

(6)
If we put
{(6=0,1,...,8, v,=10),

DosPryVayeee s Ta=0g .

With
Pb‘,zLa
P, =R,

and Qs =R, if
and @, =L, if

7.u'=+1.
Jo=-1

the congruences of the factors ¢j of 4 obtain the form
(7) Lf¢i§=Rf,m,Lf¢{j=R: .

icm

Decompositions of a sphere 191

Equivalent to (7) are the complementary conditions:
(8) Lign=R:,...,Lpli=R.

If we assign the points v, of (6°) to the subsets aj (¢, ¢ 4, 6=0,1,...,8),
then the elements a, must satisfy the conditions: a,= a, (since 2= 1vy=17;)
and

®

We investigate now whether A contains elements ag,...,a. satisfying
these conditions.

We distingnish two cases:

1° R,%#Lsy1 and 5 L,y for some o (1<o<s—1).

Then. either

(dg16L,&aseR;) o (a,1¢l,&a,¢R,) (o=1,...,8).

Lq+1’-\ R,#O &La.(.]_ﬁ R¢¢O,
or

E,+1A.R,=;é0 & Eq+1 ~R,£0.

We may assume that the former is true, for otherwise we interchange
in (7) and (8) LU+1 and E,,{_l, R¢+1 and E,,..}.l.

We put a,51 in R,y;. Further, we put Guis,..,@,==0y,0,...,8,1
according to (9).

If @,y €L, we pub a; in By~ Lopa.

If a,3eL, we put a, in B, ~ Laya-

Evidently, the elements a,,d,,...,4,=a, satisfy the conditions (9).

20 R,=L,; or =L,y for any o=1,...,8—1.

We may assume that the former is true for any g, for otherwise for
sorne values of ¢ we interchange L, and L, and at the same time R,
and R,.

Now the following conditions are satisfied:

Li#d=R* and IL#=Rt.

We observe first that I, R,. Indeed, if L,—F,, then L, and R,
should belong to different camps, thus # contains an odd number of
factors o, which is impossible, gince # is a rotation. Thus L, #R..

Then we have Ly~ R,70 or L~ E,#0. We may assume again that
the former is true.

We put a, in L, ~ R,. Further a, in By=Lsp: (0=1,...,8—1). Fi-
nally a, must belong to E,, which is true indeed, since a;==ay eIy E;.

Again it is evident that the elements ag,a,,...,a,=4a, satisfy the
conditions (9).

Now we assign the elements o, to af {¢=0,1,...,8).

13*
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Since (6) is the only closed eyele in V {lemma V), we may assign
the other points of ¥ to the subsets a* in the same way as in the case
of non-fixed points. Then in V all conditions are satisfied.

Rinece the conditions (3) are all satisfied in all classes of non-fixed
points as well as of fixed points, the first part of the theorem bas been
proved 7).

To prove the second part of the theorem, assuming a,f<<c we well
order the ¢ compact indenumerable subsets of S:

{10) My, Myyuy oy ooy Myy e (7<)
We also well order the points of S:
(131) LyyTyyreesLageney Bogere (¥ < W)

Tet D be the set of all fixed points. Let U(p) be the class of equi-
valent points which contains p.

We define pg, as the first point of (11), that belongs to M \D, and
pe a5 the first point of (11), that belongs to

(MOK.D)\E) U(Py) (r=1,2,..., v<wg).

Suppose that pg, is already defined for all » <w, and for all &<y,
then we define p,, as follows: .
if S,: U U(ps)
0i<y, O<r<ay,
P is the first point of (11) that belongs to M, (8, Dy,
P, 15 the first point of (11) that belongs to

(12) M\ (80 Do U T ).

This is always possible. Indeed, since the potencies of each of the sets
8,, D and | U(p,) are lezs than c, the sets (12) are not empty.

o<y
We now spread the points of 8 over the a required pieces 4, (0 <» <wg)
in the well known way, using ¢ of potency <¢, in which we ensure that

Pped, (0<r<m, 0<y<w.).

This is possible, because in every class U of non-fised points we can
arbitrarily choose a point x and put this point in an arbitrary 4. The

) 7y We still have to prove that the pieces can be made non-empty. This is clear
since @ may be chosen in such a way that there are ¢ classes of non-fixed points.
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given system of congruence conditions is therefore satisfied. A sum oceur-
ring in any of these relations does not contain an M,, since the comple-
ment eontains points of 3,. So all sums are totally imperfect. Since the
same is true for the complement of a sum in S, the sums are also con-
nected and microconnected according to a theorem of Sierpifski.

4. Conelusions. 1° If we write down each congruence of (3) ¢ times,
then the cardinal number of the number of eguations of (3) is ¢ again,

So even the following theorem is true:
Suppose we are given a system of congruences:

Pi=~QF for any beB,

where the cardinal number of B is less than or equal o €. Then the sphere 8
may be decomposed into a disjoint pieces, salisfying the given system of
congruences in such a way that each congruence can be effectuated by ¢ free
congruent transformations.

20 We call the system of congruences (3) “strong” if there is & con-
dition M* o M* belonging to (3) or (4) or obtainable from them by using
transitivity of the given congruence relations. Otherwise the system is
called “weak”. If the given system (3) is weak, we can divide the sub-
sets of 4 into two camps I and II, defined as above, in such a way that
no congruence is required between sets ¥* and N*, where ¥ eI and
¥ ¢ II. In this case the transformations g, are equal to y, for any beB.

Hence we can establish the following theorem:

Suppose we are given a weak system of congruences (3), having a car-
dinal number p<c and any system of B free rotations {ys}. Then the sphere 8
may be decomposed imto a<c digjoint pieces a*, such that Piys=Qi for
any beB. Each congruence may be effectuated by ¢ free rotations of the
system.
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On a theorem of Borsuk

by
J. C. Moore (Princeton, N. 1)

Recently Borsuk [1] showed that if & compact space of dimension
at most % has a positive k-dimensional Betti number, then for m>k
the function space of maps of the original space into the m-sphere has
a positive (m—k)th Betti number. The case m=1F is covered by the Hopf
Classification Theorem [9], and the object of this paper is to show that
the case m >k may be viewed as a generalization of this theorem, and
that there is in fact a sort of duality between the homology of the fune-
tion space and the cohomology of the original space.

1. The eritical dimension

Notation and conventions. In this paper space will always
mean Hansdorff space. For any space X, lef HY(X) denote the g-dimen-

- gional Cech cohomology group of X with integer coefficients [3], and

if 4 is a subspace of X let HY(X,4) be the g-dimensional (ech cohomo-
logy group of the pair (X,4). Similarly let H(X) and H X,A) be the
g-dimensional singular homology groups with integer coefficients of the
space X and of the pair (X VA

If X is 4 space and z « X, denote the g-dimensional homotopy group
of X based at the point 2 by #{X,z). I X is a function space containing
a unique constant map, this map will be taken as the base point, and
the preceding notation will be abbreviated to m(X). Finally, if X
has a multiplication with an identity up to homotopy, and an inverse
up to homotopy, let w(X) denote the group of path components of X.

For any non-negative infeger k, let S* denote the k-dimensional
sphere, and let y* be & point of 8. Let I denote the closed interval of
real numbers from —1 to +1.

Definition. If X is a space, define s(X) to be the identification
space of X x I obtained by the following identifications: (z,1) is identi-
fied with («',1), and (z,—1) is identified with (a',—1) for «,o" ¢ X. De-
fine s, (X) to be the image of those pairs {z,1) such that >0, define s_(X)
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