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On the identity of Morrey-Calkin and Schauder-Sobolev spaces

by
P. SZEPTYCKI (Warszawa)

§1. Introduction. In direct methods of the calculus of variations for
quadratic functionals, and in applications of Hilbert space theory to
the boundary value problems for second order elliptic equations (Frie-
drichs’ method) a fundamental part is played by a class of Wi-spaces,
which were first defined by J. Schauder. The study of those spaces was
next developed by Sobolev [4] and his school.

On the other hand a class of P,-spaces was discovered by Ch. B, Mor-
rey jr. and Calkin [3]. This class was next applied by Morrey [2] in his
fundamental research in connection with the ecalculus of variations and
second order quasilinear elliptic equations.

Several months ago K. Maurin stated the hypothesis that the spaces
P, and W, are the same. The paper which I am going to present goes
still farther. It proves the identity of W. and P, for a>1.

The theories of spaces P, and W have been developed independently.

There are theorems whose proofs are trivial in the theory of Wi-
-spaces (e. g. those of completeness) and rather difficult in 9P, but there
are more theorems that are trivial in 9P, but not in W, (we think this
to be a consequence of the fact that °P,-spaces are better known than
W!). The theorem which will be proved in this paper gives us a possibility
of gimplifying some proofs and enriches the theory of Schauder-Sobolev
spaces by new theorems. -

§ 2. Notation and definitions. In our considerations we shall denote
by @ a fixed and bounded domain of N-dimensional arithmetical space.
The points of this domain will be denoted by small letters of latin al-
phabet. Consequently we have w=(2y,...,%x5), ¥==(Y1,-.-,¥y), and]for
By yeeryBp1ydigs-.., By We shall write z;,. We use the symbol [ab] to
denote the N-dimensional cell, 4. e. a set of points o for which a;<<a;<b;
(4=1,2,...,N). Similarly, [a,bz] is a set of points @ for which a,<u;<b;
(=1,2,...,k—1,k+41,...,N), and (2;,a;) is the point (2,...,2_1,
ll]”m/c‘l,l,..‘,(I}N).


GUEST


124 P. Szeptyecki

Definition 1. A function f(x) which is defined on the region @

is of class P(@
1° f is summable on each cell [ab]C G, .
90 there exist funetions vy,...,0y, satisfying 1° such that

fﬂk @) dow = f(f g, b) — 1( wkyak)dmk

bolds for almost all interior cells of & (4. ¢. for all cells [ab] for which the
point (ab) does not belong to the get of 2N-dimensional meagure zero).

Definition 2. The generalized partial derivative Dy, f (in the sense
of Morrey- Calkin) with respect to @ of the function f of class P(G) is
a Lebesque derivative of the seb function f o () dee.

It is clear that the equality kaf—-v,c holds almost everywhere,

Definition 3. A funetion f is of class P,(G) if

1° f is of class P(G), )

20 f and D, f (k=1,2,...,N) are of class L*(@&).

In consequence of condition 2° of definition 3 we can define in P, (G)

a norm N
It = JAlf @) + [ 2 (D] @} o

Tt has been proved by Morrey and Calkin that with this norm
9P, (@) is a Banach space (the addition and the multiplication by numbers
being defined in the ordinary way). In the case of a=2 it is a Hilbert space.

Definition 4. A function 7 is of class €3 (@) if

1° b is of clags C°(G),

2° a support of h is compact in G (i, e. a closure of the set of points «
for which h(x)#0 is compact in &).

Definition 5. The space Wi(G), a>1, i§ defined as the completion
(4. e. the space of classes of all fundamental and equivalent sequences)
of (@) in the sense of the norm

= | {!h(m)l" + [,‘Zj‘ (62;:’)’]““} .

Definition 6. A function f of the class L*(@) is differentiable with
respect to @y, in the sense of Sobolev if there exists a function g of the class
I*(@) such that the equa.lity

f flo

holds for all functions heOf((}).

dwa —fg (o) b () dl
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Therefore 955 00f(®)]/dxy, is a partial derivative of f with respect
to @, in the senie of Sobolev.

§ 3. Fundamental theorem. In this section we shall give a proof
of the following theorem.

THEOREM. The spaces P,(G) and Wi(G) are equivalent in the following
sense: if feP, (@), then feWL(Q) and inversely. Moreover, the existence of
derivatives of f in the Morrey-Calkin sense is equivalent to the existence of
corresponding derivatives in the sense of Sobolev and the equality 0 [f]]0m,=
=D, f holds almost everywhere in G.

Proof. In proving this theorem we shall use the following well-
-known. results:

TEEOREM 1 (Morrey-Calkin (v. [2] and [3])). The necessary and suf-
ficient condition that f be of class P(G) s that it satisfy 1° of definition 1
and that for each cell [ab]C G there ewist summable functions v,(x) and

a sequence {f,,(w)}, each f, satisfying a uniform Lipschite condition on [ab],
such that

lim fb{|f (w)wf(w)|+§|w —uf}dv=0
P—roo g r ' k=1 056k ' )

THEOREM 2 (Sobolev)?!). WL(G) s the space of all functions of class
L*(@) which are differentiable in the sense of Sobolev with respect to x, for
k=1,2,...,N.

From theorem 1 it immediately follows that W(@

) C P, (G)
let fe Wi(Q)

. Indeed,
and {f,] be a sequence of f,e(C®(@) such that

im [, — fllpz = 0.
P—+00

This sequence satisfies of course the conditions of theorem 1. Let
in the space I°

Vy = lim 17_.
D—>00 Bwk

From the inéquality of Hélder we get

fi1e) — syt a2 <}/ fir) o1 20

)l da - Y/ Tab] <If — Fylbws V/ab]

') See [4]; this follows also from Friedrichs’ theorem [1].
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We have also

floser= 2z <Y/ floior -2

~ =1,
B
and this, by the definition of funetions v, completes the proof of our
inelusion.

We shall now prove the inverse inclusion. For this purpose we sghall
prove the following lemmas:

Lemma 1. If feL*(@) is differentiable with respect to axy in the sense
of Lebesgue (i. e. if there exists a function f,, such that f(x) = [ fy, (@) dowy,--0),
and the derivative in the sense of Lebesgue of | with 'ms;n(’('t to wy, is of class
I#(@), then f is differentiable with respect to w, in the sense of Sobolev and
the respective derivatives are equal almost everywhere in @.

Proof. Let he0(G) and D be the support of » in G We shall restrict
ourselves to the case where D is a normal domain with respect to the
hyperplane x,=0. In other cases we divide .D into normal domains.

Tabl <If ~ folla ¥/ a0

We use the Lebesgue theorem on integrating by parts. We have
b(aa;,)
oh(x) ( ) ' 57"(%7%)
() de= | f(z dw._ e ) = oy day
éf 0z J D{a@{) e 6-”}‘;
" ’ ’ b ’
= | [f(wk,wk)hwk,whna(‘:;,’ daj, — [ f,(0)h(z) do,
i G

where a(x;) and b(x;) are the points at which the line (xy,t) intersects
the boundary of domain D, and D, is the projection of D on the hyper-
plane z;==0; we denote by f, the Lebesgue derivative of f with respect
to @,.
The ¢ondition h(z)=
assertion
Jie

) Lemma 2. If feCDa ), then f is differentiable in the sense of Lebesgue
with respect to x, (k=1,2,...,N) and the derivatives of Lebesgue are cqual
almost everywhere to those of Morrey - Callein.

Proof. From the condition 2° of definition 1 and from a theorem
of Fubini it follows that there exists such a number @, that the equality

[Ty =1

@) dew = f (F gy ) -—f(w;’;,ak)) day,
%G & af,

0 on the boundary of domain I gives us the

g“_(_i_

where
Oy,

?) e — jh o) o,
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holds for almost all a;, and for almost all (N —1) dimensional cells [a;by,]
for which [ab]C G. Hence it follows that

Ty
af v (@) dory= f(mlga'vk)'l“ 0,
23
From the condition 2° of definition 3 we have D, JeL*(G) and by
lemma 1 and theorem 2 the proof of inclusion P, (F) CWI( 7) is completed.
The proof presented here gives also the equality almost everywhere
of the derivatives of Morrey-Calkin and of Sobolev. This completes the
proof of the theorem

q.e.d.

§ 4. Some applications of the proved theorem. The fundamental
theorem makes it possible to transfer the known properties of Morrey-
-Calkin spaces to the theory of Schauder-Sobolev and inversely. The
proofs of some theorems are simplified in that way.

1. From the definition of W-space we have drawn a not very obvious
conclugion about the completeness of the P,-space.

2. We think that it would be very interesting to transfer the so-called
“gubstitution theorem” to the theory of Schauder-Sobolev.

Let f be of class Wi(&), DC @ and ge W.(D) where g=f on the boun-
dary of D. Then the function % defined as

hz{f(m) it ze@—D,
g(xz) if =eD,
is of class Wi(@) and
. '_‘)[(ZZ)] if reG—D,
i T, k=1,2,...,N.
%— it wel,

3. In the theory of Morrey- Calkin a remarkable part is played by
theorems, introduced by Rademacher, on the change of variables by
so-called “transformations of class K. We transfer these theorems to
the theory of Schauder-Sobolev:

TumorEM (Generalization of a theorem of Evans). If feW.(G)
and g(y)==f(z(y)) where x(y) is a reqular transformation of domain H on
domagn G, then GeWL(H).

TusorEM. Weak convergence is preserved by tramsformations of
class K, i.e. if f,=>f on G in WL(G) and w=wx(y) is the transformation of
dass K, of the domain H on G, and i gn(y)=Fa{0(n)) and g(y)=F(z(y)),
then g,~>¢ on H in Wi(H).
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Invariant subspaces of completely continuous operators
in locally convex linear topological spaces

by
M. ALTMAN (Warszawa)

Recently N. Aronszajn and K. T. Smith [2] have proved the following

TerOREM. Let X be a Banach space and U a linear completely
continuous operator in X. There exist proper invariant subspaces of U.

The purpose of this note is to prove that any linear completely con-
tinuous operator in a locally convex linear topological space possesses
the same property.

The proof of this statement is based on the above theorem and on
a method developed in the paper [1].

Let X be a locally convex linear topological space, i. e. a linear space
on which a topology is imposed in such a fashion that the postula.teﬁ
operations of addition and multiplication by real numbers are continuous
in the topology. The local convexity means that for every neighbourhood
8l of the element ze X there exists a convex neighbourhood B, such that
B, CYU,.

A linear operator U having its domain and range in X is said to be
completely continuous if there exists a neighbourhood BV of 0 such that
the image U(Y) is compact in the sense that every infinite subset has
a cluster point (4. e. non-isolated point).

It is known (for references see [1]) that the space X is isomorphie
to a certain (B,)-space in which a class of pseudonorms |x|,, Wwherg
D6, is defined (& is an abstract set and & ={,). The system of neigh-
bourhoods of zero consists of the sets of all elements « such that |@j,<<e
(i=1,2,...,k), e>0.

Lumma. Let U be a linear completely continuous operator. Then there
exists o pseudonorm |w|=sup|zl, (i=1,2,...,n) such that for every Hed

i

there is a number M, satisfying the inequality |U (x)|,<M4|w|?).

1) For the proof see [2], p. 196.
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