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Invariant subspaces of completely continuous operators
in locally convex linear topological spaces

by
M. ALTMAN (Warszawa)

Recently N. Aronszajn and K. T. Smith [2] have proved the following

TerOREM. Let X be a Banach space and U a linear completely
continuous operator in X. There exist proper invariant subspaces of U.

The purpose of this note is to prove that any linear completely con-
tinuous operator in a locally convex linear topological space possesses
the same property.

The proof of this statement is based on the above theorem and on
a method developed in the paper [1].

Let X be a locally convex linear topological space, i. e. a linear space
on which a topology is imposed in such a fashion that the postula.teﬁ
operations of addition and multiplication by real numbers are continuous
in the topology. The local convexity means that for every neighbourhood
8l of the element ze X there exists a convex neighbourhood B, such that
B, CYU,.

A linear operator U having its domain and range in X is said to be
completely continuous if there exists a neighbourhood BV of 0 such that
the image U(Y) is compact in the sense that every infinite subset has
a cluster point (4. e. non-isolated point).

It is known (for references see [1]) that the space X is isomorphie
to a certain (B,)-space in which a class of pseudonorms |x|,, Wwherg
D6, is defined (& is an abstract set and & ={,). The system of neigh-
bourhoods of zero consists of the sets of all elements « such that |@j,<<e
(i=1,2,...,k), e>0.

Lumma. Let U be a linear completely continuous operator. Then there
exists o pseudonorm |w|=sup|zl, (i=1,2,...,n) such that for every Hed

i

there is a number M, satisfying the inequality |U (x)|,<M4|w|?).

1) For the proof see [2], p. 196.
Studle Mathematica XV 9


GUEST


130 M. Altman
A linear completely continuous operator is already continuous;
this follows immediately from the above lemma.

A closed linear subspace NCX is said to be an ¢nvariant subspace
of Uit U(N)CN. N is a proper invariant subspace if (0)#N 5 X.

TrEOREM. Let U be a linear completely continuous operator which
maps the locally convex linear topological space X into itself. There emist
proper invariant subspaces of U.

Proof. On the basis of the above lemma we construct an auxiliary
Banach space as follows.

Let |z be the pseudonorm chosen above. We divide the space X
into classes and we say that oz, and uz, belong to the sume elass X if [wy —uwy| = 0.
The set of all elements zeX such that |z|==0 constitutes the zero class.
We denote by X* the quotient space obtained, which is a linear normed
space with the norm [f|=z|. The transformation U detines a transforma-
tion p=8(r) in the space X*, where met, yep and y=U(w). It follows
from the lemma that £ is a linear completely continuous transformation.

‘We denote by X’ the completion of the space .X*. X’ is a Banach space.
The transformation ¥ can be extended to the whole space X’. It can
eagily be verified that the range of this extension is contained in X™.

By the theorem of N. Aronszajn and K. T. Smith [2] there exists
a proper invariant subspace N of &. Denote by N, the intersection of the
sets N and X*. My=NX" is a linear set. Since $(M)C X* and U(N)C N,
we have H€(MN)CN,, hence U(M)CN,. Denote by N, the union of all
elements of all classes belonging to Ny, ¢. e. weN, if there exists a clags
teN, such that wep. N, is evidently a linear set. It can immediately
be verified that U(N,)CN,. Since the operator U is continuous we
need only to take (in X) the closure N of ¥; and we find that N=N,
is a proper invariant subspace .of U. This completes the proof.
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On linear functional equations in (B,)-spaces
by
M. ALTMAN (Warszawa)

The well known classical Riesz-Schander [3,4] theory deals with
a very important class of linear transformations in Banach spaces. The
basic class of transformations considered in this theory consists of trans-
formations of the form H+4-U, where H is an isomorphism onto and U
is completely continuous. One of the principal properties of such & trans-
formation is that it may be represented as the sum of an isomorphism
onto and a finite-dimensional linear transformation. Hence every trans-
formation of this class has a finite nullity (7. e. the space of all cha-
racteristic elements is finite-dimensional).

The following natural question arises:

Is the powerful algebraic method of F. Riesz strongly connected
exclusively with the above class of transformations?

Is it possible to extend this method to a wider class of linear trans-
formations, including, for instance, also some transformations with
infinite nullity?

In the present paper an attempt is made to generalize the Riesz-
-Schauder theory in the above mentioned direction. The generalization
given here is extended to a class of linear transformations which includes
the subclass of all projections. )

Let X be a fixed (B,)-space (s.¢. a linear complete metric space
with a topology determined by a sequence of pseudo-norms (see [2]).

We shall say that a linear transformation T having its domain and
range in X possesses the property (R,) if there exists a non-negative inte-
ger u such that T¢+'(z)=0 implies T"(x)=0.

Notice that if a linear transformation T possesses property (R,),
then 7™(x)=0 implies T*(x)=0 for n>u. We shall say that a linear
transformation T is of finite order if it possesses property (R,) for some u.
The least non-negative integer u is called the order of the transformation T.
It T iy of order u then T"(x)=0 implies T*(x)=0 for n>u, and for n<<u
there exists an element zeX such that 7" (x)=0, but T"(z)+#0.
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