On the distances between signals in the non-homogeneous
Poisson stochastic process
by
JERZY MYCIELSKI (Warszawa)

In this paper*) I investigate a special class of the non—homogepeom
Poisson stochastic processes. I denote by the random variable w (t) (t>0)
the number of signals in the half-open interval (0,t, e.g. the number
of discharges in the Geiger-Miiller counter (in this case ¢ denotes tin.ae);
w(t) is therefore a non-negative, non-decreaging, continuous on tllle right
and integral valued function of t. I put w(0)=0. Let us write also

Pry(t,1,) =Pr{w(t3)——w(t1) = 70}
tor 0<i,<<i, and k=0,1,2,...; it is the probability of % signals coming
in the interval (I;,%). .
Suppose that the process has the following properties:
(a) the random variables o(k)—w(h),..., ©(ty) —w(in,) are inde-

pendent for 0<CH<H<. . .Sy 1<ly (1=2,3,...) (process with indepen-
dent increments);

ty
(f a(t)d) "
b
() Prifht) = ————exp(— [a (),
N : b
where a(t) is a function defined for ¢>>0, non-negative and continuous.
The property (b) implies another two:
. 1—Pry(t,t+ 4t
im ———

(c) 50 A ath);
@ i P A PR Ay
4t>0 At

It is easy to see from thege formulae that w(f) can possess only
jumps equal to 1 (signals can come only singly).
*) Presented in part to the IT Conference on Stochastic Processes of the Mathe-

matical Institute of the Polish Academy of Sciences on December 30, 1954, in Wroc-
law.
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Besides the properties (a) and (b) I assume nearly everywhere in

the paper (with the exception of Theorem 1) the following third property:
o

(e) [a(t)dt=oo.

0

This assumption means that in the whole process there will be an
infinite number of signals (w(t)~>oo for t—co).

We obtain the homogencous Poisson process from (a)-(e) setting
a(t)=a>0.

The purpose of this paper is to investigate the distances between sig-
nals in the process defined by the properties (a), (b) and (e). In section 1
I give the general definitions and theorems concerning the distributions
of those distances, in section 2 I prove the limit theorem for the mean
value of the fraction of distances not greater than y (y>0) among the
initial n distances (n=1,2,...), and in section 3 I investigate the con-
vergence of this mean value to a constant for n-—oco.

The results obtained can be of importance in practical investigations
of the non-homogeneous Poisson processes: knowing the distribution
of the distances between signals it is possible to draw conclusions con-
cerning the funection ¢ (f). This method seems to be suitable when, for
instance, the oscillation frequency of a periodic function «(f) is of the
same or greater order than the mean frequency of signals.

1. The general definitions and theorems. I call the distance be-
tween the %-th and the (k41)-th signals (¢. e. the jumps of the function
w(t), equal to 1) the k-th distance between signals (k=1,2,...).

DEFINITION 1. L(yy,.. s ¥n; 4Y1,..., Ay,) for n=1,2,..., 4,>0 and
Ay>0 (k=1,2,...,n) is the following event: in the whole process no
less than m--1 signals appear and the i-th distance between signals has
a value from the interval (y;,y; +dy;> (for all ¢ from 1 to »); when we write
Ay;=o0, it means that the I-th distance is greater than y;.

TaEOREM 1. If the process has the properties (a) and (b), then

oo Z3+V1+ 4%
PrL(1y s s Ay ooy )} = [a(@m)dmy [ a(@)dayx ...
0 -+
L1+ VUn—1+ AUn—1 Tyt Yn-t+AUn Znt1
X f 0 (%, ) Ay, @ (Zpp1)— exp(f a(t)dt)dmn+1.
Tp—1-+Un—1 Ty+-Yn ¢

Proof. In view of the properties (a) and (b) the probability that
in the whole process there will be no less than n-1 signaly and the i-th
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signal will appear in the interval (8,8~ 4t;y (for all ¢ from 1 to n4-1),
where 0<t1<t1+At1<...<tﬂ+l<tn+1—|—Atn+1, is equal to

P"’o(o:t1)P7'1(t1at1+At1)P"'o(t1+At1:t2) v Pro(tn+ Aty sty ya) X

X AL —Pry(tus1 s bna Aty 1))

tuy1 b1+ Alnga n 444
= (exp(—f a(t)dt) — exp(-— f a(t)dt))” f a(t)dt
0 b =1t
b4ty tpy1tdiyiy LZNSY
= [ az... | a(xl)...a(wn“)exp(—f a(t)dt)dmﬂ,,_l.
& bng1 0

The function which we integrate in the last expression is therefore
the conditional probability density of the appearance of the ¢-th signal
at the point a; (for all ¢ from 1 to n+1), where 0<x;... <@y, under
the condition of the appearance in the whole process of no less than n+1
signals, multiplied by the probability of this last event. Integrating this
function through all the values of w; possible in the event L(y,...,¥;
Mooy Ay G b By HYi <@ <Tia+Yiat+dys (for ¢ from n-1
to 2) and 0<m<<oo, we get for the probability of this event the ex-
pression. given in Theorem 1.

DEFINITION 2. The random variable & (y) (k=1,2,..., y>0) is
a variable equal to 1 if the k-th distance between. signals is not greater
than y, or equal to 0 if either the %-th distance between signals is greater
than y or less than k-1 signals appear in the whole process.

THROREM 2. If the process has the properties (a), (b) and (e), then the
mean value of the random variable 9y (y) (4. e. the probability that the k-th
distance between signals will mot be greater than y) is equal to

< 4y 3
Bloky)} = 1‘@‘%!(»(9&) exp(—uf a(t)dt) (ofa(t)dt)’““ldm_

Proof. Let ;=0 (for all 4 from 1 to k—1), yp=y and Ady;=o0 (for
all ¢ from 1 to k). Then -

E{'ﬁk(y)} = 1"PT{L(y17' vl AYase ey Ayk)}

=1 ——f a(z) dmlfa,(wz) d,. .. fa(xk)clwk fa(w,hu) exp (—-mjﬂu(t)dt) Aty 11
0 £ Tpy Tty 0
o0 o« (=] [+ Zp+Y

=1—[ale) dm [a(@)dey... [a(oe,)dm_, [alw) exp(—f a(t)dt) .
o Ty Tp—g Bp—1 0
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The region defined by the inequalities
0<my < ooy @<y < oo, vy Wy <A< oo

can also be defined by the inequalities

<oy <oo, O<mp 1<y vvy O<ay<<ity.
Therefore
o Tty Zy L2
B0 @)} =1—[ alm) exp(— [ a(t)at) dm [ s(@e) der_y... [ al@) day
0 [ [} [

1 Ty £

i Fatowexn( =] ot0) ([ ataaaf e,

° 0

=1

q.e. d.
DEFINITION 3. The random variable 6,(y) (n=1,2,..., ¥>0) is

1 n
Ouly)=— D" ().
k=1

If no less than n--1 signals appeared in the whole process (as always
happens in the case of a process with property (e)), then @,(y) is the frae-
tion of distances not greater than y among the initial n distances.

THEOREM 3. If the process has the properties (a), (b) and (e), then

E{0,(y)} =1 —%fu(w) GXP(~Tﬂa(t)dt)g%(fa(t)dt)kdm.
0 [} k=0 [}

Proof. In view of the theorem for the mean value of the sum of
random variables we obtain

1\
BlOu)} = D Bl
k=1

from this formula and Theorem 2 we deduce Theorem 3.

For the homogeneous process, i.e. for a(t)=a>0, we obtain from
Theorems 1, 2 and 3 respectively the known formulae:

n

k3
(1) PriLns.. sUni Agay- - Avn)} = exp (=0 D, v [ (2 —e*),

Fe==1 k=1
(2) E{$(y)} =1—€",
(3) BlO, ()} =1—¢".
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2. The limit theorem for E{6,(y)}.
DerintrioN 4. For the process with properties (a), (b) and (e) I write

T4y
_.1—-—[ exp( f ()dt)dao,

where n=1,2,..., y>0; 7, is one of the solutions of the equation

ja(t)dt:n.
]

Tf the last equation has more than one solution, then these solutions
compose a closed interval in which a(t)=0; the choice of 7, from this
interval has therefore no significance for the value of S,(y)-

It is easy to see from Definition 4 that 0<S,(y)<<1.

THEOREM 4. If the process has the properties (a), (b) and (e), then
|B{On(y)}

Proof. In view of Definition 4 and Theorem 3 we obtain

)I<1/y/2an.

4) S,y —E {6 =71—% fm a(2) exp(—?yamdt)S%( f att)at) do+
[} k=0 0

+%Tna(w)exp(—7y ){exp( fma \)2 (f,a(t)dt)k—l}dm,

For the first part of the right side of this formula we have the in-
equalities

5) 0< = f exp( fva(t)dt)S%(fma(t)dt)kdm
k=0 0
<%j°a(m) exp(—fu( )dt)gj ]:! (fa(t)dt)kdw

191 f
=;2-k—' fe"’(’”)v(m)"dv(a:),
k=0 7,

where

(@)= [a(t)dt.

0
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Sinee, for ¥=0,1,2,...,

10
—v(z) k
1 fe v(2)F dv(x)

Tn

”(w)k ®© 1 w - k-1 —n
=— O ——— +————fe @y (g do () =...=¢ 2 o
Eodw (B—1)! J o 1!
we obtain
n—1 k
L3 [t =T S
n 14
%=0 1=0
6—% n—1n-1 nl ¢ n n—1 "
= ZWZTZ(”_” i
" =i i=o
e n—1 ’M,I'H -2 ,nl+1 n® .
27(120 TRV RNT nl

For the second part of the right side of formula (4) we have the in-
equalities

Tn x4y

(1) 0>%fa(m) eXp(——f a(t)dt)x

o

8

T z

>%fa(m){exp(——fa(t)dt)§%!-(Ia(t)dt)k—l}dm

0

o

1 N1 1 Ty
== N[ o) doia) -
7 k!
k=0 0

20
Studia Mathematica XV.
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Sinee, for k=0,1,2,...,

Tn

17
— [ e ™o (2)" dv(@)
Kl

o) 'u(w n 1 fn — () k—1 = . =—e"

e o 0+ Y J e~y (1) dv () g m +1

we obtain
n—1 Tn

1 1 f — () % —1

— — | ey (x) —— ",
From (4)-(8) we deduce

n"
‘E{Qn (y)} —‘Sn(y)l < e

nt
and the inequality

<
n! ]/271%

completes the proof.
From Theorem 4 follows the uniform convergence of the sequence of
funetions {0, (y)} to the sequence of functions §,(y)in the half-axis y>0.
Putting a(t)=a>0 in Definition 4 and comparing the obtained funec-
tion 8,(y) with the function E{@,(y)} given by formula (3), it is easy
to prove that for the homogencous Poisson process 8,(y)=E{0,(y))
for all n and y.

3. Convergence of the sequence E{ (y)}. For the homogeneous
process, in view of formula (3 E{Q } is mdependent of n; it is, how-
ever, not true in the general case and the problem ariges for which a(t)
the sequence {0, (y)} converges if #->oo.

Theorem 4 implies the following obvious

CoroLLARY 1. If the process has the properties (a), (b) and (e),
then, for each y>0, the necessary and sufficient condition for the existence of
lim B{6,(y)} is that of th (y); if these limits ewist, they are equal.
N—0

This corollary ena.bles us to replace the investigation of the conver-
gence of the sequence E{6, ()} by such of the convergence of the ge-
quence 8,(y), which we sha;]l now consider. Since we have defined S, (¥)
only for the processes with properties (a), (b) and (e) we shall not
assume explicite in the following that the process hag those properties.

On the distances between signals 307

LemMa. The necessary and sufficient condition for the existence, for
some y>0, of the limit Hm S, (y) is that of the Limit
N~>00

z

[ a(x) exp(— f o (1) dt) de
lim g . ;
e falt)yd
[
if these limits ewist, they are equal.
Proof. Leti?)
n(2) = Ua(t)dt],
0
for 227y, 4. e. n(2)>1, we have
2 Y Tn Ty
ofa.(m) exp(—aa o (t) di) dos n(2) uf a(x) exp (— [ a(t)di)ds
(9) 7 =— & +
fa()dt [alt)dt (@
0 0
2 z+y
[ a(x)exp(— [ a(t)dt)ds
+ Tne . z

If 200, then n(2)—>oco successively throughout all natural numbers;
since

2 a4y
n(2) [ a(@)exp(— [ a@t)di)ds
lim =1, lim 2= _ 2 =0,
2—00 fa(t)dt Z—00 J‘a(t)dt
0

we deduce our Lemma from formula (9).

THEOREM 5. If, for some y>0 and C'>0, the limit

lim 8, (%)

T—>00
exists in the process defined by the function a(t-+C"), then this limit exists
and is the same in the process defined by the fumction a(t-+C), for each
0=0.

) By the symbol [] I denote, in this proof and in the proof of Theorem 8,
the function “entier .
20%
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Proof. In virtue of the Lemma and by transformations of integrals

we get
j a{@-+C") exp (— f a(t+0") dt)do
hm;S’ (Yagrony =1— hm z
fa(t+0’)dt
240’0 -
[ a(@+0) exp(-— & (t+0)dt) du
. O=C
=1-—lim T 0—0
oo J a(t-0)dt
oo
24-0'—C
[ a(@+0) exp(—— t+())dt)
=1—lim— S F0—0
oo [ et+0)dt
"o
=lim Sn (f’/)a(t+0) y
q.e. d.

TarorEM 6. If, for some y>0, im 8, (%) exists in the process defined

N—r00
by the fumction a(t), then this limit emists and is the same in the pro-
cess defimed by the function a(t)4-b(t), where b(t) is any continuous function,
defined for £320, such that a(t}4b()=>0 for all £2=0 and the integral

f [b(&)| dt
[]
18 finite.

Proof. Denote by My and my respectively the upper and the lower

limits of the function
T4y

= [ b(t)as

for 23> C, where 0> 0; for any 2>C>7 we have

Lfa(w) exp(—zf+ ya(t)dt)dw f a(x) exp(——wf_l-”{a 1) -+b ()} di) d
G_MC . x < 0 :
[at)d fa(t)a
0 [

¢ x+y
@) de ofa(m) exp (— [ {a®)-+b(®)
+ :

Jalt)at
0

s oty
Ja,(w) exp(— [ a()

[a(t)di

0

} ) da

—m,
e

‘ = lim -~
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If #—>oc0, the first and the last expressions converge in virtue
of the Lemma to
e M1~ th

and

¥)ao) e {1 —Hm 8, ()}
N—00

respectively. Since C is arbitrary and, as follows from the existence of

the infegral of[b(t)ldt, élm My=limmg=0, we obtain
500 Cso0

fzu(m) exp (—wfdia,(t)—{—b 1)} dt) dac
(10) 1—lim 8, (y)aq = lim = .
e e fa(t)at
We also have ’
11) Ub dtl [ w b(t)|dt
and ' 0
z x4y
(12) U (z) exp( f{a )L (t) dt)dwl
0
24y oo
<[ e exp(— [ fatn+bio)d)in < [ ba)do.
0 z 1)

From (10), (11), (12) and the Lemma we deduce
11— lim Sn(y)a(t)

fza( exp(— f {a &) +d t)}dt)dm+fb exp(——z}_v{a(t)+b(t)}dt)dm

200

.

m(t)dt+fb(t)dt
0
=1—YHm 8, (Y)ag10p» - ©- 4
N—00

TupoREM 7. If, for some y>0, the limdt
lim 8,,(y)

n—>00

ewisls in the process defined by the function a(t), then also , for each C>0,
the limit .

Lim 8,(y/C),

Nn—>o00

equal to the first, ewists in the process defined by the function Ca{Ct).
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Proof. In virtue of the Lemma and by transformations of integraly

we obtain
z+y

fae) exp(— [ a(tdt)do

lim 8, (4)ag = 1—1im i
n—>00 200 fa )t
o
8|C z4+y[C .
[ Ca(Cm) exp(— [ Ca(ot)dt)de
=1—lim-~ 0 = = lim 8, (4 /C)oacy
e | Ca(0t)di f""”
0
q.e. d.
TrroreM 8. If, for some y>0, the limit
24y
tim [ a(t)d =4,

2500 4

ewists (in particular we may have A, =o0), then the function a(t) has the
mean value

z
1 A
o =1im—fa(t)dt =,
200 # 5 Y

and the limit
lim 8, (y) =1—¢%

N0
ewists.

Proof. For 2>y we have

2yl ky 2+ ky .
a(t)dt 12 > [ @t

k=1 (k=1)v <= [amd< k=1  (k=1)¥

iy <7 “OFS T Ly

0

Because of the convergence of the sequence
Ry
Ce= [ ad (k=1,2,...)
=1y
to 4,, the sequence of the arithmetical means of the sequence (0, also

converges to this limit; therefore, if z->c0, we deduce from the inequal-
ities obtained that the limit

lim
Z—00

w | =

f a(t)dt =%

exists.
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Let us consider the funetion g(tf)=a(t)+e'>0. By virtue of de
PHospital’s rule and the Lemma we get

. ) 24y 2ty
e ”:?mexp(~f a(t)di+e (e —1)) =limexp (— [ g(t)d)
24U £ z+U
g(eyexp (— [ g(t)d) [g(x)exp (— [ g(t)d)dx
=lim g(~; =lim ° T

Jg@)at
0

=1—lim8,(y)yy,
N—-00
]
and since f e~tdt =1, we have from Theorem 6
[

e =1—1m 8, (%)ag,
N—>0
which completes the proof.
Theorem 8 implies the following obvious

COROLLARY 2. If the limit hma() a exists (in particular we may

have a=cc), then a is the mean mlue of function a(t) and for each y>0
the limit

lim 8, (y) =1—e*
N—>00
exists.

THEOREM 9. If the function a(t) is periodic with period T, then for
each y>0 the limit
T z+y
[a(z)exp(— [ a(t)dt)de
lim 8, (y) =1~ -

T

Ja(t)dt
0
exists.

Proof. In view of the periodicity of the functions which we inte-
grate, for every y>0 the limits

-y T z4y

lim - za,(.cc) exp(—f a(t)dt)dwz%fa(m exp(—f a(t)d) do,

2 ?
>0 h
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exist. Therefore we obtain by virtue of the Lemma

T T4y 2 Z+Y
fa@) exp(— [ o (t)dt) dw #t [a() exp(— [ a(t)dt)ds
0 x =1 _']im 0 @

1—

z B=00 —1 7
a(t)dt
0fa(t)dt ‘z Of (t)
=lim 8, (%), d.e.d.
N~->00

S. Hartman has proved (by a somewhat different method from
the one employed here) the following

THrorREM 10. If the function a(t) is, for 120, equal to & certain uni-
formly almast periodic funetion, then for every y>0 the limst Hm S, (y) ewists.

N—r00
Proof. Denote by a,(t) the uniformly almost periodie funetion which
is equal to a(t) for 1= 0. Because of its being uniformly almost, periodie
the function a,(t) is bounded. Hence, there exists a number M >0, such
that —M < a,(H)<<M for all . We have also

o+

y T
J aw®dt= [astds+ [{aolt+y)—ao(t)} ds.
0 0

T

Since
z4Y

—My < [ a)a <My,

z
® .

the integral | {aﬂ(t +y)—aq (1)} dt is the bounded indefinite integral of a uni-
0

formly almost periodie function, . e. it is a uniformly almost periodic

oty
function of . Therefore [ a,(f)dt is also a uniformly almost periodie fune-
x

tion of w.
Since

exp(— Ty%(t)dt) 32%( [ ama),

k=0
with the series uniformly convergent for all # in view of the boundedness
T+Y 4y
of [ ay(t)di, exp(— [ ay(t)d) is a uniformly almost periodic funetion of 2.
z z
In virtue of the mean value theorem for uniformly almost periodic
functions, the limits
2 &-+y

P_ﬁ%f@o(m) exp(—f‘an(t)dt\,dw
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and
1 z

lim — | ay(t)dé

Jim = aa(0)
exist; moreover the last limit is greater than zero, because for each £>0
there exists I>7;, such that

6l

[ at)dt>1—ez,

(k=1)l

for all natural k. Therefore the Limit

4y

P fzaﬂ(w) exp(— [ ao(2)dt)d
[

8

lim

#—00

exists, and in view of the Lemma we deduce the existence of the limit
im 8,(y), q.e.d.
=00
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