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Wird oben beiderseitig das Zeichen des Operators Q gestrichen, so erhal-
ten wir

w (E)
2

o) =olg@Ey)]), oder g(Ey) = 0(
was zu beweisen war.

Man beweist nun dureh vollstindige Induktion die Richtigkeit
der Formel (2b) fiir alle

Die Zahlen

w(k) k
e =[5 )=alz)
wo % eine beliebige ganze Zahl und # eine beliebige natiirliche Zahl be-
deutet, bilden eine dichte Menge M. Die Gleichung

(22) 9(®,y) = Q@) o(y)]

ist fiir alle z der Menge I und alle y erfiills. Daraus folgt wegen. der Ste-
tigkeit: der Funktionen w, f, g, a8 die Gleichung (22) fiir alle 7, y exfilllt
sein mul.

Auf diese Weise ist auch der zweite Teil unseres SatZes bewiesen
worden.

Umgekehrt: ist die iiberall definierte, stark monotone Tunktion
o (x) gegeben, die die Menge aller Zahlen als Wertbereich hat, und sind
mit Hilfe von o die Funktionen f, g durch die Gleichungen (2) definiert
(mit Q ist die zu w inverse Funktion bezeichnet), so sind, wie man leichb
feststellt, alle Voraussetzungen unseres Satzes (auBer etwa II) erfiillt.

Zitatennachweis

[11 J. Aczél, A solution of some problems of K. Borsul and L. Janossy, Acta
Physica Acad. Se. Hung. IV. a (1955), 8. 351-362.

[2] 8. Golab, Przyczynek do algebry dzialan w ciele liczh rzecaywistyoch, Rocznik
Naukowo-Dydaktyezny W. 8. P. w Krakowie 1 (1954), S.3-10.

[3] M. Hosszi, On the functional equation of distribulivity, Acta Math. Acad.
Se. Hung. IV. 1-2 (1953), 8.159-167.

. [4] H. Pidek, Sur les objets géométriques de la classe zéro qui admetient une
al{]elwe, Ann. Soc. Pol. Math. 24 (1952/53), 8. 111-128.

Regw par la Rédaction le 24. 10. 1965

Realizations of some stochastic processes
hy

M. FIRZ (Warszawa)

1. Preliminary remarks and summary. We consider a real sto- -
chastic process {wt,telo}, where I, is a closed finite interval. The x; are
functions of two arguments and can be explicitly written in the form z;(w),
where eI, and we 2, 2 being the set of elementary events. The stochastic
process is thus a family of random variables. The smallest Borel field
&y, of o sets, with respect to which all the x, are measurable, is gen-
erated by the field of w sets of the form

(*) {[‘l’tl(w%‘r@(w):~~-7mt,.(m)]EA}’

where A4 is any right-hand semiclosed interval and (fit,...,,) 18 any
finite set of values of tel,. The probability measure P of elements of &y,
is, as we know [4], uniquely determined by the P measure of w sets of
the form (*).

We shall assume that the process {:c,,tsL,} iy separable (see [3], p. b1).
This implies that if {t,}, §=1,2,3,..., is & sequence satisfying the sepa-
rability conditions and if » does not belong to an exceptional w set A
of P measure 0, then

1)

g.lLba,=g.Lbx, Lubx =Lu b
tel tel te] eI
for every open interval ICI,.
We assume further that the process {mt,teIo} has no fixed disconti-
nuity points, 7. e. that
(2) Plima,(w) = 2{w)]=1

8t

(tely).

Tt follows (see [3], p. 60) that the process considered is measurable,
i. e. that m,(w) defines a function measurable in the pair of variables
(t,w) where tel;, wef. )

The main result of this paper consists in stating that if relation (6)
given below is satisfied, the o set for which @(w) are step functions has
probability 1. In other words almost every realization () has only
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finitely many points of discontinuity and is constant in every open in-
terval of continuity points, and at each discontinuity point both left-
and right-hand limits exist. It is moreover shown that the mathematical
expectation of the number of discontinuities is then finite and an expli-
cit expression for it is found (Theorem 1).
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2, We shall introduce the following notation.

By »; we shall denote the increment of #; in the interval I, where
IcI,, and by |I| the length of the interval I. By &(I) we shall denote the
number of discontinuities of @, in I, where £(I)==co if the number of
discontinuities is not finite. Further let

3) a(I) = P(ar#0),
() CAD=lm Ya(ly), 88 max |Lu-0,
N->00 ;-1 I<kgn

where |I,) is @ partition of I in non-overlapping intervals I.. A(I)
is the Burkill integral of a(I). The upper Burkill integral A(I) of a(I)
is obtained by replacing in (4) the symbol lim by lim. The derivative
of a(I) at the point tel will be denoted by Q(t), 4. e.

. a(@)
(5) Q () =1lim W,

as I contracts to a fixed point tel.
We ghall introduce the following

DerFINITION. The process {w;,tel} is purely jumping (shortly PJ)
if the o set A for which the w;(w) have the property

For each tel, there exists such a #(t,w)> 0 that for all ¢’ satisfying
the inequality |t—t'|<?(f,w) the equality a, (w)=a2;(w) holds unless
z(w) has a discontinuity at %,

satisfies the equality P(A4)=1.

TueorEM 1. Let the stochastic process {wt,tel.,} be separable and with-
out fized discont'inuity points. If the relation
(8) A(I)< oo

holds, then for every open interval IC 1T

(i) the process is purely jumping;

(i) the mathematical ewpectation B E(I) emists, 4s finite, and satisfies
the relation

(M BE(T) = A(1) = A(I) < oo;

?
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(ili) the w set with the property that at the discontinuities of #y(w), if
any, both left- and right-hand limits exist, has probability 1;

(iv) the derivative Q (t) exists almost everywhere, and the relation
) fomar< A
i

holds.

Proof. Let the asgumptions of the theorem hold. Let T={z;},
j=1,2,..., be a denumerable and everywhere dense set of points in I
and let the points 7,4 ,%nsy...3Tne D&, for each n, points 73,75,...,7n
arranged in ascending order, T, < Ty <...<Tp,. Let 7,(T,I) denote
the number of pairs of POINS (Tny,Tugsny) Such that z ,—a, .. 0]

7. (T,I) is a random variable. Since for a fixed realization the inequality

ﬁn(T,I) <77H+1(T71)

holds, we obtain in virtue of Lebesgue’s theorem the relation

(9) By(T,I)=lmBx,(T,I),
where ‘
(10) (T, I) = limn, (T,1).

n—o0

On the other hand we have for every n

N

(11) En,(T,I)= D a(lny),

=
[

1

where Tu=[Tag,Tnpesy). Relations (6), (9) and (11) imply

(12) Eq(T,I) < oo,
and consequently
(13) Py(T,I) <oo)=1.

The separability of the process considered being taken into account
relation (13) implies that assertion (i) is satisfied.

Indeed, as the process considered has no fixed discontinuity points,
the set T satisfies (see [3], p. 54) the separability conditions. For the
same reason the relation .

(14) Pllima, (o) =2, (0),7e T]=1

87
holds, and we can thus consider only the realizations which are contin-
nous at all points 7eT. Let A, denote the o set for which the z;(w)
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satisfy both the relations in the square brackets of (13) and (14). Clear-
1y P(Ay)=1. It iz now easily seen that if we 4,, 2;(w) can take only finite-
ly many values (depending on o) on veT', and that the interval I ig
then divided into finitely many subintervals I (depending on ) such
that #,(w) is eonstant at the points veTl. Separability, as expressed
by (1), implies then that #(w) is constant in each interval Iy (w). Asser-
tion (i) is thus proved.

We introduce now the following

DEFINITION. At the point teI the realization z(w) has a discon-
tinuity on the set T if the oscillation of @,(w) on the set 7' at the point ¢
is positive.

Tet us now observe that in proving assertion (i) we have proved at
the same time that almost every realization #;(w) is constant in the in-
tervals Ip(w) where I;(w)+Iy(w)+...+1,(0)=1, and where n may de-
pend on o but is finite. The probability that 4(7',I)is equal to the num-
ber of points te I at which #,(w) has a discontinuity on the set I'is equal
to 1. Clearly the relation
(15) (T, 1) =n(I) = &)
holds with probability 1. Thus, taking into account relation (12), we obtain
assertion (ii)?). This assertion immediately implies that P[&(I)<oco]=1.

Assertion (iii) immediately follows from (i) and (ii). - -

It remains only to prove assertion (iv). In order to do this we shall
show that if the process is PJ, the function a(I) is a continuous function
of an interval, i. e.

(16) lim a(I) = 0

111>0

Indeed, let the process {m,,teIo} be PJ. Then for each point tel and
for each £>0 there exists such an a(f,e)>0 that
17) P(oy_, =my=m,) >1—e.

Suppose now that relation (16) is not satistied. Then there exists
such a sequence {I,,} of intervals that

lim (I,,] -0,
—>00

k(S

a(l,)>q¢>0.
We can thus choogse a subsequence {In,,} contracting to a point t¢l,

1) The existence of 4 (I) can easily be deduced from th inui
¢ continuity of a(I)
proved below (see formula (16)), if we take into account th: i i it
. s at a (I - i
function and (8) holds (see [5], p. 168). @) s a soniaddiiive
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and for this point 1, there will exist no a(t,,¢) satisfying relation (17) for
g=¢. Thus relation (16) holds.

Let us now observe that A(I) is non-negative, additive (see [1],
p. 283) and, as follows from (16) (see [5], p. 167), a continuous function
of an interval, and thus A(I) is of bounded variation. Thus the deriva-
tive of A (I) exists almost everywhere in I and — according to a theo-
rem of Saks (see [6], p.221) — the same holds for a(I), and moreover
the derivatives of a(I) and A (I) are almost everywhere equal. Since 4 (I)
is non-negative, relation (8) is obtained.

Theorem 1 is thus proved.

TuporEM 2. Let the process |m,tel,} be separable, without fized
discontinuity points and let a(I) be an absolutely®) continuous function
of an interval. Then the assertions of theorem 1 hold and moreover the rela-
tion

(18) [ewat=4()
I

s satisfied.

Proof. Let the assumptions of the theorem be satisfied. A theorem
of Burkill ([1], p. 287) implies then that relation (6) is true. The assump-
tions of theorem 1 are thus satisfied and consequently so are all its asser-
tions. On the other hand, from a theorem of Burkill (see [1], p. 289) it
follows that A (I) is then also an absolutely continuous function of an in-
terval and thus equality (18) holds. Theorem 2 is thus proved.

The following eorollary from theorem 2 holds:

COROLLARY. If the procéss {m,tely) is separable without fiwed discon-
tinuity points, and if a(I) satisfies the Lipschite condition, 1. e. there exists
such a constamt K>0 that for all ICI, the inequality

(19) a(I) < K|}

holds, then the assertions of theorem 2 are true.
The proof of this corollary follows directly from theorem 2 and from
a theorem of Burkill (see [1], p. 287) stating that if a(I) satisfies the Lip-
schitz condition, it is an absolutely continuous function of an interval.
The probabilistic sense of Q(t) is the following: Q) is the density
of the mathematical expectation B &(I) at those points teI at which the
derivatives of a(I) and A(I) are equal. In the particular case where the

3) The function a(I) of an interval is absolutely continuous if to every >0 there
corresponds such a 9>0 that the relation J |Ix|<? implies the relation %‘ﬂ(Ik)<s,
k

where {I;} is a partition of I in non-overlapping intervals.
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process considered is homogeneous in time and ¢(I) is an absolutely con-
tinuous function of an interval, the relation @(¢)= = constant holds.
Relation (18) will then be of the form

(20) A(I)=QII].

Consequently, for |I|=1 the equality 4 (I)=¢ is obtained. Thus @ is the
expectation E&I) during a time-unit. -

A condition for the existence of a finite K &(I) for Markov processes
with a finite number of states, similar to (6) (but not identical with it)
bag been given by Dobrusin ([2], p. 543).

It is eanily seen that the converse to theorem 1 is not true. One can
give examples of separable stochastic processes without fixed discontinu-
ity points for which E £(I)<co, and yet relation (6) does not hold. The
following theorem is in a certain sense a converse to theorem 1:

TeuOREM 3. Let the stochastic process {xt,telo} be separable without
fized discontinuity points and let it be purely jumping. If BE(T) ewists and
is finite, relation (6) holds and consequently relation (7) holds also.

Proof. Let the assumptions of the theorem hold. Let {r;} and {7,
be defined as above. The same reasoning as that used in the proof of the-
orem 1 leads to the assertion of thiz theorem.
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On a theorem of Mazur and Orlicz
by

VLASTIMIL PTAK (Praha)

In [1], Mazur and Orliez have proved an interesting theorem con-
cerning the existence of functionals fulfilling certain inequalities. The
original proof of the authors has been simplified by Sikorski in [2]. Be-
cause of the importance of this result for applications, the reader will
exeuse our returning to this theorem once more. It is the object of the
present remark to reduce the proof of the theorem of Magur and Orliez
to the clagsical theorem of Bamach. The resulting proof is both simple
and short.

Let X be a linear space, let () be a real function defined on X.
The function o will be called a Banach functional on X, if

10 (@ o) <ole)+ols,) for every o, X,

20 o(Ax)=Aw(z) for every e X and every 2=0.

TrrorEM. Let X be a linear space, let T be an abstract set. Let (1)
be o mapping of T into X, let B(t) be a real function on T. Let o(z) be a
Banach functional defined on X.

A mecessary and sufficient condition for the ewistence of an additive
and homogeneous functional f(x) defined on X and fulfilling

3° f(w)<w(®) for every zeX,

4 BH<flw@) for every teT,
is the following one:

for every finite sequence thyeeostn€ T and for arbitrary non-negative

numbers Ayy...yhy

50 3 1Bt <o hat)

Proof. The necessity being evident, we ghall prove the sufficiency
only. Suppose that 5° is fulfilled. For every xeX let us pub

B(@) =int[o[o+ 3 Katt))— 3 18]
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