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(see [4], p. 291) and we immediately infer that if with suitably chosen
e = G5(7)

: | 1 o
)y’—‘a‘ <Ly (a,9) =1, Pt <Lg <7,
q qv

then
ISI < 017Pr+cm——r/3(n—-l)210g13n(n~1)7

014
3(n—1)log18n(n-—1)"

Oy = Cy(Py My m), G =

When instead of the upper estimation stated in lemma 3 wo make
use of the upper estimation as presented above, we are able to reduece
7o(n) immediately without any further consideration to

3n(n~1)*log18n (n—1)-1.

It seems very probable that — at least in this special case — the
order of magnitude of 7 (n) can be reduced to #.
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Remarks on number theory I
On primitive g-abundant numbers

by

P. Erp0s (Toronto)

Denote by o(n) the sum of divisors of n. It is well known that a(n)/n
has a continuous distribution function, i.e. for every ¢ the density of
integers satisfying o(n)/n < ¢ exists and is a continuous funchion of ¢
whose value — 1 as ¢ — co. This result was first proved by Davenport
[1], Behrend and Chowla. Thus in particular the dengity of abundant
numbers exists (a number is abundant if ¢(n) [n = 2). I [2] have proved
the existence of this density by proving that the sum of the reciprocals
of the primitive abundant numbers converges (a number m is called Pri-
mitive abundant it ¢(m)/m > 2 but for every proper divisor @ of m, o(d)/d
< 2). More generally we shall say that m is primitive a-abundant it o(m)[m
> o but, for every proper divisor  of m, o(d) /& << a. I observed some time
ago that it is not true that the sum of the reciprocals of the primitive
e-abundant numbers converges for every a. It will be clear from our proof
that if « can be approximated very well by numbers of the form o(n)/n
then the sum of the reciprocals of the primitive a-abundants will diverge.

2
Let p;, ps, ... be an infinite sequence of primes satisfying py,,, > %,
Put

= 1) -
"= ”(HH) = lim ZPPee--P8)
Bt kv P1P2---Di
A simple computation shows that for every k the integers
PiPze--PxPy  Pp <P < Dpya
are primitive a-abundant. From

2 % = (1+o(1))loglog

<
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we have
11,
o 2 Prs
Pp<P<Pp41
further by the definition of the p’s P > P1Ps...Pg-- Thus
1
ot .
- 9?
%ﬁ-;w P1D2---DrP

which clearly implies that the sum of the reciprocals of the primitive
a-abundants diverges. A simple argnment shows that the o’s for which
the sum of the reciprocals of the primitive a-abundants diverges form
an everywhere dense @, in (1, cc), i. e. they are the countable intersection
of dense open sets, But it is not difficult to show that they have measure
0, in fact they must be Liouville numbers (a number y is called & Liou-
ville number if y is irrational and jy—a/b| < 1/b™ is solvable in integers
a and b for every n). We shall not give a proof of this result.

Denote by N, (») the number of the primitive a-abundants not exceed-
ing 2. I [3] bave proved that (expz = ¢)

z »

1 . N < —
@ exp (25 (logzloglogz)'?) < Fa(@)

‘xpfi(logatogloga)™®)
I can show that for every a (¢, ¢s,... denote suitable positive constants)

x
s exp (¢, (logwloglogz)?}’

@ . N(a)

and that for every a and an infinite sequence x, — oo

o
exp ¢z (logwlogloga)™)

®) Nalwn) <

"Also if a is not a Liouville number then for a certain ¢; == ¢y(a)

@

() Nel®) < eplealiogaloglogar™]

for all # > 0. I am not going to give the details of the proof of (2), (3)°

and (4) since the results do not seem to me to be very interesting and
the proof is similar to that of (1).

I shall prove in full detail the following

THEOREM.

(8) ' No(z) = o (132;).
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The proot of our Theorem will be in many ways similar to that of (1).
It is easy to see that (5) is best possible in the following sense: if g(z) — co
as slowly as we like, there always exists an a so. that for infinitely many x

@
(6) N,(2) > @ oga’

The proof of (6) can be left to the reader since it is almost identical
with the proof that for a suitable a the sum of the reciprocals of the pri-
mitive o-abundants diverges.

Now we prove (5). Denote the primitive a-abundant numbers by
My < My < ... First of all we ghall show that it will suffice to consider
the mgs not exceeding # which satisfy the following properties:

@
I. ——*(10gm)2 < My,
IT. »(m;) < 10logloga, where v(m) denotes the number of distinet
prime factors of m, ‘
IIT. if p%m; and a > 1 then p°* < (loga)®,
IV. the greatest prime factor of m, is greater than p/togloss)’

To see this we shall show that the number of integers which does
not satisfy any of these conditions is o(x/logs). This is trivial for I. To
show it for II 'we obgerve that

z

@
o .
22”(") < 2—7; < 2zloga.

N=] k=1

Thus the number of integers not exceeding « which do not satisfy IT is
less than

20logx[210008182 — (5 /10g ).

It p°ln, a > 1, then p* or p®! is a square and thus n is divisible by
& square greater than (logz)“’. Hence every integer which does not
satisfy ITLis divisible by a square not less than (logz)*®. Thus the number
of integers which do not satisfy IIT is less than

z \ ]_7:0(_;1;’_).

s
k> (log)10/8

Let
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Assume that n does not satisfy IV. We can assume that n satisfies II
-and III, whence '
n < (i/ioslosa)*yotoglogs _ o (Jﬂ),

which proves that the number of integers not satisfying IV is o(x/loga).
Henceforth we shall assume that our primitive a-abundant numbers
m; satisfy the conditions I, IL, III and IV. Put

(1 my = A;B;

where all prime factors of 4; are < (log@)® and all prime factors of B,
are > (logz)¥. By II and TII we have

8) A;< (10g£0)i01031°m

and by (8) and I we have B; > 1.
. Now we split the m,; into two classes. In thp firgt class are the my
for which B; is not a prime. Write (by II, (p{?¥ 4 B;)

By = pPpf...of),
where by IV
9) (loga)® < p{ < ... < pf), pf) > atitosiosn’,

Now we gplit the m; of the first class into two subclagses. In the first
subclass are the m; with

(10) p(f) < t/Alogloga)®
We shall show that if (10) is satisfied then the integers

m

11 R
) o)

are all different, and if this i3 accomplished then it will follow from (9)"

that the number of integers of the first subclass is less than a/(loga)t
= o(x/logw).
If the integers (11) were not all different we ghould have

mwy m, . ’
— == P #pl)  (assume say p{ < pf¥).
Y41 51

Thus

- m; mi pP+1 T my 41’

(22 (el g etm
2P m; Y
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whence o

PP (@ +1) _ olmy) (o(my)\ ™
(12) Yii = @0 = .

o1’ (p17+1) My my

Now since the m’s are primitive a-abundant we have

. . . » -1
G(mz)>a’ a(ﬂ;_)_&_=ﬂ"iz(1_|__%) <a
My Pi; My My pfi
or by (9)
(13) o <2 g1 g giitostony?),

m;

and the same holds with m; replacing m;. Further from (9), (10) and (12)

(14) Yig =1+ > 1+ %m— 1/2(oglogz)?.

1
PP wf+1)
On the other hand from (12) and (13)
1o Yig < 1+m"1/(10g'logm)2.

(15) clearly contradicts (14); this shows that the integers (11) are all ditfe-
rent and this disposes of the first subeclass.

Now we deal with the numbers of the second subeclass. For these
numbers we have

(16) m; = A;B;, B;not a prime, all prime factors of B; are > pt/itogloz)®
I now show that for all m; of the second subclass
(17) G(A.,:)/A,,; =( < a.

Assume that (17) does not hold. ¢(4;)/4; < «ig clear since m is prim-
itive a-abundant. Assume thus that for some m, and m, of the second
subclass we have m; = A;B,, my = 4,B,, o(4,)/4, < o(4,)/4,. But
then by (8)

oldy) _o(dy) _ 1

18 ~20loglog®
(18) = - > > (ogn)
or oy < a— (logz)~*0leslos®,
4y
Now by (16) (the number of prime factors of B; is less than 4 (loglog®)?)
(19) o(B;) < (1+ $1/4(loglozz)z)4(loglogm)2 <1 —]—(logm)‘““’gl"“x-

B,
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But by (18) and (19)
a(my) o(4,) o(By)

L = e o <y
. ‘s my A, By

i tradiction thus; (17) is proved.
" e??;nfetezi be the sma;]les’t i)rime factor of a,ll' the B’s which 'bol.ong
to the m’s of the second subclags. We have to split these m’s again into
two classes (sub-subclasses). In the first class are those m’s for which the
least prime factor pf) of B; satisfies

16@50‘)'
The number of the m’s of the first class is clearly (by (20) and the prime
number theorem, or a more elementary inequality) less than

P 1
(20) ml/'l(loglogm)“‘ <M < pai) < pl(l.l._ -

ez (loglogw)? _0( ) )

< (oga) ~ \logw

(21) P

P<P<0(1+1/10g%)

1
4
For the my; of the second class we have

1
(22) > » (1+~f0§5~).

First we show that for every B;

oB) 1
By o

(23)

To see this we only have to remark that p, is a prime factor of some
m; = 4;B;. Thus since B; is not a prime

) (1 1) oth) ot o8

- 4< o L v s
Ay ml 4y S 4 ~ B!

which proves (23). From (23) and (16) we have

1 4(loglog)? O'(Bi) 1
14 > > 14—,
S

Thus

1
(24) P (1+ _IBEEUV) < pf < 10(logloga)’p, .
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Next we estimate pf? (p{? < p{® < ... are the prime factors of B;). We
have by (23) and (24)

1 o (B;) ( 1 )( 1 )4(10E10N)2
1+~—><- < 14— 1+ =5 .
( 2 B; P i

Thus by (24)

1 1 )‘l ( 1 ) ( 1 )—1 ( 1 )‘l(lmzlos’”)2
14— N1t} (14— (1~ | < |1+ -
( +P1 )( +I’1(1'|“ (logm)‘l) + V4 * oY * pf)

or by a simple computation (for sufficiently large X)

2

pf < 10logw(loglog)’p, < (logz)*p,.

Thus B; has at least two prime factors in the interval (p,, (logz)2p,).
Hence the number of m,’s of the second class is less than (g, r, s are primes)

1 1\2 loglogx\?
SRR Sl P R

P1<@<r<pyllogr)® Py <8<Py(logt)?
loglogx)* @
< 4008 g2) =0( )
(logx) log®

(21) and (25) shows that the number of integers of the second subclass
is also o(z/logz). In fact, the number of primitive a-abundants we have
considered so far is easily seen to De o(x/(logz)*).

Finally we consider the m’s of the second class. Here

(26) My = A»;p,; .

From (8) and I it follows that it suffices to consider the my satisfying
pi > #'” Dbut then we can again assume that (17) holds, i.e. that
o(4;)]A; = 0 < a (the proof is the same asg previously). But then the

number of integers of the second class equals (by (8))

o) ool - S ol
i T\ A, logz| ~ logw A, logw
where the dash indicates that the summation is extended over the Ay

satisfying o(4;)/4; = O. Thus to prove our Theorem it will suffice to
show that

(27) 2 -:i-; = o(1).
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Now denote by n, < m, < ... the sequence of all integers which
satisty o(n;)/n; = C. Clearly

. Sk
a9 X<

Put o(ny)/n, = afb = 0. First we gshow that a8 & -> oo, b-»> o
(C and therefore the n’s depend on ). If for infinitely many values of »
b assumed the same value, then since there are only a finite number of
choices of a (a/b < a), we should have from (24)

=-—-<a, - ) »a, o (logo)?,

aln) @ ﬁ'( MJ;
(29) 7y b b o P1

(if no such p, existed there would be no integers of the form (26), i. e. there
would be no integers of the second clags and the proof of our Theorem
would be complete). But since p; — oo, (29) is cleaxly impossible, thus,
b oo a8 @ — co a§ stated.

Thus to complete our proof it will suffice to show that

. O 1 ¢
(30) Z <

We write
(31) Z—i— =343

where in 3" all the prime factors of the n; are not greater than b and in >
are the other m,. Clearly for all ¢, n; =0 (modb); thus

v 1 1 1 1 logh
o Yy Sam i [flegh) <o

where in Y7, all prime factors of ¢ are not exceeding b. Now lot n; bein 3"
and let p; be the greatest prime factor of n;. Clearly p, - b. But since
a(m)[n; = afb, we must have o(n;) == 0(modp;). Therefore

n; = 0(modg§), o(q}) ==0(modpy), a>=1
or

% > s

(a > 1 follows from the fact that p; was the greatest prime Lactor of m).
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1 1 1
2. < 2;24 237

P;>b
where in D5, ¢ > ip; and o > 1 and in }'; all prime factors of ¢ are not
greater than p . Thus finally

1 1 1 sglogp; 7 1
o N« X S []hres) < 2N EG
Di>b PLD;

Thus

\logp: _ o
9 o, 3 1/2
L4 p; b
v;>b Pi

(31), (32) and (33) prove (30) and hence the proof of our Theorem ix
complete. ’
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