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On the probability that » and g(n) are relatively prime"
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P. Erpis (London, Ontario) and G.G. LORENTZ (Syracuse)

1. Introduction. It is a well-known theorem of Cebytev that the
probability of the relation (n,m) = 1 is 6n~% One can expect this still
to remain true if m = g(n) is a function of », provided that g(n) does
not preserve arithmetic properties of n. In this paper we consider the
case when g(w) is the integral part of a smooth funetion j(x), which in-
creages slower than x. More exactly, let Q(x) be the number of n < #
with the property (fn, g(n)) = 1. The probability that » and g(n) are
relatively prime is then by definition the limit lim{Q(x)/x}. Our main

‘ X300

result is that if f(x) satisfies some mild smoothness assumptions, has
the property (A) f(x) = o(x/loglogx) and satisfies condition (B) of § 2,
then the probability in question exists and is equal to 6z~ Condition (B)
means roughly that f(x) increases faster than the function logzlog,s.
In § 3 we show that condition (B) is the best possible. Condition (A) may
be perhaps relaxed; but it cannot be replaced by f(z) = O(z/logloglogz).
We also consider the average number of divisors of {n, g(n)). This is the
limit Bm{8(z)/»}, where S(x) is the sum of the numbers of divitors of
T—00

all numbers (n, g(n)), n < ©. We assume throughout that f(z) is a mono-
tone increasing positive function with a piecewise continuous derivative;
F(y) will denote the inverse of f(x). By ¢, 4, 0, d we denote the standard
number-theoretic functions, by logy, logsx, ... the iterated logarithms
of x.

We begin with some elementary identities. Let @x(z) be the ntumber
of integers n < # such that » and g(n) have no common factors < k.
If 8(»,d) is the number of n < & with d[(fn, g(n)), then

Z,u(d)S(.l:, d) = 2/1,((1) E 1 == E Z wl(dy.
dlk! dik! aj(n,g(n)) nt d|(k),n,gn))
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By the properties of the function u, the inner sum is 1 if (B!, m, g(n)) =1,
i.e. if (n,g(n) has no divisors greater than 1 and not cxceeding %, and

otherwise is 0. Hence

1) Qu () =Z,u(d)8’(w,d).
am

In pa,rticula,r, if & = n, then’ gince S(.’I‘, d) = 0 for d g(m)’ we obtain
o0

) Qx) = Zu(d)ﬂ(w, d).
d=1

There are similar but obvious formulas for S(x) and Sy(») — the sum
of the numbers of divisors, not exceeding %, of all numbers (n, g(n)) with
n < @, namely

&
E S, dy,

(3) Sk(m) ==
d=1
2@

@ St@) = 3 8w, d).
=1

A function f(») will be called homogeneously equidistributed modulo 1
(or shortly h.e.) if for each integer d,

M) = 2 f(dm)

is equidistribubed modulo 1. This means that for each subinterval I of
(0, 1), the density of n’s for which h(n)—[h(n)] belongs to I, is equal
to the length of I.

TamorEM 1. If f(x) is homogeneously equidistributed, then

“ 2@ S i 5@ 1

=l )

a0 O e 7P 6

(6)

) Proof. It f.o]lows from the definition of §(x, d) that this is the number
of integers k& with kd <« and d|g(kd); or the number of & << wd™* so that

= ki) [.1 f(/cd)]

is in the interval (0, 1/d). Since f(w) is h. e., im[8 (2, d)/a] = d~* Taking
L—p00)

now into OOnSldeIarblOn the 1 6134(‘/10] 18 (] ) (3) and the i lcqu a.llbleﬂ Q (a)
’ ALV vk )
; Q (m)’ Sk(m) < AS(w)7 we Obba‘]-n (5)7 since

Zd‘%(d):ﬁ‘n“z, Zw :% :
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All known simple criteria for f(z) to be equidistributed modulo 1
(by Weyl, Pélya-Szegd, see Koksma [2], p. 88) guarantee also that af(bx)
is equidistributed for arbitrary positive constants a,b. The simplest
get of conditions is

fla) =o(@) for & — oo,

(A1)

zf (@) > o0 for @ - oy,

(By)
and the additional hypothesis that f'(x) decreases. We shall mention
here that the last assumption and (B,) can be replaced by

Yy
IIF”(
0

(F(y) is assumed here to have a piecewise continuous second derivative).
If f'(») decreases, the last integral is equal to 1/f'(w)-const with
@ = F(y), and hence (C,) is implied by (B,). Further natural conditions
which in the presence of (B,) imply (C,) are

(€) Wl du = o(F (y))

w
L (P (1) [ 17" (W) du = O(F" ().

U~>00

[F'(u)} =0 or

To establish our statement it is sufficient to show that f(n) is equi-
distributed mod 1 if it satisfies (A,) and (C,). Let I = (a, a+-9) C(0, 1),
then the number of n’s for which [f(n)] =k and f(n)—[f(n)lel, is
AF,+0(1), where ATy, = F(s)—F (), 8 = k+a+d, & = k- o, except
if k+ad6 > f(n) =y, when s, — y. Because of (A,), the total number
of m < & with f(x)—[f(n)]el is

N = AFp+o(%).
k+a<f(z)
Now
AF, o
A Pl —F )| = )P ) <[ 1w,
k-1
hence
L p 1%
N - ()~ (o) 40 [ [ du) = 80D,
@* @ &
k+a<f(x) 0
by (Cy)
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2. The Main Theorem. Our main result is the following:
TEEOREM 2. Let f(z) be h.e. and let

(4) f{z) = o(x/log.®),
af' (x)
(B) Togs] (@) — 00,

(C) ' (y) < Mf (») for some constant M for all y 'z a > 0.
Then
(6) m — = —.

Proof. Let Q(x) be defined as in § 1. Then by (1),

. Q@) T u(d 6
hm“‘%‘ = E’jl—z—)=—;+57u
L—>00 am K

where & — 0 for k& — co. To prove the theorem it is therefore sufficient

to show that .

o . i Bu@)
z00 O

ig arbitrarily small if % is sufficiently large. Here Ry (z) = Q(2)—Q(»)

is the number of n < # guch that for some prime p with & < p < g(x)
we have pln, plg(n). It follows that

8) Ryl@) < D) S{a,p).

k<p<g(z)
‘We consider the contribution to the sum (8) of the part of the curve
y = g(x) given by g(n) =m; these = satisfy F(m) <n < F(m+1).
We put k, = F(m+1)—F(m), except when m-+1 > 2, in which case
we put k, = F(z)—F(m). The contribution to 8(w, p) is zero if pim,
otherwise it does not exceed '

1
L pman) —pmy1e1 = "y
» P

o \1 () Ton
(9) ]]la("l') p )]

el
b () M=l
pm

VY ()

ind “d \'p
k<pgg(m l<o(@)p

Vi@ Nt N
P Ld  gd P
k<po(e) l<ly--1

k<p<g(x) k<pep()

o 3
= 5+ Dy 3,
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say, where 1, = [g(x)/p]. For - co we have by (A)

<g(@) 2 (@)1ogsa) — o(a).

T

For 1> m we have with properly chosen &, §&,, &< §,

1 1
by=—ey oy = —
TR F(&’
hence by (C),
(10) I MEy, 1> m.

Therefore,
k + k2p+ + k(lo—l)p - (kp+ kp+1 + ‘l‘ klop—l) = —5—}

so that for an arbitrary &> 0,

if % is sufficiently large.
The sum X, we split into two parts Z;, Zj , the f].'rst; sum being ex-
tended over all p for which

(11) lp < g(w)+1—Alogyg(w),

and where A = M, and the second corresponding to p for which the
opposite inequality holds. In the first case by (10) and (C),
M
<
g(@)—bp+1
Muz < Mz e
g@)—Tp+1 ~ Alog,g(®)  logag(w)’

(g Tigp g1+ - Fyay)

761 ")

hence for large a,

1
o< 2 _ N2 < om.
log,g(x) /4

PLH(T)

In the second case, g(z)+1—Alog,g(x) <Lp < g(w), hence p
divides one of the consecutive numbers g(z)+1—[4log,g(x)], ..., g(@),
hence also their product N. Clearly,

N < (o).
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We use the relation(*)

—<< Ologym
DN
and obtain
1 1 Alog, )
2y < max ky, = < max - Clogsf(w)* 1%
mepw) L P g=o 7'(8)
OIma.xf, —logsf(z) << ew
B

for large z, by (O) and (B). Substituting our estimates into (9), we obtain
that (7) does not exceed 5e for large .

TEEOREM 3. Let f(x) be h. e. and satisfy (C), moreover
(A) f(z) = o(x/logux),
(B') wf () logaf () — co.
Then the average ovder of the number of divisors of (m,g(n)) is j;-71:2:

S 1
fm 5@ _ Lo
w0 B 6

Instead of (8) we have now
S{z)— Sp(2) = 2 Sz, n),
k<n<g(®)

where # runs through all integers, prime or not. The proof is similar to
that of theorem 2, but simpler.

3. Counterexamples. To show that condition (B) is the best possible
in Theorem 2, we shall use the following fact. There iy an abgsolute constant

(1) This result is well known, but since we do not know who first. proved it we
give a short proof. Tt follows from the prime nwmber theorem (or from a more clemon-
tary result) that

IT» = n
n<2ogx
Therefore by a simple argument
v 1 7!
- Z - < ologyw.
U P n<20ogx

icm°®
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C such that for each & >> 0, there is an &, > 0 and infinitely many
values of »n with the property

m
(12) gﬁ—n-l < & for all m with n < m < n-te,logyn.

See [1], p.129, where o(m)/m > 2 is shown to be possible for
n < m < n+0loggn. The same proof establishes o(m)jm > 1/e; in
intervals » <m < n-+e¢logyn, and the known connections between
@ and o give (12).

THEOREM 4. Let f(x) be increasing and let

(B//) mf’ (w)
logsf ()
Then
(13) lim M < —(i
e n?

Proof. From (B”) we obtain by integration f(z) < log2z for all large ».
It follows also thabt f'(z) — 0, hence that g(w) takes all large integral
values. From (2), using the argument and notations of § 2 we have, if
d(n) is the number of divisors on #,

() (%)

14 Q) = gmﬂz)mm, g = Su(d)g{% +0(1)}
()
— Z: % m+20(d (m))

()

= 22" 4 0y @)0gg (o)

M=1

= E o 2 )+0(10g"w)

M=1

»

We take « such that g(s) = n is one of the n for which (12) holds. Let
= (1+446/M)®, 6> 0, m, = g(»;). Then we have by (B’) for some

.‘Y:‘<§<.’I:‘1,

é
M= < 1+ F(€) (B, —x) < l+jﬁ§f'(5)

< 1+ dlogsf(£) < 14 Sloggn,,
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hence n,—n < const- dloggn. By (14) and (12),

Q0@ = O T 40(log?a) < elm—2) +0(l0g%),

n<m<ny
for an arbitrary e > 0, if § is sufficiently small. This gives

9_(“7_1) — Mm +8M+0(1)7
@, [ o

and if « denotes the constant a == (L48/M )™ < 1, we obtain by The-
orem 1, .
6
hm?—(ﬁ) L —ate(l—a) < re

- m 2

A simple computation shows that f(z) = ologz log,x satisfies (B"')
as stated in the introduction. - .
In the same way we can prove li_xg[Q () /2] = 0, if instead of (B'')
we have af'(@)/logsf(x) = 0. _
Similar statements hold for the condition (B') of Theorem 3. If f(x)
is increasing and

(B of' () logaf () < M,
then -

i'—‘s(w) - 7‘2
(15) im —-= = o

and if even af (z)/log.f(x) — 0, then Tim {8 (#)/w} = +oo. .

To prove for example (15), we note that there are arbitrary large n
with o(n)/n > Clogyn; if n has this property, we put f(z) =n and
@, = a-+ M 'aflog,f(»); then /o -1 and

) —Tlo) = /(8)(a—0) < 31 (8) Eflogaf(8) < 1
by (B'’). Hence k, > & —a. As in (14) we obtain

o(n)
"

8 (2,)— 8 () - K +0(logte) > O M+ O(loghx),

therefore by Theorem 1,

Tim (8 (a) o) > Lim{8 (@) jw} +OM ™ = gt

icm°
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THEOREM 5. There ewists o function f(z) with the properties
(A") (&) = O(w[logsm),
(C") f(®) is concave amd f (x) — O,

such that _Ii_nil[Q (#) /2] < 6%

Proof. Let & > 0 be arbitrary; we select 8 = &, according to (12)
and pubt I = [dlogyn]. For some of the integers » of type (12) we put

(16) flz) = %(m—n) for N, =nl+n <2< 2N,.
We choose a sequence of n’s satisfying (12) in such a way that the inter-
vals (N,, 2N,) are disjoint; the function f(x) is obtained by linear
interpolation outside of the intervals (¥,, 2¥,). It is easy to check that
f(@) is concave and satisfies (A"), (C").

Moreover, g(z) = n+s for = nl+n+sl+t, 0 s <<n, 0 <t < L
Hence the numbers (m, g(m)) for N, < m < 2N, are exactly the numbers

(17 (ltntsl-t, nt8) = (n+t, nts); t=0,1,...,1—1,
8§ =0,1,...,n.

Fixing t, we see that the number of s = 0,1, ..., % with (n-+1t, n+s) = 1
is at most 2e (n+1), since p(n+1t)/(n+1) <& by (12). Therefore,

Q(2N2)—Q (M) < 26, (n+1)I+1,
Um {Q (2N,) (2N} < $1im {Q (Vo) [N} +5, < 6772,

which proves our assertion.

Similarly, there are functions f(z) satistying (C”) with f(x)
= 0(z/log,x) for which (15) holds. We take in (16), | = [6log,n] and n
such that o(n)/n > Clog,n. Then the sum of the number of divisors
of the numbers (17) is greater than

n

) n
L d{(n,ns)) = 2 i~ o(n) = Onlogyn = C\.N,

8m=1 dam
with large ;. Therefore
S(2Np)—8(Nn) 2= O, Ny,
and (15) follows.

At present we can not decide whether condition (A) of Theorem 2
can be weakened to o(z/log,x).
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On a question of additive number theory
by

P. ErDos (Saskatoon) and P. ScErrx (Saskatoon)

1. Let A = {a}, B ={b},... denote sets of non-negative integers
containing the number zero;

P

k

13
DA ={Du} (med;, A=1,2,.., k).
1

1

Thus >4, consists of all the numbers a;+ay+...+a; where each a,
lies in the corresponding 4,. For a given integer n let [A] denote the num-
ber of positive elements of A up to and including n. 4 denotes the set
of the integers <{n which do not belong to 4.

It is well known and easy to see that ne¢Ad 4B implies [4]+[B]
< n—1. The eorresponding problem for three or more sets does not lead
to anything new. For then

]
(1) "¢ 2 A,
1

implies ne¢d;+4, and thus [4,]4[4,]<2—1; 1L <1< p < k. Adding
these }k(k—1) inequalities we readily obtain
k

@) D 4,1 < Fe(n—1).

1

That (2) cannot be improved can be seen by taking 4, =A4;...= 4=
== get of integers between [{n]+1 and n—1 together with 0.

This question becomes more interesting if we require n to be the
smallest number not in }'4,. For ¥ = 3 and » < 15 one can show(*) that

[A4,)+[4.]+[4s] <n—1.

() Written communication from Professor H. B. Mann.
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