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The construction of perfect and extreme forms I
by

B. 8. BArNEs (Sydney)

1. Introduction. Let
fla) = Z“ﬁw‘imj (“%1 = ay;)
1

be a positive definite quadratic form of determinant D, and let M be the
minimum of f(x) for integral x = 0. Then f(®) assumes the value M
for a finite number of integral @ = 4-m;, ..., +my,, called its minimal
vectors.

f(x) is said to be perfect if the s relations

fome) = Yagmamp =M (b =1,...,3)

uniquely determine the jn(n-1) distinet coefficients ay of f; i. e. if the
equations

Zbﬁ"ﬂm’mvk =0 (k=1,...,8) (by=by)

have only the trivial solution b; = 0.

A1l classes of perfect forms are now known for n < 6, and a few classes
are known for larger #. Their interest lies mainly in the facts that (i)
they lead to a method of reduction of quadratic forms under integral
unimodular transformation; and (ii) they include all extreme forms, i. e.
those for which M /D™ ig a local maximum, and hence all absolutely
extreme forms, for which M/D'" assumes its greatest value y,.

Most known perfect and extreme forms are listed in Coxeter [51;
these include nearly all those previously published and several new types.
All others, for n = 7, are: Jy,, K, given in [6]; Ty of [7] which is equi-
valent to @, of [4]; Dy, of [4]; the forms discussed in [1], which we shall
denote here by My ; and the forms discussed in [3], which we ghall denote
here by P,.

The known methods of constructing perfect or extreme forms have
shown themselves to be prohibitively laborious for large n. In particular
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we may mention Voronoi’s algorithm [10] by Whi(}l‘l all perfect forms in
a given number of variables may be found and Wh}ch has been suceess-
fully applied for n < 6; and Minkowski’s red'uctl.o.n .[8], whereby all
extreme forms appear as edges of a fundamental region in the coefficient-
space.

With existing methods, therefore, one can at best hope to obtain
a selection of the perfect forms for n =- 6. It is for this reason that I pre-
gent, in this and a succeeding paper, two new methods which yield large
numbers of perfect forms with relatively little labour. Bach method pro-
ceeds from a known perfect or extreme form and produces & new form,
either by extending the range of values or Dby inereasing the dimension
of the known form.

Tn this article I treat only the first method, which will be deseribed
in detail in §2. In §§ 3, 4 and 5 I describe bricfly, for completeness, the
forms Ay, Bn, Ly M, Py, Q@ (of which only ILj and @, do nob appear
in previous literature). Application of the method to some of these pro-
duces several new general classes of forms, of which A", BR®, AL,
B, M are discussed in §§ 6-9.

The applications here make no pretence of completeness, and I have
preferred to obtain classes of forms describable in terms of parameters
rather than make a complete analysis of any particular form. ITowever,
even these forms considerably extend the table of exfreme forms given
in [B]; thus, for the early values of m, we find:

for m =17, 7 extreme and 1 perfect (non-extreme) form;
for n =8, 9 extreme and 2 perfect forms;
for » = 9, 13 extreme and 2 perfect forms;
for n = 10, 13 extreme and 3 perfect forms;
for » = 11, 18 extreme and b perfect forms;
for n =12, 19 extreme and 6 perfect forms.

These numbers do not include @y, of [4], or K, of [6]; these forms
will be discussed in part IT, where the above Lists will be considerably
extended.

2. Forms, lattices and refinements. If T is a regular » xn mabrix,
the points
(2.1)

== T, & integral,

form a lattice A of determinant d(4) == |detZ]. A positive quadratic
form f(a) is said to have lattice A == A(f), given by (2.1), if f(®)
= && = '1"Ta. Bvery positive form ig representable as a sum of
squares of linear forms, and may thus be associated (in infinitely many
ways) with a lattice.
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If U is an integral unimodular matrix, 7' and TU yield the same
lattice (2.1) and correspond to the equivalent forms «'7T'Tx and
x'U'T'TUx; thus a lattice determines a class of equivalent forms.

We shall sometimes find it convenient to extend this idea as follows.
We say that f is the form ¢ with lattice A, (2.1), if f(@) = g(Tx). Then
the values of f (or of any form equivalent to f) for integral @« are precisely
the values of g(&) for &ed. In this way, our forms will usually be
representable by a simple form g, with 4 a sublattice of the integra
lattice.

A form f with lattice A has minimum M if and only if A is admissible
for the sphere §: &6 << M (i. e. if 4 has no point other than the origin
in the interior of the sphere) while some point of A lies on the boundary
of the sphere. The minimal vectors of f, in &-coordinates, are simply the
lattice points +&; = +Tm; lying on the boundary of 8.

With these notations, it follows easily that (i) f is perfect if there
exists no quadratic cone containing all the minimal vectors of f; (if) f is
extreme if any sufficiently near lattice 4 which is admissible for S has
d(4) = d(A).

If a lattice 4 is contained in a lattice A’, we say that - is a sublattice
of 4’ and A’ a refinement of A. Correspondingly, we say that a form f’
iy a refinement of f it A(f') is a refinement of A(f). We restrict ourselves
here to the case when 4 and 4’ are both n-dimensional (and the case
when A has lower dimension than A’ will be taken up in Part I1). The

basic results on which the method of this paper rests are now easily
proved:

TaEOREM 2.1. Let f' be a refinement of f with the same minimum M.
Then if f is perfect, so is f'; and if | is extreme, so is f'. .

Proof. The lattice A’ of ' is a refinement of A, the lattice of 7, and
both 4’ and A are admissible for the sphere §: £'§ << M. Also, since
M(f') = M(f) = M, the minimal veectors of ' clearly include those of f.

If now f is perfect, there is no quadratic cone containing the minimal
vectors of f, and o fortior: none containing those of f'; hence # is perfect.

Suppose next that f is extreme, and consider any neighbouring
lattice A’ of A’ which is admissible for §. The points of A’ which corre-
spond to points of A form a lattice A; thus A is a neighbour of 4 and
a sublattice of A’. Also, if k is the density of A in A’, then

b= (1) _ a4

(2) a4
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Since f is extreme and A4 is admissible for 8 (since A’ is), we have
a(4) = da4)

it A is sufficiently close to 4. From (2.2), it follows that then d(4’)
> d(A"), so that #' is extreme, as asserted. .

We note that a refinement f' of a perfect non-extreme form f may
well be extreme and not merely perfect. For this, it is easy to see that f
must have more minimal vectors than f, but there is no simple sufficient
condition. In such cases we can apply Voronoi’s direct criterion:

THEOREM 2.2 (Voronoi). A perfedt form f(a) is extreme if and only
if it is eutactic, i. e. if its adjoint F'(x) is ewpressible as

8
Plx) =) olmpa)f, ¢ >0
=1
(where my, ..., m, are the minimal vectors of f(x)).
For typographical convenience, we shall adopt throughout
convention

the

m == n--1.

The n-dimensional integral lattice will be denoted by 77, and the unit
vectors in n-gpace by ey, ..., e,. We ghall follow as far as possible the
notation for forms used in [B]: a capital roman letter for a form, with
a suffix denoting the number of variables and superscripts denoting
various integral parameters. Following [5], we also set

n

A=Am=ﬁﬁﬂ

(where f has minimum M and determinant D); and
4y = mrind 1,

go that 4 (jj = A, when f is any absolutely extreme form in » variables,

3. The forms 4, B,,. We may represent 4, and B,, (with m = n--1)

by
n
Ha)= Dk
1
with lattices the sublattices of I, given by:

m
Adn): D ay=0;
1

A(Bm): ) @ =0(mod2).
1

icm

The constrution of perfeot and ewtreme forms I 61

Rach form then hag minimum M = 2 and
A(4y) = n+1l, A4A(By)= 4.
Ay, hag the }n(n--1) minimal vectors e—¢ (1<i<j<<m) and is
per;fect for all n, B, has the m(m—1) minimal vectors eite (1<
< j <m) and is perfect for m >4 (and By~4,).
These forms are all- extreme, as is well known. In fact,

n n
Zy%-kg; W=y =n D yi—2 'y,
< 1
n

i<f

is the adjoint of d,(w) = ) a}+ (2”7%)25 and
1 1

m

2 W=y + Y ity =2(m—1) 393

i<f i<f 1

. 5 m m

is & multiple of the adjoint Yy of 3 o}; so that both forms are
1

eutactic. '

4. The forms I7,, M},. We define I, as the form

r

fla) = D (@f—waty ot a0+ 2 i (m>2r)

el Rsm2r4-1
with lattice the sublattice of I, given by

(4.1)

(4.2) D) @ =0(mod3).

=1

M, (with m = n--1) has the same definition, save that (4.2) is replaced by

m
2971=0.

T=1
Since f has determinant (§)", we sce that

(4.3)

gr+i 3"
D(Ih) = g D) = o (n-2r-1).
We shall also show that
gr+2 . '
(4.4) M(Ly) =2, with 4= 5 8 = gm(m—1)+r(2m+r—7),

(4.5) M(M;) =2, with 4 = gﬁ(n-l—m"—}—l), 8 = in(n+1)+4r(r—3);
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" and that Ly, is perfect if r =3 or if r =2 and m = b, and that M is
perfect if » >
These results for M}, with n 3= 2r, are established in [1], where it

is also shown that M3 is eutactic only if n < dr—2.

The forms L, M, present u clear genera,llzamon of some known
perfect forms in five and six variables. The forms A3, and @, @4, @5 of
[2], [3] may in fact be represented as I, ME, L} and L respectively,

We get for convenience

p(@,y) = a*ay-o"
Then < 2 only when
Y = 0, P =Y ==
or
P = 1, + (@, ¥) =(1,0), (0,1) or (=1, —1);

and each of these last three gets satisfies x4y ==1(mod3).
I now I (x) <2, ® 5= 0, we must have either

(i) y)(w,,mu,) =0 for 1<i<r and then Lp =2 whoen some
two Of @gpyqy ..., ®m are 1, —~1 and the rest are zero; or

(i) @, 2 +,) =1 for just one value of 4, 1 =i4¢=lr, may ©=sl;
then o (#y, ) = (1,0), (0,1) or (-1, ~1) and o, by (4.2), some

= F1 for k > 2r and Ly, = 2; or

(iil) w(@y, %440 = 1 for just two values of 4, 1 {4 i, say 4 =1, 2;
then L7, =2 and o (@, @pa) = (1,0), (0,1) or (—1, —1), T (@, W)
= (1,0), (0,1) or (—1, —1), and all remaining x; are zero.

This shows that M(L}) = 2, as asserbed, and the minimal vectors

are:

(4.8) e;—¢e; (1<'5<9'<-m7 (@9 7ﬁ(19’"“'\"1):--"(”':27‘))?
(4.7) e¢+ €y €y GH_' (1 & %< f <7 9'),

(4.8) Cl-epte;  (Lsii&r, § #14, i-br).

Thus

8§ = (’S’) e} (f) [-¥(m--2),

which reduces to the result given in (4.4).

- It now follows immediately, since the values assumed by Mj, form
a subset of those assumed by Ly, that also M (M) = 2, and that the
minimal vectors of 1f; are given by (4.6), (4.7). Thus the results (4.4),
(4.5) are now established.
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It is clear that Lj, is not perfect if » < 2 or if r = 2, m =4, since
then s < 4m(m-1). Similarly M7 is not perfect if 0 <r <2 (while
M} = A,, and may be disregarded here).

To establish the perfection of these forms in all other cases, we begin
by considering an arbitrary quadratic relation

m
2 Digiy = 0
1

satisfied by all the vectors (4.6), (4.7), which are minimal vectors of both

(4.9) (P = D)

Ly, and M;. We set
Qg = g = 2Py—Pu—Dy (0 #]).
Then, from the vectors (4.6), we have
gy =10 for jstitr, 1<Kigr

From (4.7), assuming as we may that r > 2, we obtain

CGgpetGr =0 (A <K<i<i<r);

it follows that gis. = 0 for 1 <4 <7, provided that » > 3.
Thus if » > 8 the relation (4.9) must be of the form

m m
-l Y .
(2 @ (2 i) = 0
1 1
The perfection of My for r >3 follows at once. For L;,, we have the
further minimal vectors (4.8) satisfying (4.10). These yield
1<i<r, j#14,i+1),
3. For r =2, m = 5,

(4.10)

PiitPDiprietpy =0
whence all py; = 0. Hence L, is perfect for » >
a similar analysis shows that Lj, is again perfect.

‘We note in conclusion that L, is eutactic (and so extreme if it is
perfect) if and only if m = 2r or 2r--1. For the inverse of (4.1) is

r

4 m
=5 QUi utet i+ Y ok

(4.11)

1=1 k=2r41
If now m > 2r+2, f*(y) has zero coefficient of Yupys¥aria. Of the linear
forms  Yi— ¥ Yo+ Yier— Yi—Ysuory Yi+Yorr+y; associated with the

minimal vectors (4.6), (4.7) and (4.8), only the square of Yy 1—Yori2
involves & term in Hence in any expression of f*(y) as

2 0 4% (),
e

Yory1Yora-

the coefficient gp 0f (Yapqs— Yarss)® MuUSt be zero.
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Thus I, is not eutactic for m > 2r--2. A simple calculation shows
that I, is eutactic for m < 2r4-1.

5. The forms Py, Qm. We define @, to he
m
(5.1) fla) =) o
1

with lattice the sublattice of I, given by

m
(5.2) D'y =0 (mod4),
1
n ‘
(5.3) ) E iy == 0 (modm).
1

P, has the same definition, save that (5.2) is replaced by
m

(5.4) Z @ = 0.
1

Hence ' ]

D(Qp) = 16m*,  D(Py) = m® == (n-p1)%

The form P, is discussed in [37], whero it appears ag a generalization
of the new extreme senary form found in [2]. It is stated there that P, has

(n-1? PR 1) for a odd,
gy 8

(58) M=4, 4= )
. snn--1)(n-2) for n even,

and ig perfect and extreme for all » 3= 6. The proof that P, is perfect and
extreme is carried through in [3] only for even =; a similar proof holds

for odd m, though it is rather more intricate.
We shall show here also that ¢, has

) % (m—=1)(m-—3)(2m~1) if 2%m,
) m
(B6) MU =t 4 =5y, 5= % ML) (e 2) (2 3) if Bim,et‘lsm’
b (m—8)(2m*—3m-t 4) i dlm.

From the fact that P, is perfoct for # = ¢ it ix casy o prove thab @, 18
perfect for m > 8.

Following the argument of [3], we sec fivst that f(®) takoes onl y even
values subject to (5.2) or (5.4), and takos the value 2 only for a - e;—e;
(i #4): and none of these vectors satisfies (6.3). Thus ench of Py, Qm
has M > 4, and in fact M = 4 gince f(®) = & for @ == € ey ey,
which satisties (5.2), (5.3) and (5.4).
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The minimal vectors of P, are all of the form
(6.7) X =e,te—e,—egy,
where the suffixes @, b, ¢,d are distinet and, by (5.3), satisfy
(5.8) i a--b = ¢4 d (modm).

A simple enumeration, as given in [3], now establishes (8.5).
For ¢, we have, in addition to these, the minimal vectors

(5'9) T = eyt eb"i"ec“{‘eth
where the suffixes a, b, ¢,d are distinet and satisty
(5.10) a-b+4e+d =0 (modm).

To count these, we need
Lemua 5.1. Let N be the number of unordered sets a, b, ¢, d of distinot
integers chosen from 1,2,...,m satisfying (5.10). Then
a(m—1)(m—2)(m—38) if 2%m,
(5.11) N ={L(m—2)(m*—4m—+6) if 2m, +}m,
w(m—4)(m*—2m—+6)  if  Aifm.
Proof.(') Let

Pa(t) = [ [ (1+at) =_2 alt)d.

Then, if ¢;(¢) = Zqijcj, ¢ is the number of sets of ¢ distinet integers
chosen from 1, 2,...,m whose sum is §; thus

N = Z g -

mli
If w is a primitive mth root of unity, we therefore have

m
mN = Z IACHE

Pzl
thuy mN i the coefficient of a* in the formal expansion of
(6.12) Pal0) -+ pal@?) 4.+ pa ™).
Now «" is a primitive sth root of unity, where s = m/(m, r), and

pcn(mr) = {l +( _1)8~1 a's}m/s;

(4) I am indebted to Mr. W. B. Smith-White for the idea of this simple proof.

Acta Arithmetica V. 5
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) contains a term in a* only when s =1,

the formal expansion of Pola” .
= 2, we therefore have

9 or 4. Sinee ¢(1) = ¢(2) =1, ¢(4)

(3) it 2%m,
ml = (11)4_(“"2/2) it 2\m, 4%m,
(g){—(mg?)#z(m#) it 4jm;

this gives (5.11).
Since X is the number of minimal vectors of @, of the type (5.9),

we obtain the formulae (5.6) for s by adding (5.11) and (8.8) (with »

=m—1).

We next deduce that @, iz perfect for m =8 from the fact that P,
is perfeet for n > 7 (taking n = m—1).

The minimal vectors (5.7) are common fo P, and @, and any
m-dimensional quadratic form which vanishes for all of them must be

of the type
(5.13) - (991+4'/'a‘|‘---+wm)(p1m1+psm2+n-+77mwm),

gince P, is perfect and its lattice lies in the plane a;--... -4 &, = 0. Since
all the minimal vectors (5.9) satisfy Dy =4, it Tollows that the above
quadratic form vanishes for. all of these only if

(5.14) PatPot Po-t-Pa = 0

whenever (5.10) is satisfied.
Let now a,b,a’, b’ be any four distinet suffixes (modm) with

a+b =a'4b.
The number of distinet unordered pairs ¢, d (modm) satisfying
c+d = —(a+Db)

is 1(m—1) if m is odd, and }m or }(m—2) il m is even, and so is at least
5 if m > 11. Hence, for m 3 11, there exists a pair ¢, d with both ¢ and d
distinet from a, b, a’, b’. Now (5.14) gives

Pat PotPotPa =0, 'PotPytpet-pa =0,
whence

(5.18) Pat 26 = Part+ Do

Tt follows therefore that the linear form Y p;u, vanishes for every
vector (5.7) (where (5.8) holds), i. e. for all the minimal vectors of %’n.
Hence, since P, is perfect, p; = py = ... = P for otherwise (Zﬁi%’)g
would not be of the type (5.13). From any one cquation (5.14) it now
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follows that all p; = 0 and the quadratic form (5.13) vanishes identically.
Hence @, is perfect.

If 8 << m < 10, the result (5.15) still holds whenever a+b =a’-- b
although the above simple counting argument breaks down; thus @
is perfect for m > 8. "

@m is not perfect for m < 7, bhaving fewer than 4m(m--1) minimal
vectors.

6. The refinements 45, Bi%". We define B%" to be the form
whose lattice is the sublattice of I', given by

(6.1) Tigyr = Digps =... = Hyg (modt) (i =0,...,7—1),
(6.2) Dpgy1 = Lpgps == ... =iy =0 (modt},
(6.3) Byt Lagt- ..+ By =0 (modt),
(6.4) Zm'a;i =0 (mod?2t).
T

ALY (with n = m—1) has the same definition, save that (6.4) is re-
placed by

(6'5) z; = 0.

s

Here the positive integral parameters m, ¢, g, r are to satisfy(?)
1=2, rz2, ¢=2® wmzrq(>8)

(and (6.2) is vacuous if m = rq). .
Since the congruences (6.1), (6.2), (6.3) are independent and imply
that '

m

2 2; = 0 (modt),

1

50 that (6.4) is only & condition modulo 2, the determinants of A (BLE")
and A(45%7) are
2tr(q—1)+(m—rq)+1 — 2tm.-r+1’

ml/z tr(q—l)-i_(m—rq) = mi? .

D(Bi;Lq,r) — 4127"'—2'."2, D(Aiiq,r) — tzm42',

(3) The conditious £ = 2, r = 2 merely ensure that the forms do not reduce to
o multiple of B or day.
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The points of these lattices satisfying o, == 2, == o Uy 0 (mod)
clearly form sublattices which are the lattices of By (fa) -= 2B, (%),
A, (tx) = 124, (x) respectively. Since B, and A4, are extreme for m > 8
and have minimum 2, Theorem 2.1 shows that BEM and ALY are
exireme if they have minimum 202

We now establish that in fact M = 2t% for cach form, and spocify
the minimal vectors. We begin with B4 and sct

w o Wy S G (modt) (4= 0,. .,r—1)

where
0 < oyl &t

Then, sinee a; == 0 (mod#) for j == rg, we clearly have

m
fa) =D d = glai+.. o) = Hat ).
1

N

Now, by (6.3), X a; == 0 (modi), 2
1

=...=a, = 0; or (ii) some two a; are 1, -1 and the rest arc zero;

or (ifi) ¢ = 2, some two a; are 1, 1 or —1, —1 and tho rest are zero. In

.
and so Yaj v~ 2 unless either (i) a,

r
the second and third cases, Y af =2 and f = 2¢ = 2¢%, with equality
1

only when ¢ = #2. In the first case, all #; = 0 (mod#) and the form assumes
the same values as 2B,,: i. e. it§ least value ig then 202, assumed at the
points te;+te; (L <i < f < m).

This shows that M = 2¢2, as asserted. To calculate ¢, the number
of pairg of minimal vectors, we note first the m(m—1) vectors te;--te;
which exist in all cases; and these are all if ¢ > 12 If ¢ = ¢* and ¢ :> 2,
we obtain }7(r—1) further minimal vectors by choosing, in the above
notation, a; =1, ¢y = —1for 1 i < j <r. Finally, if ¢ = 2, ¢ =12 =4,
all additional minimal vectors are obtained by choosing any two sets
Dyiiay ooy Prigas Bagyry ooy Bygs (1 K0 <f <) and taking the values
of these variables to be any permutation of

(Lg), (Lgy —La)y (14, —14)
(with all other variables zero). This yields in all

(9 814 (5) =t
pairs of vectors. Thus for B4%" we have
m(m—1) it ¢
m(m—1)-4-4r(r—1) it
m(m—1)+32r(r—1) if

AN
§ =

q == 1,2, b2,

q =12 =4,

icm
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It now follows at once that A45%" has also M = 2f2, its minimal
vectors being those of Bi*" which satisty (6.5). We thugs find, for 44%",

n(n+1) it g>0
s =rdn(ntl)+r(r—1) i g=1, 1>2,
A1) +FEr(r—1) it g=11=4.

It iy noteworthy that no two of the above forms are equivalent,
despite the fact that different forms (either 4 or B) with ¢ > * may
agree in minimum, determinant, number of minimal vectors and even
in the geometrical configuration of their minimal vectors. To see this,
we need only consider forms with the same m,t, » and different g > ¢2,
the inequivalence being otherwise trivial. Such forms take the values
21%, 4¢% ... at precisely the same points, when all variables are congruent
to zero (mod?). But the above analysis shows that the least value assumed
at any other point i 2¢, so that forms with different values of ¢ cannot
be equivalent. )

Finally we mote that the absolutely extreme forms H,, B, are
equivalent to A3*? By respectively; T, of [7] is equivalent to Bi%%;
and J,, (found by Chaundy and given in [6]) is equivalent to B

7. The refinement A}. For t > 2, we define 4% to be the form

n

f@) = Ay (@) = D ai+( Y a)
1

1

(7.1)

with lattice the sublattice of I, given by

(7.2) Ty =0y =... =z, (modt).

Coxeter [B] has defined a form A% under the condition #|n-1; it is
easily verified that this agrees with the above definition when #[n-+1.
Since D(4,) = n--1 and the lattice (7.2) has determinant "7,

(7.8) D(4L) = (n4+1)"2

Now the sublattice of (7.2) given by #; =0 (mod?) (i =1, ..., n)
ig tI},, and so corresponds to the form A, (tx) = 2 4,(x), which is extreme
with minimum 2¢2. Hence 4’ is a refinement of #24,, and, by Theorem 2.1,
AL is emtreme if ils minimum is 2i2; in this case, we have

n-+

A(AL) = o
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It is easy to show that A (ALY < 28 it m < 201, For it we choose we may write this as
P P S B (1.8) $() = (k- §— ag)*+ v* (ag—3) —ta®q,
we obtain

@(a) is thus the least value of this expression for integral k& with 0
= (1) (1= 52 (n— )% < 2 Qo (L o )R- (1) == 28(E—1). <k < n, and so is attained when % = [ag]:
fl@) = ( )+ ) [agq]

3

For the application of Theorem 2.1, it guffices then to assume that (7.9)  ogla) = 2([ag]+E—aq)?+*(ag—}) —taty (0 <a < 3).
(7.4) m = 41> 2. We can now prove

TmroreM 7.1. (i) We have Lmvma 7.1. We have
(7 5) M(-A-ib = th, ZE[ = ]”(Aﬁ’b) = nlin{2ta, ‘7’(1)}:
and Al is extreme, if and only if either and (a) > M for 2 < a < 4.

. Proof. If o =3, then ¢t > 2a > 6 and (7.9) gives

(7.6) m—Vm =2,
or pla) = ?(ag—1) —tatq = ma(t—a)-—4e*
(7.7) m = 3t; > 63(8—3)— 112 > 2%
ewcept for the (imperfect) forms A3, AR, I a = 2, then ¢t >4, m > 2t >8, and

(ii) The corresponding number of mintmal wectors s is given by 0(2) > 122 —})—4lg = 2m(i— 2)—-i . 4i (1—2)— 32,

s=mnt if m—Vm =2, Hence certainly g(2) > 2t if ¢ > 5. It however t = 4, then

§ == jm(n--1)  otherwise, 0(2) > 2m(i—2)—J* = dm—4,

with the following four emceptions: ) ‘ whereas, by (7.9),
A2 (s =63), Al(s=1T1), A}(s=120), A5 (s = 129). P(l) < M43 (g—1) —1tg = 3m;
For the proof of these results, we denote by p(a) the minimum thus @(2) > (1), since m > 8.
of A,(x) for The lemma follows at once, since M = ming(a) (0 < a << #).
m=a(modt) (& =1,..,n) x#O0; LeMMA 7.2. Let 8, denole the number of pairs +x satisfying
thus M (4L) is the minimum of (a) for 0 < a < . fx) =¢(1), x=1(modt) ({=1,...,%).
Clearly ¢(0) = 22 = min A, ({a), and is attained af the s, == n(n--1) Then
pairs of points o te;, te,—te; (i 5 j). . ([Z ]) if q is mot integral,
I 0<a< ¥, it is easily seen that ¢(a) is attained when each m
i8 @ or a—1t; and if % coordinates are a--1 and n--k arve « wo obtain (7.10) 8y = (”‘q"l) if q is integral and 1>2,
= = 20t) - (JeB+ Fo) 12, T
fl@) = a(n-+1)(ne—20kt) - (k2 k)i (Z) if ¢ is integral and t=2.
Writing for convenience : )
m Proof. ¢(1) is the least value of (7.8), with & = 1, and is attained

g= > 2, only when % = [g]if ¢ is not integral; this gives the first result of (7.10).
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If ¢ is integral, ¢ (1) is attained when & = q or ¢—1, and we obtain

(:IL) + (r/-”/l) = (u.»; l)

representations if ¢ 5 2. Tf however ¢ = 2, the veetors with & = ¢-—1
are simply the negatives of those with k = ¢, since now

1t == 1 (mod?).

The proof of Theorem 7.1 is now casily completed. By (7.4), ¢ » 2;
if now (7.7) is not satisfied we have 2 < g << 3 and 8o, by (7.9),

g(1) = 2(; —df 4o
By Lemma 7.1, (7.5) holds if and only if ¢(1) = 2¢3 i o,

OB byt bnd o om ] G

= Vom = 2,

(m—2t2—m 20, or
which is (7.6).
If now (7.6) holds with inequality, we have (1) .- 2% whence
s =8, = fn(n-+1); if however (7.6) holds with equality, then ¢(L)
= 2t = M and, using (b.9), ‘
§ = 8-k 8 == En(n-41)-- (g) e n,

This establishes Theorem 7.1 when ¢ << 3, i. e. when (7.7) does not hold.
Suppose now that (7.7) holds, so that ¢ = 3. By (b.8),

p(l) = Bg— )ty = S B,
so that certainly g(1) > 2 it ¢ = 5. Thus
M = 28,
We now consider separately the values 2, 3, 4 of f.
(a) If t =2, (7.9) gives
¢(1) = 4l g]~ q-+ 4 4 2g--1,

whenee p(1) =~ 8 == 22 if ¢ ;= 5, The remaining possible values 8, 34,
4, 4% of ¢ = jm give respectively g(l) .- 6, 6, 8, 8 Mhus

§ =8 = $n(n-+l) it 205,

Mo=g(1) < 20 for A2, 4%
M=q(l) =20  for A}, A}
M =20 <p(l) for - Ah,n =9,

Here the forms 43, AF are easily seen to be imperfoct; for 42, 42 we havo
§ =8y = 63, TL respectively; for Ah (m :20), s =g == fn(n|-1).

icm
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(b) If t =3, (7.9) gives

9

p(1) = 9(lg1—a+3)+6a—7,

whence (1) > 18 = 2f* if ¢ > 4. The remaining possible values 3, 2 3
of ¢ = ¥m give respectively ¢(1) = 18,18, 20. Thus

M =¢(l) =28 for

M =28 <¢p(l) for

43, 43;
43, n>10.

Tor A% (n>10) we therefore have s = s, = in(n-+1); for 4§, 43,s
= §,-+8, = 120, 129 respectively.
(c) If ¢t = 4, (7.9) gives

@(1) =16([¢]—q-+3)+120—4,

whence (1) > 2i2 =32 for all ¢>3. Thus here M =2/ s =5
= n(n+1).

This completes the proof of Theorem 7.1.

To settle the possible equivalence of a form A!, with one of the forms
AL of § 6, we prove:

TrmorEM 7.2. The only equivalences among the ewireme forms AL,
AT are
A'ga—l ~ Ag;quu qu ~ Ag(}(q,z (Q > 4).

Proof. The relations (7.11) are easily verified, the forms being in
fact identical. Comparison of the values of s and 4, viz.

n+1

Er-i
14

n-+1

AT =

A(4}) =

gshows that the only other possible equivalence is

(7.12) AL~ Akt g
(each form having 4 = (n+1)/f, s = n(n+1)).

Now both 4%, A5 take the values 2t', 48, ... of A, (tx) at precisely
the same points (when all variables are zero modulo ). As was shown
in § 6, the least value assumed by A% ot any other point is 2¢. For A
the above analysis shows that the least value assumed ab any other point is

v =ming(e) (1 <o < 3.


GUEST


icm

74 B, 8. Barnes

Now (7.9) gives
~ 42 m 1 2 2
v 2|~ — | — a*m = ma(t—a)—}
t 4
= m(t—1)— 38
Since m > 2¢ > 21, we obtain
v >mlt—3) > 2(t—3),

whence v > 2¢ if £ > 8.

Thus the equivalence (7.12) cannot hold if ¢ 2= 3. Ior ¢ = 2,
reduces to (7.11) (with ¢ > 4). This proves the theorem.

We note finally the possibility that 45 may be porfect or extreme
with M < 242 (for which Theorem 2.1 would not apply). A slight exten-

(7.12)

This case has been dealt with by Coxeter [5] and so we merely gtate:
THEOREM 7.3. If m = n-1 = 21, then AL s ewireme, with

M = 21(i—1), 8 = fn(n-+1),

and so
4 = (n--1)8"2 [t —1)".

8. The refinement B.,. Continuing the analogy botween forms 4
and B, we define B, as

(8.1)

with lattice the sublattice of I',, given by

(8.2) By =y =... ==y, (modd),
m

(8.3) 2 @ == 0 (mod 2¢).
1

Here 1> 2 and, as always, m = n-1. Oloarly
D(Bhy = 4",

. . .

aﬂ%d .Bm is a reﬁnen.aent of By (i) = 1B, (%). Honce, by Theorem 2.1,

By s ewirome provided that M(By,) = 2; in this case, A(Bh) = 4/8.
It is easily verified that

2 Dnll
By = By,

g 2
Bﬂq-ﬁ-l == Bza‘{ﬁt
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o that these forms (which are extreme for g >> 4) have been dealt with
in § 6. :

We therefore suppose henceforward that ¢ 3> 3, and define a unique
integer & by

(8.4) n = L1k (mod2t), 0<k<t.

Trwonum 8.1. For t 8, B, is extreme with M = 28, if and only if
(8.5) n=2—%  when 0Lk,
(8.6) n = 1(t+2) when k=4%.

The number 8 of minimal vectors s then given by
§ = m(m—1),

unless either

(1) n = t(t+2) ond t is odd, when s = mF—1; or

(ii) n = t(t-+2)—1 and t is odd, when s = m?; or

(i) n = 202—%%, 0<k<t—2 ond K4k =0 (mod2t), when
s = m(m—1)-+1.

As in § 7, we define p(a) to be the minimum of f(x) subjeet to

o= =y =a(modl), 0<a<y (x5 0);

then M (BL) = ming(a).

We have at once ¢(0) = M (£*B,,) = 2¢’, attained at the s, = m{m—1)
point x = te;+te; (¢ < ).

If ¢ =1, (8.3) and (8.4) give

Oy = — 2 2= "—n = -tk (modt),
1
and the least possible value of |a,| is therefore either % or t—k. From
this, and (8.3), it follows easily that ¢(1) is the lesser of
v, = n-+kE,
attained when @, = @, = ... = &y = 1, ¥ = FFk, and
9, = n—1+ (t—1)*+ (t—E),

attained when @, = 1—1, @ = ... = @y = 1, @y = +(—F). Since

vy v, for 0 Sk <1—2, vy=0v, for k=1-1, 0,<? for ¢t =k,

we have
0k <it—1,

k=1t

n+k if

P =) gy i
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The conditions (8.5), (8.6) are therefore necessary for M (BL,) = 2, Alyo,
they imply that always
i n oz A (t=1 = 21
for 2 < ¢ < §t we therefore have crudely
@(a) = na® = 4(F--2—1) > 28,

It follows that the inequalities (8.5), (8.6) are necessary and sufficient
to ensure that M (B%) = 24

To determine s, the number of (pairs of) minimal veetors, wo observe
first that & = 8 = m(m—1), unless equality holds in (8.5) or (8.6), when
8§ = §;+8;.

If equality holds in (8.6) we have, with (8.4),

n = (14 2) =1 (mod21),

whence ¢ is odd; and the representations of v, above give ¢ == n.

If equality holds in (8.5) and % =1t—1 we have, with (8.4),

n = t(t+4+2)—1 =31 (mod 21),

whence ¢ is odd; and the representations of v, and 2, above give s,
=n+1 = m.

If equality holds in (8.5) and 0 < & < {~-2 wo obtain (iif) of Theorem
8.1; and s, = 1 from the single representation of », above.

This completes the proof of Theorem 8.1.

By an analysis very similar to that of § 7 wo may ostablish:

TeeorEM 8.2. The only cquivalences among the ewireme forms B,
B are given by

(8.7) By ~ By, Bl ~ BE;
(8.8) Bl ~ B if 138 and tlg or t|(g—1);
(8.9) Bloy ~ B2 i 1323 and tlq.

We note that (8.7) has been noted above, while the equivalences
in (8.8) and (8.9) arise gimply from a change of gign of the variables
Bgpis ooy Tag OF Bgpyy oony Bggp

The simplest new forms B, are:

Bl with

B with

By with ¢ o= 1716 = 979,

By with ¢ = 181741 = 307 (~ B3,
By  with s =19-18-41 = 343;

all of these having 4 = 1;..

icm°
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9. Refinements of I;,, M;,. We may obtain several types of refi-
nement of Lj,, M; by the same devices as were used above to refine B,,
and A4,, beginning with the basic form
”

m
D) =gy tata)+ Dok (m > )

LSS k=241

(9.1) fx)
and taking sublatitices of f(tz). The analysis becomes rather complicated
if done with complete generality, and most of the resulting forms require
large values of n.

We shall therefore consider here only one type of refinement, which
yields new perfect or extreme forms for all » > 11

We define My* to be the form (9.1) with integral @ subject to

m
Zﬂh = 0,
1

=, (mod?2).

(9.2)

(9.3)

Since the sublattice of My* with all 2; =0 (mod?2) clearly gives the form
M (22), M is a refinement of 2Mj. By Theorem 2.1 and §4, My’
48 perfect if m > 2r = 6 and extreme if also m < 4r—1 provided that it has
minsmum 8. In this case, we have

(9.4) A(ME?) = 8" (n+2r+1) /222,

Let @(a) be the minimum of f(x) for ® # O subject to (9.2) and
2 =a (mod2) (1 <§ < n); then M =min{p(0), p(1)}.

If ¢ = 0, (9.2) shows that also a, =0 (mod2); hence, by § 4, ¢(0) = 8,
with s, = 4n(n-+1)+ §r(r—3) representations.

If a =1, (9.2) gives

B =ny =

(9.5) T = — iy, =n (mod2).

We set for convenience u = m or m—1 according as m is even or odd;
thus u is even and p > 2r. Now, by (9.5), #y, is odd when m is even, and
even when m is odd, and 7, is least for @, 41 or o, = 0. Since each
(@, Bye) =1, with equality only when (@, %) = +@1,1), we
therefore have

(1) Z 7+ (p—2r) = p—r.

It is easy to see that the equality sign holds unless 4 = 2r and r is odd,
since (9.2) may. be satisfied by suitably choosing (w;, #;) = 4(1,1),
2, = +1(k =2r+1, ..., u). If however u = 2r and r is odd, we have
o(1) = p—r-+2, and is attained, for example, when (@, ®iyr) = (1,1)
for 1 <0< 3r—1), (@, %) = (=1, —1) for }(r+1) << << r-1, and
(20py @ae) = (1,—1).
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Summing up, we have
(1) = p—r+2 if  u=2r and r is odd,
p(1) = p—r

and M7* has minimum 8 if and only if (1) =8, ie. if

(96) otherwise;

uzr+6 I w=2rand r is odd,

(1) u=r-+8  otherwise,

To determine the value of &, we note that & - g if inequality holds
in (9.7); also the equality sign cannot hold in (9.7),, since it would give
7 = 6 and 6 is not odd. BEquality in (9.7), implies that » is even and » |8
= u = 2r, r < 8; thus equality holds in (9.7) only for the extreme forms
My, MY MER, MY, MY, MY For these we find  respectively

where s, = 8(M}) = jn(n--1)-+-4r(r—38).

We may inquire, as with 4%, whether M%* can be perfect or extreme
even when M, is not, i. e. when » < 2. This can happen only when M%?
has more minimal vectors, i. e. when equaliby holds in (9.7),. Excluding
7 =0 (which reduces us to 4%), we have as the only possibility r == 2,
w=10, i.e. m =10 or 11. The corresponding forms M, M} are
however not perfect (in spite of their relatively large number of minimal
vectors, viz. 70 and 80 respectively); all minimal vectors in fact satisfy
the relation 22— z,2, = 0.

10. Conclusion. The method of “refinement” described in this article
i clearly capable of much wider application, though it is unlikely that
any new forms would appear for small values of #. A list of the disbinet
forms discussed here for # =7, 8 and 9 follows; it includes all previously
known perfect or extreme forms for these values of n, and will serve
a8 & basis of reference for part II. The table gives the name of the form,
its number s of minimal vectors, ity value of A = (2/M)*D, and indicates
whether the form is extreme (F) or perfect and non-sxtreme ().

Form 8 Pl Type Torm [ A Wypes
Ay 28 8 b Ag 34 ] 1
By 42 4 B By 56 4 ¥
I 30 34/94 P 13 3 3124 P
v 36 86 @ L3 46 SR r
M 28 887/ E 14 nd 3800 I
P72 36 4 bt H] 36 3. 5/96 ]
jl 63 131 , I i 38 Bha7/28 W

X
7 28 2B 7 Py LT U
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Form 8 4 Type Form 8 4 Type
s 45 4 E M} 47 36797 E
Al 71 3292 B u3 50  38.5/38 R
A g ( *‘113) 120 1 B Py 80 78/56 B
Ay 45 10 B Qo 68 34725 B
1;29 72 » 4 \ I 4 3:4,2 80 5/2 E
Poeonr | 4 s e
P 66 :96/‘:" B Ag A
‘9 Rk i | A3 45 587917 B
Ms 43 3892 I : ]gg 136 1 B

(The extreme forms Ij and P,, though agreeing in their values
of s and 4, are not equivalent. For example, it is easily proved that the
group of automorphisms of I} is transitive on its minimal vectors, while
that of P, is not.)
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