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The construction of perfeet and extreme forms II
by

E. 8. BarnNes (Sydney)

1. Introduction. This article continues the work of Part I, (Acta
Arithmetica, this volume, p.B7-79) and describes another general
method of constructing perfect and extreme forms, by ‘“extending”
a known form. Although this methed is independent of that given in Part I,
the reader is referred to that article for the basic definitions and notations,
and for a description of some general classes of forms.

If

n
flae) =—“<2 ay@m®; (g = ag)
1

is positive definite, with determinant D, and minimum M for integral
@ % 0, we shall call g(@;, ..., %y, Tpy1)=g(%&, Tpy1) 8D ewtension of 1,
and f a section of g, if

f(x) = g(x, 0).

Starting with a perfect form 7, we attempt to find an extension g which
shall be perfect, with minimum M. That such an extension always
exigts is proved in Lemma 2.1.

A method of this type has been used by Chaundy [4], who attempted
to find an absolutely extreme form in n-+1 variables by extending an
absolutely extreme form in n variables. Since, as we shall show,
a perfect extension of an extreme form need not even be extreme, we
shall adopt a less restricted approach, and give in Theorem 2.1 & cri-
terion which ensures merely that the extension g is perfect when-
ever f is.

Our construction, which is based on Voronoi’s concept of the “poly-
hedron of points nearest the origin’, normally yields large numbers of
perfect extensions of a given f; an independent test is then necessary
to determine which of these are extreme.
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As in Part I, we set

2 n .
a=ai)= (3] 2. An=miman),
80 that A(f) = 4, when f is an absolutely extreme form in n variables,
Mordell [9] proved the inequality

(L.1) An = (3400,
which is known to be precise for n =4 and n = 8, Published rosults
give
A, =2, 4, =3, d3=4, A4, =4, 45 =4, A =3,
(1.2)

3

4, =2, Ac=17 4y <1, A1o<?y

the inequalities for A4,, 4;, arising from the extreme forms @y, P;, of
Chaundy [4], and that for A,, from the form K,, of Coxeter and Todd
[6]. We shall exhibit in § 5 an 11-variable form, K,,, with A (K,,) = 3°/2°,
which establishes the new inequality

35

(1.3) -

Ay <

It is of interest to observe that Mordell’s inequality (1.1) for n =12
would hold with equality if these bounds were precise.
An inequality in the opposite direction to (1.1),

n+4-1

(1.4) 4, < A1y

will be established in § 3 (the inequality A4, <<24,., being well-known
and trivial). The above results show that this inequality is precise for
n =2 or 3.

The final sections 4 and & contain some applications of the method
to particular forms f. The choice of these is to a large extent arbitrary;
the form 4, alone exhibits all aspects of the method, and in particular
its extensions include all the (known) absolutely extreme forms in -1
_va,riables for » < 7. I give also some extensions of Lj,, which are of special
interest in that they include the forms K,,, K,, mentioned above; they
also include 13 perfect forms in 7, 8 or 9 variables distinet from those
listed at the conclusion of Part I.
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2. Description of the method. Beginning with a perfect form
n
f(®) = > aywx;, we attempt to find a perfect extension
1

n

(2.1) 9@, Tpy1) = F(@)+ 2000 ), @it
‘with
(2.2) M(g) = MU() =M.

We may write (2.1) in the alternative form
(2.3) g(x, wn+1) = j(m+wn+1}')+cwi+1 =

= f(wl"{'zlxn-)-lv ey Tpt )*nmn-i-l)“*’cm%wl

where

(2.4) o= agh, b=c+f4), D) =cD({).
7

To justify this aim, we prove:
LeEMMA 2.1. Any perfect form has o perfect extension with the same
MAREMUMN.

Proof. Let f(a) be perfect, with minimum M, and consider the
extension

(2, Bpyr) = fle)+ M.

¢, has minimum ¥ and minimal vectors (Q, 1), and (m, 0), where m runs
through the minimal vectors of f. Clearly g, is imperfect, and any quadra-
tic relation satisfied by all its minimal vectors is of the form

(2.6) Y= By (P18 Pu®n) =0

(since f is perfect).
For any such y = 0 we consider the form

g = g1+ ey

(which is still an extension of f). The argument used by Voronoi ([10],
p. 104-108) shows that g, is positive definite, with minimam M (obviously
attained at all the minimal vectors of g,) for a range of values of ¢; and
that, for a unique positive g, g, has at least one more minimal vector:
explicitly
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If now g, is not perfect, its minimal vectors satisfy a non-trivial
relation of the same form (2.5) and the process may be repeated, yielding
an, extension of f with more minimal veetors than g,.

Proceeding thus, we eventually obtain a perfect extension ¢ as re-
quired, since the possible number of minimal vectors is bounded.

Let now IT, be the set of points @ which, with the metric defined
by f(ax), are at least as near to the origin as to any other point of the
integral lattice I. Thus [T, is defined by the system of linear inequalities

flae) < flae=kl), lel\

) It is easily shown in [11] that a finite number ¢ of these inequalities
milply all the rest, and so suffice to define I7,. Thus I7,is & convex polytope
with o pairs of parallel faces, defined by

(2.6) +£2 ) aylpoy <) (k=1,2,...,0).

Voronoi [11] shows, more precisely, that a point I %= O of I" belongs to
the defining set +1,, ..., +1,if and only if the minimum of f(2) for integral
x =1 (mod?2) is attained only at = 4. Hence o < 2"—1, where the
equality sign holds in general.

Hor any real iz, we define

W (4) = V(f; 4) = min f(a+2),
ael’

80 that N (4) = f(4) if and only if 4 eIT,. Cleaxly N((A) == W () if A—pe el
in which case we say that A2 und p are congruent. Also, if the integral uni-
modular matrix T is an automorph of f, we have

WUf; &) = W(Lf; TA) = W(f; T4);
we call the points 4 and T4 equivalent (for f).

We note here the obvious but useful result:

LemMa 2.2. The extensions g(ae, @,.1) of f(x) given by (2.3) which
correspond to congruent or equivalent A and the same ¢ are equivalent.

For any positive extengion (2.3) of f, we get for convenience

» (@, &) 14“(070)-

<

My(g) = %}g(w, 4k (k=0,1,2,..
Thus
Molg) = M(f) = M,
My (g) = W(f; ed)+ ke,
M(g) = minMy(g) < M.
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A vertex v of I, is a point of I, lying on » linearly independent
faces. Thus we may say that v is a vertex if and only if its coordinates
are determined by those of the relations (2.6) which it satisfies with equa-
lity.

Owr construction of a perfect extension g rests on the following
result:

TrHEOREM 2.1. Suppose that f(x) is perfect with minimum M, and that,
for some integral t 2= 1, the point 14 is congruent to a vertex v of I, and sa-
tisfies !

(2.7) Wi (1) = N (v) < M.
Then the extension g(®, T,;) defined by (2.3) with
(2.8) t2e = M—N(t4)

has Milg) = M; and g is perfect if its minimum is M.
Proof. We have, using (2.8),

My(g) = W (f;t2)+12c = M.

By hypothesis, 4 = v—a for some vertex » of I, and some integral
a. If now in fact M(g) = M&, the minimal vectors (2, @,,:) of g certainly
include (i) (m, 0), where m is any minimal vector of f; (ii) (I+a, t), where
I is any one of 41, ..., &I, satisfying

(2.9) fA+v) = f(v) (= N(4));
(i) (@, 1) .

Now the equations g(m,0) = M determine the coefficients a; of
f, since the equations are just f(m) = M and fis perfect. From the minimal
veetors (ii) and (ili) we have the equations

g(l'l“a:t):M; g(ayt):M
for the remaining n-+1 coefficients of g. These may be written
fl+ a4ty = fla+1a) = M—1?c,

which are just (2.9), with » = a+14 Since v iy a vertex of II,, (2.9)
yield nindependent linear equations determining », and so 4. The remaining
equation g(a,t) = M now determines ¢, as given by (2.8).

This shows that g is perfect, and the theorem is proved.

We conclude this section with some notes on the method.

(1) The construction used by Chaundy [4] is easily shown to be
equivalent to taking in the above theorem: f absolutely extreme, ¢ = 1,
and 4 a vertex of II, for which f(4) is greatest. In all cases considered in
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[4], the inequality (2.7) is satistied, so that the construction then gives
the extension g of f with least D(g) = ¢D(f). Since f is here chosen to
be absolutely extreme, i. e. to have least D for minimum M, the resulting
extension ¢ is certainly a good candidate for the title of absolutely extreme.

(2) The construction clearly fails if f(w) > M for all vertices v of
II,. Although this phenomenon can occur for imperfect forms, every
perfect form examined has at least one vertex satisfying f(v) < M.
Lemma 2.1, while asserting the existence of a perfect extension, unfortu-
nately does not guarantee that it can be constructed by the method of
Theorem 2.1.

(3) For all forms examined, the method always yields an extension
with ¢ = 1. In this case, the corresponding vertex often satisfies the
condition

M (v) = flv) < M,

from which it follows easily that g has minimuam M (and is therefore
perfect). For then M,(g) = M,(9) = M, while, for & > 2,

My(g) = N(f; ko) + ke > 4o = 4(M—Ni(v)) > M.

(4) Theorem 2.1 becomes false if “perfect” is replaced by “extrome”,
Thus Ij, has the extension Ij,,; if n = 2r-1, ILj is extreme and I},
is not. Conversely, we can obtain extreme extensions of non-extreme
forms; e. g. Mj,,s is an extension of L., (r = 3).

(B) We shall usually find it convenient to work with the contragre-
dient coordinates ., ..., ¥y, defined by

(2.10) Y = Zaﬁm,.
i
The polytope II, then becomes, more simply,
(2.11) O 42 Yy <) (k=1,2,..,0),

and & vertex 4 of 1, transforms into a vertex e of /7, where, ag in (2.4),
a; = D ayd;. We have also

(2.12) f(®) = f*(y),

Wh‘ere f* is the reciprocal of f; hence the second. relation (2.4) may be
written
(2.13) ’ b =c+f*a).

3. An inequality for 4,. We establish here the i i
) . ere the inequality (1.4).
‘We need first the following general result: * v
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LenMA 3.1, If f(x) is positive definite with minimum M, there exists
a 4 with

(3.1) n(f; > 2

2(n+1)

Proof, Expressing f(x) as a sum of squares, we may write

@) =§:‘§%;

»n
* then, for integral x, § belongs to a lattice A, and Y& >4 for all §ed,
1

£#0. :
Tence the unit spheres centred at the points of 4 do not overlap.

If now P, ..., P are any points of 4, P is any point, and |PPy;| = 14,
Blichfeldt’s well-known inequality gives
k

(3.2) 27«2 > 2(k—1).
1
TLet 4 be any vertex of the polytope /T, of f(z), and P = £ the corres-
ponding point in §-coordinates. Then

Loy = j = e =
M ? - M - . T ?
say. By definition of a vertex, & is equidistant from 0 and at least n further
lattice-points; henee (3.2) holds with % = n+1,r, = r, giving
2n M nM

%(f§1)=—4—7”>—2(%—+f)7

72 =
Z n41’

ag required.

Note. The inequality (3.1) is the best that ecan be asserted for an
arbitrary vertex A of IT(f), since, a8 will be shown in the following section,
A, has a vertex 4 satisfying (3.1) with equality, for all ». The result of the
lemma is best possible for n =2 or 3, but probably not for larger n.

LEMMA 3.2. Any positive form f(&1y...s Tn) has an  extension
9(@1, -y Tnyn) SaHESFYING

alg) <22 4(h.

Proof. We may assume that M(f) = 2, so that 4(f) = D(f). Choose 4

to satisty (3.1), so thatb
n

n+1’

W(f; 2) =
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and define
n+2 ,
g(@1y ey Boya) = f(m+}‘mn+-1)‘+"mww,+1-
Then M (g) = 2; for
Mo(g) = M(f)=2;
~ n-+2
M, (g) = V(f; H‘m =2;
n-+2 .
My(g) = k2 P >2 for k=2
Hence
w2 w42
A(g) = D(g) = D) = f).
() = D(g) = 2= D) = =5 A1)
n—+2
OOROLLARY.  dp1 < PR Ay,

This follows at once from Lemma 3.2 by choosing f as absolutely
extreme, so that A(f) = 4,.

4. Extensions of 4,. We may write, as in I §3,

k3 n
Ap@) = (Yuf + Yk,
with 1 :
M=2, s=innt+l), D=A4=an+l.

The reciprocal of 4, is

The contragredient lattice, defined in (2.10), is given by‘
Yi = Z:LJ Ty .
so that, for integral @, y runs through the sublattice A* of I, defined by
Z:t:yi = 0 (modn--1).
The integral vectors defining II, are simply the 4n(n--1) minimal

vectors of 4,: e, ; o s Ty
fined by ni € (L<i<<n), e—e¢ (1<<i<j<<n). Thus I7, is de-

el <1 (I<i<n), |-yl <l QA<i<j<n),
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and its vertices w are easily found to be the 2" —1 points with all coordi-
nates 0 or 1 (other than O) and their negatives. Since A, (y) is invariant
under an arbitrary permutation of the coordinates, any vertex is equi-
valent to one of

wy = gy 0up) (I <hk<n)
(where a symbol such as 1, denotes a sequence of % coordinates 1).

Al(y) is also invariant under the transformation: ¥, 91, ¥:—> ¥1—¥:
(i =2,38,...,n), under which

wy, ~ (1, Op_y, 1y g) ~ Wy 1k -

Hence any vertex of I7, is equivalent to some wj; with 1 <k < +(n+1);
and, if v, denotes the corresponding vertex of II,,

k
A (o) = A% () = —

e (n+1—F).

‘We note first that

Ay (v) = nq—il <M =2 foral

2(n—1

Ap(vy) = Z:Li_) <2 for all n,
3(n—2

An(v?}) = (n _‘)‘ <2 Only for n < 7,

A (o) =2 for 4 <k<}(ntl).

Hence the method of Theorem 2.1 can be applied only with v ~ v for
k=1, 2, or 3, and with v ~ v, only for n < 7. We congsider in turn the
various possible values of % and i.

I. k =1,t= 1. Following Theorem 2.1, we take

.
n-+2
n1’
The corresponding extension g,, therefore has M = 2, D = n+2 = m—+1,
and is easily verified to be equivalent to 4.

IL &k =2, t =1. Here

a=w =(1,0,_,), ¢= M—A4n(w,) =

4

a=1w, =(1,1,0,,), 0‘:'%—_1__‘1‘7

whence D(g,) = 4; and we find that g, ~ Bn.
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I & =3, t =1 Here we require #» <7 (and » > 2k—1 = 5),
with
. 8—mn
o =w, = (13, 0,_), ©¢=M—d4d5(w;)= PR
Thus for m = n-+1 =6, 7 or 8 we obtain an extension g, with D(g,)
= 0—m. It is easily verified that these forms have minimum 2, and so
must be equivalent to the absolutely extreme forms Hg, I, and Hy in
the notation of [b].
IV. k=1, ¢ > 2. Taking the equlvalent vertex w, in place of w,,
we require

fo = w, = (1,) (modA*),

n--2

n+1

(the condition (4.1) being the same as t4 = v, (modl}})). Any correspond-
ing extension g, therefore has

(4.1)
o = M—A%(w,) =

D(g,) = oD(4,) = 5.
‘We have already described in Part I some forms with minimum 2 and this
value of D, namely A%, and A%%* (with suitable restrictions on the para-
meters m, i, q), and all these are easily shown to correspond to various
choices of « satisfying (4.1).
Thus if we take

to = (1,)+ (n+1, n-+1, ..., n41),
‘ _(n—|—2 n+2 'n,—i-2)

t o T
we obtain
n n "
2 2n+44 n+1 ) (n
= (Y + Dot o g (Va4 LI g1
1
. n
B 0n = (@1 F A tan - map) -+ Y g+ )+ 0,
1
m 2 ’ m
SOXESY
1 1
with
s =tmtao, ((=1,..,n), Zm = Uy
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this shows at once that 1*g,, is the form A%, of T, § 7. (Of course, the results
of Part I show that g, is now not only perfect, but extreme, when its
minimum i 2).

Similarly, taking

ta = (Lp)+ (1g—1s —1go1s On—zq+z) (1<g<intl),

a =

eo.]l—l

(2;1_1 » Og—15 1n~2q+2) 3

we obtain an extension equivalent to A%%* of I, § 6 (known to be in fact
extreme when ¢ 3> 12, m >>2g, which are the necessary conditions for
the extension to have minimum 2).

Many other (inequivalent) choices of « are available if » is sufficiently
large; & discussion of these in any generality would take us too far here.

V. k=2, t>2 Using w, ; in place of w,, we take

ta = w,_; = (1,_1, 0) (mod 4*).

4 .
n41’
any extension g, therefore has D(gm) = 4[t%

An analysis closely parallel to that of IV now applies, and we are
led in particular to the forms B4%?, BY, described in Part I. These forms
may in fact be more conveniently obtained as extensions of B, which,
for n >4, has just one class of vertices satisfying B, (v) < M(B,) = 2.
The analysis is so close to that of I and IV above that we omit the details
here.

Summarizing these results, we see that the perfect extensions of 4,
include a large number of the general classes of forms examined in Part I,
namely A,, B,, 4%, B, A4%*, B4%* and Fj. These in turn include all
‘known absolutely extreme forms, viz. Aa, As, By, Bs, By, A7 (~ By), B:
(~ By ~ A}), and the conjectured absolutely extreme form B} (~ O, of
[4]) in 9 variables.

o= M—A)(w,_,) =

5. Extensions of L.. In Part I, § 4, L}, was defined to be the form
r

(8.1) fx) = N @~z t ol + D @ (n>2r)

q=1 k=2r4-1

with lattice 4 the sublattice of the integral lattice specified by

n
(5.2) Dy = 0(mod3).
1


GUEST


216 . 8. Barnes

Then I is perfect for » >3 and for » = 2, n > b, with
(53) M=2 D=3"]2", s= In(n—1)+4r(2n-+r—1).
The contragredient variables y; are given by
Yi = L;— $ipr
Yipr = — 3B+ Tipr

e =ap  (r41 <k <n),

1<),

so that A* is the lattice of points y for which 2y, ...y 2¥ae; Yarpxy ooy ¥n
are integral and satisfy

2; = 2y (Mod3) (1 KUK,
(5.4)

D (@it 200+ D)y = 0(mod3).
t=1

2r4-1

The inverse of f is

r

n
=+ Y (Wt st t Y+ DUk

=1 2L

The vectors defining I7 are easily found to be the representatives
of f(x) = 2 and f(x) = 3 thus I7, is specified by the inequalities

[y —yil <
'}/1+ Yigr— Yi—Yipr [
[Yit Yigrt Yy

[t

[ys— 1’/1:+r|
|9+ 2'.7/11-“‘
1295 Yol

)
(Y=t Y5yl

WstYigor— Y5 — Yl
|yi+?/i-|-r+y7‘+?/7'~l v Yl

Yt Yigr Y5 Yisr T Yt Uil S 7

Here the suffixes in each inequality are supposed to be distinet and
otherwise arbitrary, subject to the two restrictions: (i) no two suffixes are
of the form 4, 447 (1 < ¢ <) unless this is explicitly ghown; (ii) in any

//\A'\//\//‘\//\//\//\

O D

/7\

3
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pair ¢, i+ the range of ¢ is 1 < i < ». The last inequality is of course
vacuous if r = 2.

The number and form of the vertices of I7 depend on the wvalues
of n and 7, and we cannot attempt a complete analysis here. We therefore
give a selection of vertices whose form may be specified for general n and r
(subject always to the restrictions » > 2r, and either » >3 or r = 2,
n 2= 5). The verification that the given points w are in fact vertices of
IT, is in all cases straightforward.

(a) wy = (§, Oy, §, 0p_y, On_ap), f*(wl) = 1. Taking ¢t =1 in Theo-
rem 2.1, we have o = w,, ¢ = M —f*(w,) = 1. Since ¢ < $M, the re-
sulting extension g,, has minimum 2, and so is perfect with D(g,,) = 3™+*/2*".
This extension is easily identified with Lj,; explicitly it is

2
m T f(m1+m1n; m‘.’.; ""xn -’17,«+1+-Fm, wr+2’ cery w‘n)"[_wm'

with integral @, ..., @, @, subject to (5.2).

(b) Using the same vertex w, with ¢ = 2 in Theorem 2.1, we have
de = M—f*(w,) =1, ¢ = i,

%a = w,(mod A%).
For any such choice of «, the corresponding extension g, will have
Mo(g) = My(g) = M (L) =2
by Theorem 2.1; and, for k >3,
My(g) = %o =5 > 2.

Hence g will be perfect with minimum 2 if and only if

(5.6) My(g) =N(f5 )+¢ = 2. 7

We shall show that « may be chosen to satisfy (5.5) and (5.6) whenever
(5.7) n=r+1.

Thus, provided

(5.8) m = 2r+1, m>=r+8,

the extension g, will be perfect with

(5.9) M(gn) =2,  Algn) = D(gn) = 32277,
(i) Set

(5.10) 20 —w, =1 = (O, (F)re1s Oy (B)rois Eapprs oo ey sﬂ),
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where each & is 0 or £1; I is then a point of A* provided

n

(5.11) Zsk = r—1 (mod3).

2141
Thig gives
o = ((if)zr? Feor1y oo %En)v

which is easily seen to be a point of IT,, so thab

W (f; Ao = o)+ 1 = H{r+1+ D d)s
thus (5.6) is also satisfied provided

n

(5.12) D1
P}

If now 2 <r <6, and (5.7) holds, we take
D=1 @rEL<E<rED, a=0 (k>rt7),

giving Ye, = r—17, Y = T—r, 8o that (5.11), (5.12) are satistiod.

T > 7 and n> 21, we take g = 0 for &k > 2r--1 and ey =0
or 1 to satisfy (5.11); (5.12) is then satisfied trivially.

(ii) If r> 7 and n = 2r, the g, are vacuous and (5.10) will not always
be a point of A*. We therefore now choose

{0, ($)r-13 0, (3)r—1) if 7 =1(mod3),
2a—w; =1 =1(0, ($)r_z,0; 0, ($)rs, 0) if = 2 (mod3),
(0, (1)r_s) 0,050, (3)py, 0,0) if 7 = 0 (mod3).
Then (5.5) is satisfied, «ell,, and
My (g) = f*(a)+} = }r+1), §r, 1(r—1) respectively;

gince * > 7, M (g)> 2 in all cases and (5.6) therefore holds.

(©) Wy = ((B)ry O3 (— B)nar) 18 & veTtex of I7, with f*(wy) = 35 (3n—2r).
Taking ¢ = 1 in Theorem 2.1, we have

(5.13) o =1, ©=M—f(w,) = 52442 —3n).

We shall show that the corresponding extension g,, has minimum 2, and
so is perfect, if and only if

(5.14) r<b, mn<r+tb
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(where, as always, we assume that L}, is perfect, so that » >3 or » = 2,
n 2= 5). We shall then have

M(gm) =2, A(gn) = D(gn) = (%)r+1 (27+ 2r—3m)
when
r<b, 2r+l<<m<Lr+T.

The corresponding vertex 4 of I7, is

4= (('g')n ()5 (— P 2r)

so that, writing p(z, y) = a*—ay+4?, we have

n

9= Om = ZTP(mi"l' 'g'wmy 'Ti+r+ le‘wm)‘*‘ Z (mk'_%'mm)z’i”cw;n

i=1 41

By choice of ¢,
Mo(g) = My(g) = M(L,) = 2
The necessary condition ¢ > 0 gives at once

244-2r >3n > 6r, r<6.
Next,

9(®,2) = Zw(wt+3,ml+,+ D+ D) (@e—1)"+ 4o,

=1

and each form p occurring here is easily seen to have minimum 3} for
inegral #;, #; ., attained when (;, #;,,) = (—1, 0), (=1, —1) or (—2, —1),
Since we can take all @, =1 (k > 2r) and choose each pair x;, ;,, a8
above to satisfy (5.2), we therefore have

M,(g) = ming(x, 2) = r4-4¢ = 8-+r—n

Thus M,(g) > 2 if and only if n < r+6.

It remains for ys now only to consider M,(g) for & > 3, assuming
that (5.14) holds. Now

9(x,3) = Zw(mz+2 @+ 1)+ Z(mk—— Y2 9,

=1 2r41

whence, since » < 746,

My(g) = }(n—2r)+ 96 = 18-Fr—2n > 6—r.
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This shows that My(g) = 2 if r <4, or if r =5, n <10. Th(‘,.only other
possibility allowed by (5.14) is that » = 5§, # = 11, and in this case also

M,(g) = 2, since the values z; = —2, &, = —1 (t=1,..,7), &y, =1
or 2 do not satisfy (5.2). .
Since ¢ 2% unless » = 5, # = 11, we obtain

Mylg) =We=5F >2 for k=4
If however ¢ =5, # =11, then ¢ =—11.—_, and  M,(g) >2 for k=0;
a direct argument shows easily that also M(g) > 2.
(d) @y = (($)ors =5 Ghacart)y Tor w241, is 2 vertex of I,
with f*(w,) = %(4%4—21—41"). Taking ¢ = 1 in Theorem 2.1, we have

a=w;, ¢=M—fw,) = gdr+51—4n).

The corresponding extension g, if it has minimum 2, will then be perfect

with
or

3
(8.15) M () = 2, A(gm) = D(.(]m) = Eﬁm(47'+ 55 —4m).
For a positive extension ¢, we require ¢ >0, whence n < r--12;
thus necessary conditions are
24+l < Lr+12, r<1L

It is easy to show, by arguments similar to those used above, that these
conditions are also sufficient to ensute that M (g,) = 2; thus we obtain
a perfect form satisfying (5.15) whenever 2r+2 << m << r+413.

(e) w, = (%7 %’ (“";‘)r—-zf %7 %1 (‘%‘)r—z? ‘(%)n—-ﬁr) is a vertex of I,
with f*(0,) = %(n—r—}— 6). Taking t =1 in Theorem 2.1 we have

a=w, o=M—f(w,)=-73(12+7r—mn).
The corresponding extension g, if it has minimum 2, will be perfect
with
3"
Mgn) =2, Algn) = Dign) = 55 (13+r—m).
From the conditions » > 2r, ¢ > 0, we obtain
L <m <412, r<1l,

and these conditions are easily found to be sufficient to ensure that
M(gn) = 2.
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Summarizing the above results, we have found a large number
of perfect forms, most of them new; we tabulate here the new forms with
m = 17,8 or 9, giving the value of r in the original form L, the paragraph
(a)-(e) above in which the form appears, the number s of pairs of minimal
vectors and the value of A(g,).

m r Para. s A(Gm) m r Para. s A(gm)

7T 2 (e) 34 3%.5/2° 9 2 (e) 90 3324
7 2 (d) 30 3-5-7/2°° 9 3 (c) 82 3* /27
7 2 (e) 32 3%)2 9 4 (c) 81 327
8 2 (e¢) 54 3%.7/)28 9 2 (d) 64 3% /26
8 2 (d) 41 3.31)2¢ 9 3 (d) 67 3°.31/2°
8 3 (4 46 3*-5.7/2° 9 2 (e) 58 3823
8 2 (e) 44 3%.7/2* 9 3 (e) 62 3%.7/2¢
8 3 (e) 48 323 '

From (¢), with » =11, » =5 we obtain a perfect form g,, with
M =2, 4 =3%2" s =378; this may be identified with the extreme
form K;, of [6], which is most simply represented as the form

6
f@) = D@+ 206+ 2hs)
i=1

with integral x satistying

By Ly 5= Ly~ Wy = ... = Pg— &1, (M0d 3),
12

D)% = 0(mod3).

From (c), with n = 10, r = 4 we obtain an extension g,, with M = 2,

4 = 3°[2°, ¢ = 216. This form was mentioned in § 1, where we called it
12

K;; it may be represented as the section of K,, above by Da; =0,
7=1

and in this form it may easily be proved extreme by Voronoi’s criterion.
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Reg P la Rédaction 1 . Herausgeb q

1. Einer der schénsten Sitze der Theorie der Kongruenzen hoheren
Grades (welche Lubelski selbst mit viele schénen Forschungen bereichert
hat) ist der folgende Satz von Konig-Rados [2]:

Bs sei eine Kongruenz
(1.1) g+ a0+ ...+ 8, 2" = 0 (modp)  (phay)

. vorgelegt (p Primeahl, a, ganze rationale Zahl). Dann ist die Anzahl der
verschiedenen inkongruenten Lisungen von (1.1) gleich

P—1—7p;
7p bedeutet den Rang modp der zyklischen Matrix
Gy Gy Gy ... Gy_g
(1.2) 7, = Ap_y @y Gy ... Gp_g

Ay Gy Gg ... &

Ein vereinfachter Beweis dieses Satzes ist in Kronecker’s Vorle-
sungen iber die Zahlentheorie ([1], p. 389) gegeben; ein viel einfacherer
Beweis und die Erweiterung auf endliche Korper war von dem ersten
von uns gefunden ({3]). Er bewies den folgenden Satz:

In einem endlichen Korper K mit q Elementen sei eine Qleichung

(1.3) Gta@t..ta 2" =0 (g 5£0)
vorgelegt (a,eK). Dann ist die Anzahl der verschiedenen Liosungen von (1.3)
gleich

g—1—r;
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