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Wenn D = 3(mod4), ¢ =1(mod2), folgt aus (21) y,=y,=3
(mod4), was einen Widerspruch lefert.

Wenn D = 1(mod8), € = 6(mod8), oder D = T7(mod8), =2
(mod8), oder D = 5(mod8), ¢ = 6(mod8), oder D E‘S(mOdS), ('/YE 2
(mod8), folgh aus (21) ¥4, = -+1(mod8), was einen Widerspruch liefert.

‘Wenn, # die Werte 1,2, ... durchliuft, ergibt sich die Unmoglichkeit
der Fille ¢ = 5(mod8), ¢ = 9(mod16),..., d. h. von ¢ ==1(mod 4).

Wenn g = 3, D =1(mod2), C beliebig, fihrt jede Gleichung (3)
zu einer Gleichung der Form (7), oder
(26) 8 = by(3Ca;—Db3),

@, = by(mod?2). Wenn a, und b, gerade sind, geht (26) in eine Gleioh?mg
ersten. Grades in y der Form (12) iiber. Wenn a, und b, ungerade sind,
geht (26) in 3Ca;—D—8(D[3) = 0 ber. Aus y = Na = 3(0ai+D) folgt

(@7) 3y—D—2(D/3) = 0.

Jede Gleichung (3) geht folglichin eine der beiden Gleichungen (12) oder
(27) iiber. Diese haben je hochstens eine ganzzahlige ungerade Lisung.

In shnlicher Weise kann man die Gleichungen Oz+D = 2y und
024D = 447 behandeln (vgl. Ljunggren [4], Stolt [10]). '
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The zeta function and discriminant of a division algebra
by
K. G. RAMANATHAN (Bombay)

§1. Let D be a division algebra of finite rank g = hf? over the field
I’ of rational numbers and Z its centre so that (D: Z) = f2 and (Z: I") = h.
Let I’ be the real number field. Siegel [10] has shown that the tensor
product D = D ® I has, over T, an involution & — #*. Let P be the space
of positive elements of D, that is the set of elements « = z* all of whose

characteristic roots are positive. P is a symmetric Riemannian space

with the metric ds* = o(E'dE £~ d¢). Let [d£] denote the volume element
computed with this metric. We introduce the generalized gamma function

I'p(a,s) = [ (NEPe™[dg]

P

where aeP, N and o denote norm and trace in the regular representation
of D over I and s is a complex variable whose real part is greater than
(f—1)/f. I'p(a, s) is a simple generalization of the gamma function intro-
duced by C. L. Siegel [9] in the analytic theory of quadratic forms. Let
Abe alattice in D and A the complementary lattice. Let & be an arbitrary
but fixed element of P. The funection

H(A, &) = D o7

aed

is called the theta function of the lattice. There exists a transformation
formula connecting ¢(4, &) and #(4, &Y. By using this theta function
and the gamma function above, we shall obtain a simple proof of the
functional equation for the zeta function of D. In view of the work of
Siegel on the zeta functions of indefinite forms, it seems more natural
to use the representation space P of the units of a maximal order of D
in the study of the zeta function of D.

For the discriminant d of a totally real algebraic number field C. L.
Siegel [6] obtained an identity which shows at once that [d] > 1. This
identity was generalized to all fields by Mintz [5] and Calloway [1].
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We will show that this and other identities of this type may be obtained
quite simply from & general formula due to Siegel. [8]_. We shall, moreover,
obtain, by the same method, an identity for the discriminant of a maximal
order of D. As a simple consequence we deduce that a quaternion al-
gebra D with I" as centre splits over I" if and only if it splits at all prime
spots of I.

§2. Let D be a division algebra of finite rank g and o & maximal
order in D relative to the ring of rational integers. Let 4, ..., d, be a min-
imal bage of 0. By means of the regular representation of D with regard
to the bagis &y, ..., 8, t0 every element aeD is associated a matrix 4
with elements in I' so that

(1) afl 1) = a .
6{/ 50
Let D = D ® TI' be the tensor product of D and I' the field of real
numbers. Since &y, ..., d, can serve as a basis, over f, of the semi-gimple
algebra D, we obtain the algebra D of the matrices obtained by the re-
gular representation of D with regard to &y, ..., d,. Let h = ry -1y 2r,
r, being the number of complex infinite prime spots of Z and r, the number

of real infinite prime spots of Z which are ramified in D. From Wedder-
burn’s theorem one has

N Ty _ r3 2
(2) D~ ng{(F)Jrg%fM?z(QH i;’fM{(Q)

where @ is the division algebra of real quaternions, 2 the complex number
tield, M*(R) for any division ring R denotes the complete algebra of I-rowed
matrices over B and the coefficients f, f/2 denote the number of times
thege algebras are repeated in the direct sum (2). For any matrix I in
M (R) we denote by |L| the reduced norm and by 7(L) the reduced trace.
Let us denote a generic element in M(F) by X, that in M2(Q) by ¥
and that in M7(Q) by Z. If weD and

1 r3 )
§ = _Zl‘fxi +§ WY+ 2//

then

(3) o(®

N

1 3 2
= DIe(X)+ Y oY)+ Y (2.
i=1 i=1

1=l
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If we choose a basis ¢, ..., g, relative to the component filgebras in (2)
and put '

&y &
(4) Pl=71
dy £

for a real g-rowed matrix y, then the matrix corresponding to aeD by
means of the regular representation relative to e, ..., ¢, is y " ay. Observing
the fact that for every matrix 4 on the right side of (2), the transpose
A’ is also there, we see that to every aeD there exists a unique o*eD
such that

(8) S TRty = ()

a—>a* is an involution of D. We call « in D symmetric if ¢ — o*
and positive, written as a > 0, if all the characteristic roots of a are posi-
tive. The positive elements constitute a symmetric Riemannian space P
of 3f(kf+r,—r;) real dimensions and has the metric

ds* = (£ dEEdE)

in the notation of Siegel. This has the invariance property under the trang-
formations

£ B EB,

(6) .
£

where BeD and NS # 0. One easily finds that.the volume element

(7)  [do]=

2}

3 2
[]1 =002 T[T =02 [ 177Xy}, . {dX,,)...(dZ,)...{aZ,)
i=1 i=1

i=1

ig invariant under the transformations (6). Here {dX;} ete. dencte the
Euclidean volume element.

§ 3. Let s be a complex parameter with real part >1-—1/f. If feD
and Np # 0, put

(8) I'n(Bys) = [ (Na)Re™™C" [dg].
P

This is the generalized gamma function associated with D. That the in-
tegral exists under the conditions on s will be seen from below. Because
of the invariance property (6) and the metric, it follows that

(9) (B, ) = TI%ST T (s)
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where we have written I'p(s) for I'p(1,$). Also

(10) Tp(s) = LT3 T3
‘where
f [_X[sl‘lﬁn(ﬂ‘l)/z e—ﬂfT(X){d_X} ,
x>0
(11) I,= [ |Zfe-t-nreOigy},
>0
f |Z1et/z—f/ze—znh(z){dz} .
z>0

These integrals are similar to those considered by Siegel [97. I bas been
evaluated by Siegel. I, and I; can be evaluated in a similar way; for in-
stance to evaluate I, we complete squares and write

(Yl 0) B ¥7¢ _(Yl a* )
T g/l 1 | \g gt YT

where for a ¢uaternion symmetric matrix ¢ and a quaternion matrix
H, G[H] = A*GH. Since {dY} = {d¥.}{dg}{dy}, we get

YL
L= [ (Tl e o gy
¥1>0
y>0
q

Since the elements of ¢ run from —oo to oco and z(y) = 2y, we get

I =f‘sle2______..r ((zsf ;f_;i?) f | X, S0 g=meF O Y )
il
¥1>0
By induction one gets finally
U

f__sfz J2 Sf 27/
(2 71>8/—-2'l *
Evaluating the other integrals in a similar manner, we get
(12) TI'p(s) =

o [ (R0 [T (P2 (e,

=0 1=0

‘where

L nif=2)

2
A = —r,8ff—1y8°—
28f "'332 i
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§ 4. Let 4 be a lattice in D, that is a diserste subgroup of the addi-
tive group of D, not contained in a proper subspace of D. Let wy, ..., o,
be a base of A. Let A be the complementary lattice consisting of aeD
where o(al) is a rational integer for every ied. Let wy,..., , be the
complementary base so that
0 if 4 £7,
1 i i=j.
Denote by d(4) the absolute value of the determinant of the matrix
(a(wiwj)). Then
(13) d(4)-a(d) = 1.

Let £> 0 be an arbitrary but fixed element of D. The theta series
of A is

o(ws;) =

L?(-/]-; 5) = Ze—"a(a‘&).

agAd

That it is eonvergent is very easy to see. We shall prove the formula

(14) L a4, 8 = ﬁ( ).

The proof is very simple. For let aesd be a generic element of 4 so
that o = Yow;, o; integers. Then
i

o(a*&a) = 2 o (wf Ewy) @;m;
if

is a quadratic form in #,..., s, whose matrix is (o(w}Zw))). Jet

w©y Wy
gl )=Lf: |;
g g

L being a g-rowed real matrix. Then |L] = N&. Also
(o(wf £wy)) = I{o(wf wy)).

This proves that the determinant of the quadratic form is d(4) N &. A simple
computation shows that the inverse of the matrix (o (o} £uy))is (o (wf’ §  wy)).
(14) is thus proved.

In particular, if o is & maximal order in D and a is an ideal with o
a8 left maximal order, then the complementary ideal & (in the above
sense) iz an ideal with o as right maximal order and

1

1
91, &) = N[ (e

(8, 5_1);
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4 being the discriminant (in the regular representation) of the minimal
bage by ..., dy O 0.

§5. Let I'(0) be the group of units of the maximal order o. Let
H denote the finite subgroup of units ¢ with

e*o=1= 0"
The representation & — ¢ *pe of I'(0) in P is discontinuous if we identify
¢ and pe. Siegel [10] has shown that there exists, in P, a fundamental
domain for I'(0)/H. Let F' denote the fundamental region in the gubset

of P consisting of & with Nz <1 and T, the fundamental region on the

determinantal surface No = 1.
Let s be & complex, variable with real part > 1 and f a class of left
ideals with o as left maximal order. The zeta function of ¥ is

L(s, B = D (VD)™
bet

the sum extended over all integral ideals in the class . The zeta function
of D ig defined as
=D'tls, )
3

the sum extended over all classes . Let & be an ideal inverse to b
with o as right maximal order. Then

t(s, ®) = No* 3N~
@

where A runs through all elements = 0 in a which are not equivalent on
the left by I'(0). The type of the maximal order o is determined by E.
Using the generalized gamma integral in §3 we get

_ [d|”2PD(s)£(s,f)=Na’[di’“a"”” 2 f(Nw)u/ze—wca(u-wa)[dw]
(a)Ca P
where ¢ > 0 is & constant. We choose ¢ 80 that
(15) PNa|d|M = 1.
One- can interchange summation and integration and obtain

AP To(s)¢(s,8) = [ Vo) (ot ).
P (a)Ca
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We split up P info Ny > 1 and Nz < 1, write the full theta series, inside
the integral, sum over a fundamenta,l region and get the integral represen-
tation

(16) A" Ip(s)¢(s, ¥)

= [{ e @apty 3 e Wa)t- 9 (do] 4
Nzz1l (@)Ca @Cs

j ((¥a) =2 — (N)2) [ ]
v

w being the order of H. If [dw,] is the invariant volume element on the
norm surface No = 1, then

[dz] = A(Nz)~'d(Nz)[ds,]

where 1 > 0 is a constant. We thus get the final formula

. 1 1

(an A To(5)2(s, 1) = f +‘>z(———) [ tday.
Fy

The analytic continuation of {(s, f) to the whole plane follows from
(17). Also one obtaing the functional equation

£(s) = |@1*"*I'p(s) ¢ (s, D) = &(L—s)

for the zeta function of D.

In the case f = 1, that is in case D coincides with Z and so is
commutative, one gets the Hecke integral representation for the Dede-
kind zeta function of Z. In this case 0 = o’ and

[ a1,
Ky

which is finite, is independent of . If we put s > 2 real we get, since
[ is positive .
Nzl

1 1
O e e
s—1 s/
Thus since ’

Dils, B =15 D) <a
H

for a certain constant ¢,, it follows that there are only finitely many
classes of ideals in Z.
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As has been remarked by Slegel the fact that f [da,] is finite in cage
Fo
of Z gives at once Dirichlet’s theorem on the number of generators
of I'(0). -

It is easy to see that in the case of Z one obtains for the class

number h, of Z the inequality
]dle (2,2)
Mol <y

where R is the regulator of Z.

§6. In order to study the diseriminant of a division algebra, we
shall state a lemma due to Siegel [81.

Let R, be Tuclidean space of n dimensions whose points we denote
by X = (@yy.-ey By), 1y ..., %, being the coordinates of X. A point is
called & lattice point if @, ..., ®, are integers. Let § be a bounded convex
set in R,, which is symmetric about the origin and has in its interior (which
ig non-empty) no lattice point other than the origin. Then

LeMmA (Siegel).
=T+ ‘“Z | fe'"“ X gxlfe

1;‘0

where V is the volume of S, 1+ X denotes the inner product in I, and 1 runs
through all lattice points # 0.

The proof is very simple. Let for instance ¢(X) be a bounded function
vanishing outside S. Put

= D p(2X+29);
g

g running through all lattice points. 7(X) is & bounded periodic function
of period 1 in each of @, ..., #,. The Pargeval formula for the Fourier
geries of f(X) gives at once, by the use of the property of 8§,

(Joxiax)- 3| [oim)

If ¢(X) is, for instance, the characteristic funection of §, one obtains the
result stated in the lemma.
We can obtain from this Minkowski’s theorem on linear forms. Let

a8 2 [lp(X)pdx = e

Li(@) = Y ayzy, i=1,...,n,
g 7

icm

Zeta function of a division algebra X 285

be n real linear forms whose matrix has determinant d > 0. Let 4, ..
be n positive real numbers and suppose that the inequalities

[ Ly ()| < 054

have no integral solution except ;, = 0,47 =1, ..., #n. The volume of the
convex set § defined by these inequalities is 2"6;...8,/|d|. Using the
lemma above we have

n
d v
R N ]J‘

s On

i=1,..,n,

(19)

n
sin (ﬂlg; b 619’
i
T 12 by by
=1

where )" denotes the sum over all integral y,, ..., ¥, not simultaneously
zero. This formula is proved by Siegel [7] by quite a different method.
This formula may be used to prove the Minkowski-Hajos theorem for
small values of .
Now let .D be the division algebra of the previous section. Consider
the convex set § given by the aeD with

(20) o(a*a) <y,
where a = §2, ... 62,. Now
* g
[¥af? <{°(“ “)} <1,
g
so that sinee for oeo, @ # 0, |Na| > 1, it follows that S has in its interior

no lattice points other than the origin. § is clearly convex. Its volume ¥
is given by

792 g
Vid|-T(gl2+1)
An elementary calculation gives
fe—ﬂiwvldw — (zg)alz Jlll2 (Tﬂ/gT—l [l])
P (T—l [Z])0/4
where T = (¢(8;0;)). Using Siegel’s lemma one has the identity

I £ Y T(g/2+1) (J 2(1:1/90(1*1)))2
2 — = al .
@) Vidl (1) F(g/2+1)+ (2m)72 ~\ (o a)m )’

A0

J, being the ordinary Bessel funclion, 97 is the complementary ideal to
0 by means of the regular representation. N

e
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Unfortunately (21) cannot, in general, be used to prove the well-
known theorem of Hasse-Brauer-Noether. This is because d is not the
diseriminant of D. If k=1 and f =2 and 4 is the discriminant of D,
then d = 164, and so (21) gives

n\* 16 L
[AIZ%(z) Te "8 ot

Thig proves that a guaternion algebra with I' as centre splits if and only
it it splits over every completion of I ) o

Let us take the special case f = 1 so that d is the discriminant of
the algebraic number field Z. (21) then gives

hj2 hh/z
12 S f_) —_— > 1

@™ > (4 I'(h[2-+1)

0 .
Using Stirling’s formula for I™function, one sees that |d| - oo ag h — oo.

Let Z have r, real infinite and », complex infinite prime spots so
that #,--2r, = h. Consider the convex set § in R, defined by

(22)

€9 <1, 1< <y,

(23)

5(i)z+,7(i)’ <1, r<irtr,,

where
£ = Ly 6@‘}"- ) 5;95
4 in® = g, 60 4. 4z, 60
80 i) = g S04 L, 60T

CIeaa‘Aly 8 is convex and satisfies the conditions of the lemma. The volume
V is given by

i <1y,

7y <j K1ty

PR R
Vi
Evaluating the appropriate integrals, one obtains the formula

—— n\" L [gineA®\2 =7'1(2'n.'u.("~')|))2
e V= {3+ ) H(T"’ ) | [T [y,
Agp—1 i=
Az0

= +1

The special case 7, = 0 ig due to Siegel [6]. Using the fact that = is trans-
cendental, one gets from (24) Minkowski’s inequality [4]

\r2
(25) 'M>G)
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if 7, > 0. Butif 7, = 0 one uses the fact that for », > 0, &~ contains prop-
erly the ring of rational integers and so there are infinitely many terms
on the right of (24) which do not vanish. Thus (25) is true even if 7y = 0.

In this way one ean obtain many other identities taking for 8 sui-
table convex bodies. If one takes for § the convex set

91<1, 1<ign,

(3) 1 @) < 1 ;
[&%) <1_/2:, I J&;/_;Z; T <K 1y,
then the lemma is applicable and gives the identity given by Miintz 5]

If in (18) we take ¢(X) to be some other fonetion, not the character-
istic function, we do get identities for |d| but they do not give any inter-
esting estimates for |d|. For instance, if ¢(X) is given by (if for simplicity
we put r, = 0 and take § as defined by (23))

h
o) = Q(l—l&“’l) if XS,
0 otherwise,

& = 0w +...+ 63w, one then gets the identity

3 .
el WY Sin%(-n'}{(")))‘1
“ vl 3 I
g~

By using summation processes of multiple Fourier series one can.
obtain from the Fourier series of the function 7(X) defined in the proof
of the lemma of Siegel, other identities for |d|. But they do not give the
sharp estimates for |d| that we have obtained.
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Added in proof (5 August 1959). Professor Carl Siegel informs me (23 July
1959) that the theorem on splitting of rational quaternion algebras, which is deduced
in § 6 a8 & consequence of formula (21), has been proved already by E. Witt (Uber
ein Gegenbeispiel zum Normensalz, Math. Zeit. 39 (1935), p. 467) by using number
geometric methods.
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Note on a theorem of S. Uchiyama
by
L. CaRLrTz (Durham, North Carolina)

Let Z(m,n) denote the number of systems of complex numbers
(21, 24, ..., #,) satisfying the system of equations

Sm+'1 = Smys = o0 = Spin—1 = 0,
where
sp = A+eh+...+ 2
and m i3 an integer > 0. Two systems (2;,2,...,2,) and 21,25, ..., %,
are egquivalent in Z(m,n) if there exists a complex number A # 0 such
that
H(@5 215 2ay ooy 20) = Fl@; A2y, 22ny ooy A27),

where

@320, 2, 0 20) = [ [ (@—2).
j=1

Let B(m,n) denote the number of classes of non-trivial sets relative to
this equivalence relation. In a recent paper [1], Uchiyama has proved
that

?

m 'n) _ (m+n—1)!

(1) 2 a(d)B( al- m!n!

’
. @|(m,n) a’ d

a(l)=1 and a(n)=2""[](1—p),

' pin

the product extending over all distinet prime divisors of #. A consequence
of (1) is the elegant reciprocity relation

(2) B(m,n) = B(n,m), '

a8 noted by Uchiyama.
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