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Added in proof (5 August 1959). Professor Carl Siegel informs me (23 July
1959) that the theorem on splitting of rational quaternion algebras, which is deduced
in § 6 a8 & consequence of formula (21), has been proved already by E. Witt (Uber
ein Gegenbeispiel zum Normensalz, Math. Zeit. 39 (1935), p. 467) by using number
geometric methods.
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Note on a theorem of S. Uchiyama
by
L. CaRLrTz (Durham, North Carolina)

Let Z(m,n) denote the number of systems of complex numbers
(21, 24, ..., #,) satisfying the system of equations

Sm+'1 = Smys = «os = Spin—1 = 0,
where
sp = A+eh+...+ 2
and m i3 an integer > 0. Two systems (2;,2, ..., 2,) and 21,25, ..., %,
are egquivalent in Z(m,n) if there exists a complex number A # 0 such
that
H(@5 215 2ay ooy 20) = Fl@; A2y, 22ny -oey A27),

where

@320, 2, 0 20) = [ [ (@—2).
j=1

Let B(m,n) denote the number of classes of non-trivial sets relative to
this equivalence relation. In a recent paper [1], Uchiyama has proved
that

?

m 'n) _ (m+n—1)!

(1) 2 a(d)B( al- m!n!

’
. @|(m,n) a’a

a(l)=1 and a(n)=2""[](1—p),

' pin

the product extending over all distinet prime divisors of #. A consequence
of (1) is the elegant reciprocity relation

(2) B(m,n) = B(n,m), '

a8 noted by Uchiyama.
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We should like to point out that (1) implies the explicit result

) [m n
(3) B(m, n) = 2 —r O(._d_, 7)’
dj(m,n)
where ¢(d) is the Euler p-function and

Indeed, B(m, n) is uniquely determined by (1). Thus it will suffice to ve-
rify that the value of B(m, n) furnished by (3) does satisfy (1).
‘We have

Sor(2 ) Sea 3 1o(n 1)

dj(m,n) d|(m,n) 3| u
m o n a(d) @(0)
= Yo%) )=
t|(m,n)
Thus it is only necessary to show that

t=1,
i>1.

d)p(d
) Zw( )599( ) _

{ 1 for
ad=t

0 for
Since both a(d) and ¢(d)/s are factorable and the Dirichlet product of

factorable functions is again factorable, it suffices to prove (4) when ¢ = p".
In this case the left member of (4) reduces to

&y (s r
@O _ g 1)a) 4 B2 a4 DB aq)
P P
da=p"
1— —1 1— —1) 1—
S Y R p(p2 ). e A
» PP P p
P71 1—p PP 1)
_I pr—l P + pf
1— -1
= (4 =14 p(p—1) 4. 2 1)+
1—p ., , p—1
= e —:0
p 7 + P

for r > 0. For r = 0, the result is obvious. Thus (4) is proved.
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In a letter to the writer, Uchiyama has asked whether one can show
directly that the right member of (3) is integral. This can be done as follows.
Define B(m,n) by means of (3). Also putb

3

k= (m, n),
m=m'k,
n=n'k;

then (3) becomes

mB(m, n) = ; vl (")

Souto ()

rst=k
(m’+n’)t—1
- 3r Suo["35).

ru=k st=u
We have

‘nyt—1
(5) Zy(s)((m;?__)l )r—_O(modu).

s=u
This result is evidently a consequence of
e _1 e-1_1 e

(6) (32 23) = (32 y) (modp?,

where p is prime. To prove (6), let

ap® —1
E, = (e a)-

Then it is clear that

bpe e .
ap —]
Ha He-—l g bp°—~ ?
D47
Clearly the product on the right =1 (modp®) and (6) follows at once.
(A stronger result can be obtained easily but this iz unnecessary for our
purpose.) )
In view of (3) we have

mB(m,n) = 0 (modk);
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in the same way

nB(m,n) = 0 (mod k).
Hence if k& = mm,+ nn,, We geb

kB (m,n) = 0 (mod k),

and therefore B(m,n) is integral.
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Some cyclotomic matrices
by
L. Carrrrz (Durham, North Carolina)

1. Introduction. In a recent paper [5] Lehmer remarks that for
relatively few matrices M can one give explicit formulas for the determi-
nant, characteristic roots and inverse of A as well as the general element
of M'. He then considers two classes of matrices whose elements involve
the Legendre symbol for which these problems are solved explicitly.

Let y(r) denote the Legendre symbol (r/p), where p is an odd, prime.
The first class of matrices is of the type

(1.1) (a+b2(‘f)+ﬂx(3)+dx('fs)) (rys=1,...,p—1),
where a,b, ¢, d are constants. The second is of the type
(1.2) let+xlat+r+s) (ry8=1,...,p—1),

where ¢ is arbitrary but o is an integer.

In the present paper we consider some additional classes of matrices
for which at least the characteristic Toots can be computed. We discuss
first the matrix

(1.3) () (r,s=0,1,...,n—1),

where & = ¢™, This matrix is familiar in connection with Sehur’s de-
rivation of the value of Gauss’s sum ([4], vol. 1, p. 162). By means of his
method it is easy to determine the characteristic roots of (1.3) for arbi-
trary n.

Next if »(r) is an arbitrary character (modn) we consider the matrix
of order ¢(n)

(1.4) A = {a+by(r)+ e5(8)+dg(Mz(s),
where 7, 8 run through the numbers of a reduced residue system (modn)

in some prescribed order. This evidently generalizes (1.1). Similarly the
matrix

(1.5) (e+x(atr+e) (rys=1,...,p—1)
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