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Polynomial Hausdorff transformations

II. Regularity theorems and asymptotic properties
of solutions of linear difference and differential equations™

by Z. POLNIAKOWSKI (Poznai)

1. From the point of view of the theory of difference and differential
equations the regularity and Mercerian theorems in the case of linear
transformations of sequences and functions express the asymptotic pro-
perties of solutions of some linear equations.

In the case of polynomial Hausdorff transformations considered
in I. we obtain Euler’s linear difference or differential equations of finite
order. In this paper we shall give the generalizations of those theorems
in the case of difference equations for sequences and functions and in
the case of differential equations. Some theorems of this kind are consi-
dered in the papers of Perron [5] and Spiath [9](1). As an application
we give three Tauberian theorems (theorems 4A, 3B and 3C).

We shall use the notation introduced in I.

2. We consider first the case of sequences.

2.1.1. Let W(a, a®, ..., a’) £0 for n =v—1and WL, o, ..., al)
#0 for n 2y (v=1,2,..., k), where
1 (@ )
ulD w® L
(1) (2) *)
WD, ul o )y = Uast Yas e U
Lo e e e e e e
! ‘"7(5)—“1 ”S)—wl '”'5;,')"»;-1;
If
r 1 p—1
wl) — w® — Wi, “;L): reny ”’-S: ))
Wy =~y S TRV R e
aly W(al), af, ..., ad)
for  v=2,3,..,k and nz=vr»-—-1,

* The first part of this paper appeared in Annales Polonici Mathematici 5
(1958), p. 1-24.
(*) See the references given at the end of I.
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112 Z. Polniakowski
then Awd + 0 for v=1,2,..., % and n Z=v—1. The relations
(1) ")+ (1') Ar) =2l w=1,2,..,k and 0w
imply

W(T'%,): ag): ) a"(/:))

o) LI or  v=1,2,...,k and =0
! WL, e, ey ! A

In the proof we shall use the identity

B

Anln Anl
(2) = Afimn;lcl:
Amlc Aml *
where A = |a,,| and 4, -denotes the algebraic complement of the
L@, @
subdeterminant | " ™
| Gyt aml
We prove by induction. For » = 1 we obtain
W, a®)
4wl ) = — _*(f)“"“‘(%“ # 0,
a’n«l“ﬂ
&) ATwd 2D 1
w
() — My N1 1) = =11 |
o) = 2y + Awg)_l Awn-—l A’W&,l)_

a0l —aflall,  W(sl), al))
Aaf) | WL, ad) ’

Next, if 4 = W(@d, o, ..., af)), B =W(1,al,...,al)) for n >,
then

n=1,

) » B i1 v Bv+1,v+l
wi, = (—1) "]lé—{r—y wl) = (—1) B,
11 . vi1,

Hence by (2) we obtain for n >

1
Blle+1 1

Bll Bl,w-l

v—| 1,1 Ba+1,v+1

W (@D, aD, ..., af™)

'B'Blmllv—ll

Aw(,)_ — _1 v -1
w1 = (=) B Briny

= (—1p+t = # 0.

Suppose now that 2 = - for n>v»—1>=1;

then W(lraw: LR ag_l))
(*) Al,v+1 () Av+l,v+1
Ty = =y Wy’ =
Lvyl . Bv+1,v+1

4
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and
Awﬁ?_ 1 ES P RN | v+I 1 Bll

20D — Aw) 1o 1] BIIBH-I 1 ( 41,941 A1,»+1)
n
1 1% A |
BBI Sl 1 ' ‘AVJ»II -A-u+1 41 1’
. AAl,v+l;l,v+1 o W(wg)) a'g)y “eey a’a(:)) n >
= = K >
W1, al,...,a0) "’ ’

BBl,v+1; 1,»+1

because A4, = B,,; for m =1,2,...,»+1 and Ay = By e
‘We remark that theorem A I may also be formulated in the case
of bounded sequences as follows:
TeROREM A,. If conditions 1) and 2) of theorem A, I, are satisfied,
then the inequality lim|s,| < M implies Tim |a,b,| < MEK.
n n

2.1.2. Suppose that conditions 1) and 2) of 2.1.1, I, are satisfied and
furthermore

3) lim[s,| < M

Then there emists a solution {%,} of the difference equation (2), 1, satis-
fying the inequality h'm]i,.l < ME. In case 1a) every solution of (2), I,

has this property.

After theorem A, the proof is like that of 2. 1.1, I. We observe

that if b, £ 0 for n > N, the inequalities in cond_ﬂnons la) and 1b)
1 n—1

in theorems A and A, may be replaced by lun 2 |48, < K and

"‘ =0
11m Z' [4b,|< K respectively.
ﬂ ya=n
TamorEM 1A. Lot L(,) =&, + Ay (0) A2y +.. .+ A (0) A%w,_,.. Suppose
that the homogeneous difference equation L(z,) =0 has the solutions
(a0}, v =1,2,..., % Unearly independent, for which
1) W(ad, ag), vy 0 £ 0 for n =v—1,

n—1

22) )| - co and D' [Auwf)| < K [w)|
or =
2b) w® - 0 and i‘ | 4w < K |wd)|,
3) w® #£0 for nj;“w—l. '
Annales Polonici Mathematici VI. 3
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Furthermore suppose that
4) limls,| < M.
n

Then there exists a solution {%,} of the difference equation

{3) L(z,) = sy,

such that lim |7,| < ME®. Under the hypothesis lim|w®)| = co for » —
13 n

=1,2,...,k every solution of (3) satisfies this inequality.

Proof. We write system (1) in the form

Awd
Az 4 2L (@) — gl tY) = 0 for

o v=1,2,...,k

cand  n =,

If 2f) =2, then o' = L(z,) =s, by 2.1.1 and there follows
lima{+Y < M by hypothesis. Using 2.1.2 we find from the above difference
n
equations successively for » = k, k—1, ..., 1 that there exists a sequence
(&8} satisfying the difference equation with index » and such that
lim |z0)| < ME*"+'. We assume now that z, = z{).
n

Leb us remark that the sequence {a)} is a solution of the difference
equation I, (®,) = (—1)"'/w®, where
W (@, ), coey aY)
WL, a),..., ™)’

L, (z,) = v=2,3,..,%k and = >=v—1.

From the proved part of the theorem it follows that if |w()| - co for
»=1,2,...,7 (j <k), then for those » we have lima{) = 0. Thus we

n
obtain the second part of the theorem if we observe that the general
solution of (3) is

k
B, =T+ D> 6,a
n n g n o
where ¢, are constants.
Let us notice that under the hypothesis lims,—s = 0 instead of
R n
lim|s,| << M we may replace the relations in the assertion of theorem 1A
n
by limz, = s and lima, = s respectively.
n n
THREOREM 2A. Suppose that W (z) and W,(2) are polynomials of degrees
k21 and 1 >0 (I1<k) respectively, and Tm|s,|n=° < M with some ¢
n
real. We consider the difference equation

(4) L(w,) = L*(sn), >k,

icm
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where
k- 1
La) = 34 (1) 400y D) = Yn(!) 200, 3= (—17 2W0)
»=0 =0

and n, = (=1 AW (0). By r,, »=1,2,..., % we denote the roots of
the equation W (z) = 0. (This equation may be called the characleristic equa-
tion of (4), analogously to the case of Euler’s differential equation.)

a) If rer, s£¢ for v =1,2,..., k, then -there exists a constant K*
which does not depend on the sequence {s,} and a solution {%,} of the dif-
Jerence equation (4) such that im |%,|n~° < ME*.

n

b) If rer, < ¢ for v =1,2,..
tisfies the same inequality as {Z,}.

.y k, then every solution {z,} of (4) sa-

¢) If rer; > ¢ with some j < k, then for every K there exists a solution
{xh} of (4) such thet lim|zyn~ > K.
n

Proof. a) We assume first that W(z) = (r—2)* and W,(2) = 1.
In this case the difference equation L(x,) = s, is equivalent to the system

(5)  rall+mndal), = 2L for v=1,2,..,%k and n=>v,

where z{) = ,, 2&+t) = 5,. (Compare 2.2.4, I.)
If neither » nor r—¢ are positive integers, we substitute z{) =
- Mly(”) for v =1,2 k+1 and obtain the system
I'n—r+1) " ey
1 n—r+e
r—¢  m—r

t3 n tJ
(6) L)+mdy£z)—1= yn(:+l)7"’:172!"'7k

and # > .

I'n—r4c¢+1)
the proof of theorem 1A we infer, after 2.1.2 and 2.1.2, I, that in this par-
ticulary case there exists a sequence {7,} satisfying (6) and such that
lim |7,| < MK", where K = 1/jrer—¢|.

" Taking z, = 5(1%5%—1{_)—1) Way, We see that the sequence {z,}
satisfies (4) and is Lim|z,|n~° < ME®.

Since ~n°, we have lim |y¥+? | < M. Reasoning as in
n

n
If » or r— ¢ are positive integers, we prove in a similar way the ex-
istence of 7, and %, for n > m, where m >r, or m >7—e¢ respectively.
The terms Z,, Z, - . , Em—y We compute immediately from (4) for L*(s,) = s,.
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In the general case let
k
W(2)
W. () = L, W(z)+ ’g; A W ).
In virtue of the proved part of the theorem and of 2.2.3,I, the equation
8[(r,—n)Pr]6(x,) = (34),

has & solution {8} such that im |0 n~° < ME?, where K, = 1/|rer,— o|.

n

1<y <k,

]
Taking o) = s,, and 7, = Y I,#¥), we obtain

=0

k
DLW (m)]18(a)
v=0

[

8[W (n)]6(z,)

k
w
o[ D] s = oW ms(s),
because the relations -

W(n) A”’w(()’) — M

(rrv..qn)ﬂv
hold for = =£,1,2,... Hence L(z,) = L*(s,) by 2.2.2, 1. Moreover
e T k
lim [Z,|n~° < 3 [L|lim]eD[n~ < ME*, where K* = [lj|+ Y [,| K.

n y=0 n y=1

Asy, v =1,2,...,k,

) b) Let us notice that by 2.2.3,I, the homogeneous difference equa-
tion L(w,) = 0 has solutions of the form

@ n!
Wf(n_w_i_l)]m:rkl for ”=7+1=1’27--::k17
ag) =\ d n!
- 1 — . _
M I’(n—w—]—l) :L="k2 o ’ k1+7+1 k1+17 e 702;
ete.,
if Ty =Ty =... '——Tkl ;é’l‘k1+1 = ... =:7'k2._' ete.

We have namely
( & n!

d I'(n—x+1)

a [ n!
= —|W@) ——— =
a::-r,,) d'md ( ) P(%—~$+1) ]:c-ar,, 0
for j=0,1,...,%—1,
where %, is the degree of multiplicity of the root .

(%) This relation holds for every # if Wé assume that W ~ 2)Py
lynomial of degree k—p,. (et = s Gemotes o po-

icm
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It may be computed that the sequence {al)}, 1 < » <%, satisfies

!
e where I, (z,) =

the difference equation I, = @, ——————————
€. q o (%) * Tn—r,+1) ) ly

Wz, ad), ..., al™D)
- W(ln, aﬁ?),,...,, a,(::'l)) for v > 2, L(s,) = x,, and ¢, 7 0 depends on
1,7, ..-, 7, (see the proof of theorem 1A). In virtue of the proved part
of the theorem and of the relation »!/I'(n—r-1) ~n", it follows succes-

sively that limaf) n~° = 0, because the sequences {a}, (af'}, ..., {a§ ™7}

n
are (lineary independent) solutions of the homogeneous difference equation
L,(z,) = 0. Since every solution {w,} of (4) may be written in the form

k
@y = T, + 2@“1‘?5

v=1
where ¢, are constants, we infer that in the considered case
lim|z,ln~ < MK*.
n
¢) Suppose that, for example, rer; > ¢ and that, for given K >0,
we have lim |2 n ¢ <C K, where {x;} is a solution of (4). It is easy to see
n

n!

that the se ith terms z; = @+ (2K+1) ———————— satisfies
sequence wi z, = o+ (2K + )I’(n—-rl—l—l)
also (4) and we have lim|zf[n~° > K+1.
n
COROLLARY. Suppose now that s, ~ sn®, with some a complex, instead

of im|s,|#n~° < M in theorem 2A. In the case rer, £rea, v =1,2, ..., k,

n
it follows from this theorem that there ewists a sequence {%,} satisfying (4)

Wi(a)

s If W 0, then the
W(a) n f (a) # 0,
rer, <rea, v =1,2,..., k, is necessary and sufficient for every solution
{®,} of (4) to satisfy the above asymptotic relation.

condition

and such that %, ~ s

n!
For the proof we observe that li;n [sn——s m] " =0 by

hypothesis. From theorem 2A it follows that in the first case the difference
!
—— | has the solution {s,} such
8 I’(n——a+l)) tou}

that lima/n~* = 0. Hence after 2.2.3, I, the sequence with terms
n

equation L(z,) = L*|s,—

1(a) n!
W(a) I'(n—a+1)

T, = &, +8 satisfies (4) and we have limz,n™*
i
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The second case is proved by using the results of the proof of theorem
2A, case b), and applying the assertion ¢) of that theorem. It will be
observed that the case W(a) = 0 may be considered by the use of theo-
rem 2A immediately.

From theorem 2A follows a Mercerian theorem of G. H. H
theorem 52). e

Remark. Every sequence {z,} satisfying (4) may be considered as
a transform of the sequence {s,}. If W(n) 7 0 then one of them is the
Hausdortf transform {7} of {s,} with u, = W,(n)/W(n); the others differ
@’ n!
daf ]’(n—waé'—?lezrv'

In the case W,(2) = 1 every solution {w,} of (4) is a Hausdorff trans-
f(?rm ‘of some sequence {s,}, where s; = s, for n > k. Namely, with the
given solution {w;} of (4), if we take L{z}) =s; for n=0,1,2,...,

from it by a linear combination of sequences af) =

then s, = s, for n =k, k+1,... and A"z} :TV% A"sy for m =0,1,
)
2, ... (see 2.2.2, I, for ¢, = s, and s, = z}).
In the case rer, #0, »=1,2,..., % the method of summability
represented by the difference equation (4) may be called regular, by which
Wwe mean that under the hypothesis lims, = s and W(0) = W,(0) there

exists a solution {z}} of (4) tending t% s.
From the above discussion we obtain almost immediately
THREOREM 3A. The hypothesis:

1) W(e) and W,(2) are defined as in theorem 2A and W(n) s 0 for
n=0,1,2,...,

2 () = 8 [ 727 (e,
3) 8, ~ sn® (]s| >< co),
Wi(a)
W(a)
In the 0“3""1 Wi(2) =1 the hypothesis rea #rer,, v = 1, 2, ..,k
implies t, ~ SW n®, where (i) = § [?;((3))

We prove the ca i . .
theorem li.A, - Se rea < rer, with some v just as in the proof of

2.2. In the sequel we shall use the following lemmas:

2.2.1. Let W(z) denote the !
. polynomial of degree p =1, whose
are 1,; furlhermore suppose that W(n) 0 for m = 0?1,/2 ,7..‘ Zﬁ’fd Zz:st

imply the relation t, ~ s n® if and only if rea > maxrer,.

v

t

]5(8;,,) and s;, = s, forn = k.

icm°®
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1 !
(t,) = 6[ ]é( g n ) Then the hypothesis rer > max rer,

W(’i’b) n—r-+1) 1<v<P
1
implies 1, N_W—r) n' and the hypothesis rer < lrimx rer, < ¢ implies
v<p
lim#,n =% = 0. '

n

Tor the proof it suffices to use 2.2.2, I, and apply theorem 2A (see
corollary end theorem 3A).

2.2.2. Suppose that W(z) is the polynomial of degree p = 1. Then for
every pel0, 2n) and every integer m there exists a Toot v = r(A) of the equa-
tion
) W(z)+4i=0, where argifa =g,

» /12 2m+1
such that r N'l/ ]; exp [(—E—%ﬂgz] as |A| - oco. By a we denote

the coefficient of 2° in the polynomial W(z).

This follows from the well-known properties of the algebraic equa-
tions.

From 2.2.2 we immediately obtain

2.2.3. Suppose that argila # 0(mod=[2). Then for every real ¢ there
ewists A > 0 such that all the roots r, of equation (7) with |4 = A satisfy
the inequality rer, # ¢.

TErEOREM 4A. Suppose that

1) w(2) is a polynomial of degree k >1andw(n) #0forn =10,1,2,...,

2) rea >maxreg,, where g, are 2€ros of w(z),

3) T |ni=e A%s,| < M < oo with some positive integer 1,

n
1) 1, ~sn®, where (i,) = d[1jw(n)]d(s,).
Then s, ~ sw(a)n®.
Proof. Let 7, 7y, ..., 'y De the roots of the equation

(8) w(2) (;) +2=0

and let @ denote the coefficient of # in the polynomial w(2). If we choose
argi/a # 0(mod=[2), then by 2.2.2 and 2.2.3 we have for |A| =>4 >0

10 rer, st rea for v =1,2,..., k+1,
99 rer, o rer, if n = mand ifr, and r,, are not complex conjugate

(in particular (8) has only simple roots).
Suppose first that s = 0. We choose A as above and take p, =

=(—=1 i Als, _;+1, for n=1l; then lim|p,n~% < M[|A|1!. Using
)}. l n
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theorem 2A for W(z) = w(z )(z)—{—l Wi(2) = Aw(2), we infer that there
exists a solution {%,} of the difference equamon L(w,) = L*(p,) such

that hm[a:,, < ME*||AI!, where K* = Z]Zj/jrer—a and 1, =

= Wl( /W’(r) (see the proof of theorem 2A)
This difference equation satisfies also the sequence {s,}, because
by (4), I, we have
5[/1"’]5 (Pn) = 8[u10(s,),

where u) = W,(n), u® = W(n). Whence

—-xn—f—z,r 'r—{—l) n=20,1,2,...,

with some complex ¢, ¢y, ..., 65 ;-
We prove that the inequality rer, >rea implies ¢, = 0. Suppose
that, for example, ¢; # 0 and 7, = o4-4i7, 7, = o—ir, 7 % 0, max rer,
. 1<k 41
= ¢ >Teq. Since

k1
tn =i+ o),
r=1

where {27} and (i)} are the Hausdorff transforms of the sequences {z,}
and {n!/I'(n—r,+1)} respectively, corresponding to u, = 1jw(n), we
obtain by theorem 2A

- kg
h71.n (t,, — ; ¢, tg)) n~

Whenee by 2.2.1

— ME*
= lir [z n ™ g-ﬁll—!KI'

n" >0,

Bmt |~ = hm lo; 10 4 6,1 =0 = hm‘—i— na

w (1) ("'z)
because the sequence {acos(vInm)-- bsin(vInn)} diverges for every real
7 % 0, @ and b such that |a|+ [b] > 0. (This follows from the fact that the
set of the limit points of the sequence {cos(rlnn)} is dense in the interval
{—~1,1).)

If r; = o is real, we have similarly

11m| L n = hm[olt(l)[n"’ = |eyJw(ry)| >0.

In both cases we obtain ]im|t,,n"’| = co in contradiction to the
n
hypothesis. This proves that ¢, = 0.
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Since n~*n!/I'(n—7,+1)— 0 if rer, <rea, we finally obtain lim [s,7n
n
< MK*]|3|1!. We observe that by 2.2.2 there follows

1 1 1(k+1)
Inl ~ ’—!l' y ren| ~An]  as  |A] > oo,
(@v+1)m+ i
where 4, = |cos (—k——:l—q)) and ¢ = arg;. Next,
_ | W) A
]lv] = W’(T,) Nm Irri as M’I —> 00,
l, ]0"1 (Z' 2 )k/(k-(-l) B — R ] B K@D 1
T (r,—a) N(k-{—l)ﬂ, " ’ = {A)~B 4| . (1A] = o0),
k+l
where B_. [a]’/("’L’)(Z')’”(’“"")Z . Writing ¢(z) = MEK*(z)/|z|l! we

have lim qp(a:) = 0. Since hm]s n‘“] @(4) for arbitrarily large |4| > 4,
{z]=> 00

we obtain lims,n™® = 0.
n

In the general case we observe that the sequence with terms #; = ¢, —
n!

—sm is the Hausdorff tra;nsforr‘n of the sequence s = s, —
! 1
—sw(a)j_@;—f—a—_rl—) for n = k, corresponding to g, = PTOR It is easy

to see that imiin~ = 0 and that the sequence {n*~A's}} is bounded.
n
Whence lims;n™ = lims,n "—sw(a) = 0 by the proved part of the
n n

theorem,

3. We shall now prove analogous theorems in the case of functional
linear difference equations and differential equations.

3.1. We assume that the functions considered in this section are
complex and defined for z > a.

3.1.1. Let U(g,, ¢, .- ,gﬁ,) #0 forex=zat+v—1 and U, ¢, ..., 9)

#0 for x =a+v (v=1,2,..., k), where
| f1(a) fa(@) v Tol@) i
|
fufz;-n, ') — fl(m_l) fE(a’l_l) Lo jv(w_l)

Lle—r+1) fulm—»+1) ... f(z—r+1)
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If
1 Uy ouy -5 001)
u, () = () = —— DL for g = 2,3, zZzotv—1
@ = U1y P2y -ees B) =
then Aun(x) # 0 for v =1,2,...,k and © > a+v—1. The relations
u, (x—1)
(9) v, (@) mA%(m~—l) =4y (®),r=1,2,...,k and = a+»
mply - )
(yl,%,- o Py
= LI A4 y=1,2,...,% and x=al».
?/u+1( ) U( Py s ’%) . y Ay ) =

For the proof we use 2.1.1 with a{)=e¢,(x—n-+m),
m=0,1,2,...,nand »v=1,2,..,k
We shall use the following theorem:
THEEOREM B,. If conditions 1) and 2) of theorem B, X, are satisfied
then the inequality Lm|s(2)| < M implies Tifﬁlf(m)/g(w)\ < MEK.
Z—>oo £—>00

w§)=y,(x—n+m),

3.1.2. Suppose that conditions 1), 2) and 3) of 3.1.1, I, are satisfied
and furthermore

4) lim s(z)] < M.

Then there exists a funciion g (x) satisfying for & = a1 the difference

equation (12), I, and such that li_m|g(w)] < MEK. If g(n) satisfies la) and

Z&—c0
y*(x) is a solution of (12), I, bounded in some interval {my, B,-+1) (with
@ = a) in which g(x) and F(2) are bounded, then Hm|y*(z)| < MK.

T—>00

After theorem B; the proof is similar to that of 3.1.1, L.
THEOREM 1B. Let
- Liy@)] =y @)+ (@) dy (m—1)+...+ 4(2) Ay (x— k)
and suppose that the homogeneous difference equation L(y) = 0 has the
solutions @,(x), v =1,2,..., k, Unearly independent, for which

1) Tlpy, ¢a - P #0, w>a,—{—v 1,
) |, (@) = o0 as & — co and Z‘[Au W < K |u, ()]
or N
2b) u,(z) >0 as & — oo and .ZIA“‘v @+ )| < K|u, (@),
3) (@) £0 for &> atv—1.

Furthermore suppose that
4) there exisis X > a such that in every interval {a,, b,>, where X < a
<by < oo, we have the inequalities |Au,(z) =e (v =1,2,...,5—1)

ond |u,(@)] <A (v =1,2,..., k) with some s >0 and A < oo (depending
on @y and by).

Polynomial Hausdorff transformations (II) 123

5) lim|f()| < M.

2—>00

Then there exists a solution 7(x) of the difference equation
L(y) = (=) = a+k,
< ME*. In case 2a) each solution y*(x) of (10), bounded

(10) for

such that hm|y(w)|
ZT—c0
in every finite interval (@, x,> with large %,, %, > max(a, X), satisfies
this inequality.
For the proof we write system (9) in the form
, (5 ~—1)
——W [y, ()

and put ¥,(#) = ¥ (®), Ypa(2) = f(#). Just as in the proof of theorem 1A
we show, using 3.1.2, that there exlsts a function 7,(x) satisfying the

above difference equation with index » and such that lim 7, (»)| < MK+

@& —> 00
(»=1,2,..., k). We set 7(z) = 7,(z). Let us remark that in the proof
of this part of the theorem we have not used condition 4).

Suppose now that condition 2a) is fulfilled and that y*(«) is a solu-
tion of (10), bounded in the interval {x,, 2,> with max(a, X) <<z <@, —
— % < co. By hypothesis it follows that in this case the funections ¥,(z),
y=1,2,..., %k, where y,(#) =y*(®), are bounded in the intervals
{y+v—1, ). Using 3.1.2 successively to the equations in question for

y =1k, k—1,.. < MK"

Ay, (x—1)+ Y@ =0, »=1,2,..,% s=atv,

,1, we obtain hm lyy(2)| = hmjy ()| <

3.1.3. Let W,(2) = ZM() 2/1(”( )A”y(m-—v) for j =0,1,2;

y=0
W, (2) is then the characteristic polynomial of the difference equation L (y) = 0.

If Lo(y) = Ly (y)+La(y), then Wo(2) = Wil2)+Ws(2), if Lo(y) =
= Lo[L1(y)], then Wo(2) = W, (2)Ws(2).

The additive property is obvious. We observe that for the functions
y(x) representable by their Newton-Gregory series both relations follow
almost immediately from (16), I. In the general case it suffices to prove
the latter for W,(z) = a+bz, b % 0. We obtain

Lo(y) = L[ Ly ()] = aLy(y)+ b V;t“ul [( 1) A"y(m~1——v)]

Fy

L () + baoa) Ay (5 — 1)—|—va “)[("1)4“1:/@ 1—»)+

B + (::;) e (m—v)].
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Computing the coefficient of ( )A" x—v) we obtain

A = ad® ey (A0 + M) for v =0,1,..., k41,
where we set A% = Af); = 0. Since A = 4"W;(0), we have
AWy (0) = W, (0) AW (0)+ v AW, (0) AW, (1) = AW, (0} W,(0)
for v =0,1,...,k-+1, and there follows W, (2)Wy(2) = Wo(2).
314. Tf
1) lima@® = o™, where |a®)| < oo, for §,v =1,2,..., k,
2) t;:e matrices (a®™) are not singular (j,» =1,...,mform =1,..., k),
Za(f")c(")] M for j=1,2,...,k and n =0,1,2,...,

then thev sequences {cf)} are bounded (v =1,2,..., k).
‘We prove the lemma by induction. For & = 1 the assertion is obvious.

We assume that it is true for %k—1 >1 and prove indirectly that the
sequence {69} is bounded. If lim 6| = oo, where {¢f)} is a subsequence
of {¢), then we obtain "

k—1

hmZaU“) W _ —a™, j=1,2,.., k.

=1
‘Whence in virtue of the hypothesis the sequences {¢{)/c{?}, » =1,2,...,k—1,
are bounded. Leb limcﬁ:}p/cﬁ; =3, with some sequence of indices {my}
tending to oo, and » =1, 2, ..., k—1. We find that the values , = s, for
v=1,2,...,k—1 and 2, = 1 satisfy the system of equations

k
Za(j“)a;'=0 for f=1,2,...,k

r=1

in contradiction to 2). Then hm]Za(j”)a(“H <M +11m|a(”‘)c(")[ M, for
y=1
i=1,2,...,% and the boundedness of {9}, {oﬁ)} yoeey {F7D} follows
now from ’Ghe hypothesis.
3.1.5. Suppose that
1) the functions ¢, (x), v =1,2,...,%k are periodic, with a period
w0 =1,
2) the functions f,(x), v =1, 2, ..., k are continuous for ze{m,, By+ k),
;3) Uk(fl, fayeon 1,) #FQ for mel@o+v—1, my+9), v =1,2,..., &,

4) 1210.(50)12(90)] < M < co for melwy, o+ k).
Then the functions c,(z) are bounded (v =1,2,...,k).
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Let {x,) be any convergent sequence from the interval {w,, wo+1).
Using 3.1.4 for o) = ¢, (2,), o = (2,4 —1), we obtain o) =, (@ +j—1),
where T = hmmn, and hm]c ()] < oo for » =1,2,..., k. From this we

1mmed1ately obtain the desired result.
THEOREM 2B. Let W(z) and W,(2) be polynomials defined in the
theorem 2A and suppose that lim |f(x)|a~° < M with given ¢ real. We consider
Z—r 00

the difference equation
(11) L) = L) Jor w>a,

where L(y) = 21() (@—»), L*(y) = 277,() —3), 4, = LW (0),
Ny = AW4(0).

a) If rer, ¢ for v =1,2,..., &k k (r, are defined in theorem 2A) then
(11) has a solution 7(xz) such that hm] )| < ME*, where K* does not

ZT—>00
depend on f(x).

b) Ifrer, < e¢,v =1,2,..., k, then every solution §(x) of (11) bounded
in the interval (z,, %o+ k) with some z, > max(0, a, X), satisfies the same
inequality as y(z). (The value X is defined in the proof.) -

e) If rer; = ¢ with somej <k, then for every K there exists a solution
y* (%) of (11) such that lim|y*(z)|a~° > K.

Z—00

The proof is in principle similar to that of theorem 2A. In case a) we
observe that under the hypothesis W(z) = (r—=2)* and W,(2) = 1 diffe-
rence equation (11) is by 3.2.1, I, and 3.1.3 equivalent to the system of
difference equations

ryf(m)_xAyv(w_l) = y7+1 (m)’ V= 1 2 k and T = et v,

where ¥,(®) = ¥(®), Y1 (@) = f(x). Maklng the substitution
I'Ne—r+c+1)
y,(x) :ﬁz,(w) y=1,2,...,k4+1, for wx>=>A4,

where A = max(a,r,r—o¢)if » is & real number, and A = a otherwise,
we obtain the system of difference equations

x 1 z—r+e
z(2)—— 4 —1) = .
W(0) = — Az (o—1) = — .

2@, v=1,2,...,k

and @ > A+,
Using 3.1.2. and 3.1.2, I, we prove, just as in the proof of theorem 2A,
that in the considered case there exists a solution y(zx) of (11) satisfying

o 1
the inequality lim|g7(z)|z™° < M —m—.
quality x’mly( o™ < o7 —of*
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Dy .
In the general case let I, (y) = Z’l,(")(;c) Ay (x—37), where A8 =ATW0)(0),
j=0
W¥(z) = (r,—2)" and let L;(y) be defined by the equalities Lj(L,(y))
= L{y), » =1,2,..., k. From the proved part of the theorem it follows
that the difference equation IL,(y) = f(z) for 1 < v < %k has a solution
7,(x) such that lim|g,(#)|2™° < MKL, where K, = 1/|rer,—e¢l.

L=r00

k —
It 7(x) =Zof(m)-\—21l,,z“v(ac), then lim|j(w)|2™¢ < MK*, where K*

ZT—00

k
= lll+ 3 14| K2 and
p=1

. k 13
L) = LI+ YLLE) = LI+ YL = I*0),

because W(z)/(r,—2)P is the characteristic polynomial of the difference
equation Li(y) = 0 by 3.1.3.

b) If y(») satisfies (11) then

k
7(@) = g(@)+ Yo, (@)p, (@),

where ¢,(z) are periodic funetions with a period w = 1 and

& I
?(2) = =5 @)

dr’ T'(@—r-+1) -1

, 0<j<k,
=1y

We choose X so that W(z) %0 and that g(z)az~° is bounded
for @ > X. Supposing that §(z) is bounded in {m,, 2,+%k> for some
7, > max(0,a,X) we see that hypothesis of 3.1.5 is fulfilled with
f,(¢) = ¢,(x) since, as may be computed, we have Ul(gp,...,p,) =
—2 I'(z+1)

171 L(g—r41)

=
Whence ¢, (x) are bounded by 3.1.5.

Agsuming rer, <e¢, v =1,2,...,k we have limg, (x)z~° =0 and
200

, Where 1, depends on 7y, 7y, ...,7, (L <v<k).

there follows lim|j(z) o~ < ME*.
T—»00

¢) The proof is similar to that of theorem 2A, case c).
Just as in the ease of sequences we may state the following corollary to
theorem 2B: Suppose that /() ~sz® as 2 co instead of lim |f(x)|2~° < M,

Z—>00

with complex a. In the case rer, s£rea, » =1,2,..., %, there exists

icm
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. o Wila)
a solution y(®) of (11) such that y(x)~s o " as X —> oo,

T W(a) # 0, then the condition rer, <rea,y =1,2,..., k, i3 neces-
sary and sufficient for every solution g(z) of (11) such that y(x) is
bounded in some interval <m,, @o+ %> for large =, to satisfy the above
asymptotic relation.

3.1.6. Suppose that f(#) = I'(@+1)[I(@—r+1) for © =z = 0,
fl@) = 0 for @ < @, and that o (@) 1s defined by (14), I. Then the hypothesis

rer > —1 implies ¢ (@) ~m'/ (k'kM) as © — oo and the hypothesis rer < —1

< ¢ implieslimey(x)x~° = 0.

Z—>00

Tor the proof it suffices to apply theorem 2B since L(ck(m)) = f(®)
for W(z) = (:kak>, the transform ¢(») is bounded in every finite interval
(g, @) With —1 < @y < @; and f(@) ~a" as & — oo

TeEOREM 3B. Suppose that

1) rea > —1,

2) f{z) = 0 for & <0, the transform o, (x) s defined by (14), I, and
e () ~ 8" as @ —> oo, .

3) Im ot A ()] < M.

00

Then f(x) ~ § (k;a) & as © — oo.
Proof. Suppose first that s = 0 and L(y) and L*(y) are defined as

in theorem 2B with W(z) = (“{’“) (f)+z, W,(2) = A (z*];") Just as in the

proof of theorem 4A we show, by the use of theorem 2B, that for |1| = 2

there exists a function 7(#) satisfying the difference equation L(y) =
1

= L*(p(«)) (» > k—1), where p(z) = 7(9;) A'f (@ —1)+ ¢, (z) for 2 > —1,

%

and such that lim|7(z)e

Using 3.1.3 and observing that L*(ck(w)) = Af(@) for = >k-—1,
we easily see that the difference equation L(y) = L*(p) is satistied also
by the function f(z); henece for # >k—1 we have

L .
S

B4l

I'z+1
f@) = glar+ Ydie) g el

D)’

where d,(x) are periodic with a period @ = 1 and r, are zeros of the po-
lynomial W(z).
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We choose X >Fk—1 so that W(z) 0 and that the functions
op(®)~ and F(z)a™ are bounded for # > X. Hence the function f(w)

1
=7 L* (ex(w)) is bounded in every interval {w,, #;) with X+ & < @, < @,

< oo and in virtue of 3.1.5 we infer, just as in the proof of theorem 2B,
that every 4,(») is bounded.

‘We prove now that d,(#) = 0if rer, > rea. Suppose that, for example,
dy(&) % 0 with some £¢{0,1) and that r,, r, are defined as in the proof
of theorem 4A. We have

kil
(@) = y* (@) + D d(@)1,(@), o> -1,

=1

where y*(x) and %,(z) are the transforms of ¢(») and ¢,(#) respectively,
defined by (14), I. We take here

y(z) for o >k-—1,
p(o) =
f(=) for #<k-—1,
I'w+1)
w@) =] Ta—r,ry & *7F
0 for 2<k-—1.

Hence, as in the proof of theorem 4A, we obtain by 3.1.6

AL I [E(8) 8 (5 + 1)+ do (£)1:(£+n)]

AT e Etay

@ (£) o da(£) -
(:k) (E+n)t 2 (& 4-m)

4

and ]E]o,,(m)m‘ﬂ = oo in contradiction to the hypothesis.

= lim

n

>0

X—>00
Similarly we prove the case of 7, = o real.
This - concludes the proof in the case of s = 0. In the general
case we observe that if oj(w) iy the transform of the function 7*(w)
k+al I'(z+1)
=f(@)—s T eaeeneTe
¥/ I'z—a+1)
lim oz (#)2™* = lim ey, (¢)2~*—s = 0 by 3.1.6 and by the hypothesis. Since

L300 Z—-»00
the function o™~*A'f*(2) is bounded for large #, we infer from the proved
part of theorem that limf*(#)x~* = lim f(x)a—*—s (k"]t“) = 0.

Z»00 200

for # >0 and f*(#) = 0 for # < 0, then
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3.2. We assume that the functions considered in this section are
complex and defined for # > & and that they have for those 2 the k-th
continuous derivative.

3.2.1. Suppose that W(p,, ¢sy..., @) =0 and W, ¢, ...,9,) #=0
for x>=a and v =1,2,..., % W(f,fsy ..., fn) denotes here Wronskian
of the functions fi(x), fa(%), ..., fr(z).

1 WL, @150y ¢m1)

If w (@) =——0) @) =—m——
Pl =gy W (g1, @2y -1 @)
then w.(z) £ 0 for w = a and » =1,2,..., k; taking

for v=2,3,...,k

w, (@)

(12) y;.(m)"“w,(m) % @) =y, a@) for v=1,2,..,k and z=>a,

we obtain

Yppr = v;%f:g;::::%’ v=1,2,..., k.

WY, @1y s 00)

Wiz, 0055 n)

W, 2,015 005 @) Wiy o5 @)
W2z, @1y - -y @) )

Let 4 = W(y,2,p1,...,9,); then by (2) we have

F (@) W2 (2, @15 ooy Pn) = W (Y015 o @)W (2, @15 0oy @) —

~W (Y, @1y ey @)W (2, @ry oevs 1)

For the proof we show that if F(z) = , then

(13) Fl(z) = —

= A“+1,2A"+2,1_An+2,2An+1,l = "AAn+1,n+z;1,z-

We prove 3.2.1 by induction. For v =1 is wy(z) = —g¢;(2)/p} () # 0

and 1 4 Wi )
¥
Ya(8) = ——+— () =*‘”—1’(£1—
’1.01(.’1’}) dw W(17¢1)
W
Let y,(z) = W, 00, then by (13) for n =»—1, 2 = ¢, is

W, e, 0,1) !
,,_1_d_ WYy Prseeey @)
dw W(@,, @15 -y 1)

Wiy, o0y o @) W(Pry -y ) .
W2y o0y 9,) ’

taking y,(x) = 1 in the above formula we obtain

WAL, @15y @)W (Pry -5 9,1)
W@y e @)

d w

; 2w = Y1y 1, 7%).

w,(z) do W, 01y..050)

Annales Polonici Mathematici VI. 9

& ) = (1)

w, (%) = — #*0.

Hence y,,,(%) =
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In the sequel we shall use the following theorem:
TaEoREM C;. If conditions 1), 2), 3 o]‘ theorem C, I, are satisfied,
then the inequality llm ls(z)| < M implies hm\f Wglz)| < MK.

3.2.2. Suppose that conditions 1), 2), 3, y of 3.3.1, 1, are satisfied
and furthermore
5) lm [s(z)| < M.

220
Then there ewists a function F(z) satisfying (17), I, and such that
1?!?@(@‘)[ < ME. If g(x) satisfies 1a), then every solution y(x) of (17), I,

LT
satiﬂsﬁes the same inequality as 7(x).

The proof is like that of 3.3.1,I. We observe that if g(2) # 0 in I,
the inequalities in conditions 1a) and 1b) in theorems c and C, may be

replaced by hm [U;g t)]dtl < K and lim LU lg'(t \dt‘

T—rg lg(z
respectively.

TaeEorREM 1C. Let L(y) = y—I—Zl y® and let Ie(a,b) denote some

neighbourhood of the point x,. Suppose that the homogeneous differential
equation L(y) = 0 has in (a, b) the solutions ¢,(x), » = 1, 2, ..., k, linearly
independent, for which

1a) |w,®)| — oo as @ — m, and Uz[w O di| < Kjw, (®)| for @,yel,
or !

1b) w,(z) >0 as -z, and U\w N dt] < Kjw, ()] for zel,

2) w,(z) # 0 for we(a, b),

3) w(z )f( are continuous in (a, b).

Ij B |f(2)| < M, then there exists in (a, b) a solution §(w) of the diffe-
rential Zfzﬂation
(14) L(y) = f(a),
such that hm[y(m)[ < ME® If hm1w ) =00 for v =1,2,..., % then

every solutwn of (14) satisfies the same inequality as 7(x).
For the proof we write (12) in the form

w, (2)

w, (%)

¥, (@) + [%(@)—Ypa(2)] =0, »=1,2,...,k,

and reason as in the proofs of theorems 1A and 1B, using 3.2.2.

icm°®
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&
3.23. Lot Wiz sz)( ) Z’zw y") ) for j=0,1,2.
If Lo(y) = Ly (y)+ Ly (y), then Wo(2) = Wy(2)W Zf Ly () = Ly(Ls(y),

then Wy(z ) Wl(z)Wg( ).

In the case of functions representable by their Maclaurin expansions
the above relations follow from the identity of Guderman (see 3.4.2, I).
We prove the general case similarly to 3.1.3.

THEOREM 20. Let W(z), W,(2) be polynomials defined in theorem
2A and let 7, be zeros of the first polynomial. We consider the differential
equation

(15) Liy) = I'(f), z>a,
where L{y , I'(y) = F e W(0), 7,=2"W1(0)
and suppose that ;f(l) m) 8 continuous ;for z = a and that hml flo)e™¢ < M.

a) If rer, #¢ for v =1,2,...,k, then there emsts a constant K*
which does not depend on f(z) and ¢ solution F(x) of (15) such that
lim |7 (2)|™° < ME™.

Z—00
b) If rer, <c¢ for v =1,2,..., k, then every solution y(z) of (1b)
satisfies the same inequality as ¥y(x).
¢) If rer; = ¢ with some j < k, then for every K there ewists a solution
y* (@) of (18) such that limly*(2)|z~° > K.
Z—>00

For the proof we observe that

k
= wz AW (@) = 29 (2)

ye

(16) L (z°2(x))
»=0
for any complex a. Hence we may suppose that ¢ = 0.

In case a) and under the hypothesis W(z) = (r—2)f, W (2) =1
we may apply theorem 1C with z, = oo and f(z)r* instead of f(x), since
in that case we have w,(x) =2 " for » =1,2, ...,k (See also Perron
[5].) We observe that for ¢(z) = 27" is

z_mlp f o’ (

1 f »
:c—»o‘P(w vl

it rer <o,

1‘8'7‘

if rer>0.

rev
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We conclude the proof similarly to that of theorems 2A and 2B by the
use of the function 2" instead of I'(z+1)/I'(x—r-+1) and of 3.2.3.

CoROLLARY. Suppose that f(z) ~ sa® as & — oo instead of Ealf(w)\m‘“
Z->00
) ky it follows that
Wi(a)
@
W(a)
as @ —» oo. If Wi(a) # 0, then the condition rer, <rea, v =1,2,...,k,
is mecessary and sufficient for every solution y(x) of (15) to satisfy the above
asymptotic relation.
For the proof we observe that in the case rer, st rea, v =1,2,...,k,
?he differential eqpat}on L(y) = L*(f—s2®) has, by theorem 20, a solution
y () such that limy(z)a™ = 0. It is easy to see that the function
L=>00
_ N Wile .
y(z) = (cv)—i—s——l((;)l #" satisties also (15) and we have limy(z)w
B->00
= sW,(a) [W(a). We conclude the proof just as in the case of sequences.
Let us remark that the Cesaro transform

< M in theorem 2C. In the case rer,srea, »=1,2,...

there exists a function §(x) satisfying (15) and such that 7(x) ~ s

k &

[

(a— 1) f(dt, @ >0,

satisties the differential equation L(y) = f(z) with W (z) = (”{’“). Hence
. I
it follows from the above corrollary that the relation f(2) ~ sa® implies
Cr(x) Nsw“/(kza) as @ — oo, if rea > —1.

TrEorEM 3C. Suppose that

1) f{2) has for m >0 the continuous derivative of order k-1,

2) rea > —1,
3) limlw’““f“) (@) < M,
k

T
— Jo—
—*—kf o= 1) (1) At ~ 53 as @ - oo,
0

Then f(z) ~8(k76_a)m“ as & — oo.
Proof. Suppose first that s =0 and that L(y) and L*(y) are defi-
ned as in theorem 20 with W (z) = (z““ ()+z W,(2) = ("“ﬂ) Just
2)

as in _the proofs of theorems 3A and 3B we show that there exists a fune-
tion 7(2) sa.tlsfymg for » >0 the differential equation I(y) = L*(p(a)),
ok

wher: L B (g
ere p(@) = =77 f9(@) + Ox(a), and such that fim |z (z)a~| < T
Zoroo !
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Since L*(Cy( , we obtain L(f) = L*(p(#)

k+1

Z e, for

where 7, are zeros of the polynomial W(z).

We prove now that the inequality rer, >rea implies ¢, = 0. Sup-
pose that, for example, ¢, % 0 and that r;,7, are defined as in the
proof of theorem 3A. Then

)) = Af(@ ) by 3.2.3, whence

x) = §(®)+ z >0,

—y(aﬁ+51 (HT),

k41
%) transform of the function y(#)— X ¢a™andr,
v=k1+1
< —1 otherwise.

where y* () is the (C,

are 5o ordered that rer, > —1 for 1<» <k, and rer,
(If k, = k-1, the latter sum is equal to zero.}

— MEK*
Since lim |y*(z)a™ < T K, by theorem 2C, we have
Z—>00
—i
lim | O (@)%~ hmi (k+v + 0,4 o )
LT—r20
(G NGE]

and just as in the proof of theorem 3A we infer that limf(w)a;‘“ =0.

In the general case it is easy to see that the function C’k (@) = Crl2)—
—sz is the (C,%) transform of the function f*(z) = f(2)—s (k’"'a) z°

dl a
(see (16)) and Lim(C}(z)o—® = 0. Observing that #'*—— =a(a—1)...
Zr00 dw
.. (a—1+1) we find by the proved part of theorem that limf*(#)2~
= limf(z)s—°—s (’“:“) =0.
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