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1. In the present paper(') the author continues his investigations
of [10]. Most of the results of [10] are special cases of the theorems pre-
sented here.

Given a function f(x), almost periodic in the sense of Besicovitch
with p-th power (feB?) for a certain 1 < p < 2(?) (for definition see [3],
p. 77, 100), let the series '

N

(a,c08 4,2+ b, 8in 2, )

1)

S
]
4

be the Fouier series of the function f(z), or a series extracted from that
Fourier series, i. e. @, = M{f(z)cosi,x},b, = M{f(x)sini, s}, where
M{g(x)} denotes the mean value of the funetion g{z) (see [3], p.12).
‘We shall always suppose 4, 4 oo(3).

Our paper is devoted to proving some sufficient convergence-condi-

tions for the series

o0
() 2, il 1517,

n=1
where 8 = 0, 0 < y < 2. It is known that the convergence of the series (2)
with g = 0, y = 1 is equivalent to the absolute convergence of the series
(1) (see [6], theorem 8.1.1). We shall suppose some generalized Holder
conditions to be satisfied or the generalized variation of the function
f(@) to be bounded. The theorems obtained here are of the type of Bern-

(1) The results of this paper were presented on May the 2-nd, 1957, to the Polish
Mathematical Society, Section Poznan.

() We will not repeat the assumption 1 < p<C 2. However, it is valid in all
the theorems presented here.

(%) Since the terms of series (2) are non-negative, the assumption that i, is
increasing is for f = 0 superfluous.
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stein and Zygmund theorems (see e.g. [17], p. 135 and 136). They are
generalizations of a number of known theorems (see the cited bibliography).

I wish to thank Professor Wiadystaw Orliez for his valuable remarks
and friendly perusal of this paper.

2. First we introduce some necessary definitions and lemmas.

2.1. DerFINITIONS. (3) A™(f; 2, k) will denote the difference of
order m (m =1,2,...) of the function f(x), i. e.

A(“)(f; @z, h) = f(m)}

A™(f; 2, h) = A(m_‘l)(fi o+h, h)— A1, 2—h, h)
Moreover, we write

af™ = M{A™(f; z, h)cos Az},

(b) The values

f™ (h)

for m=1,2,...

B = M{A™(f; 5, h)sinA,z).

= sup [M{|4™(f; z, 8/2)I"}]'",
Bl<h
>1and m=1,2,... and
w™ (k) =lm essup |A™(f; x, §/2)|,
. T»o0 22T, 101<<h

where m =1, 2, ... will be called the r-th integral modulus of the function
f(z) of order m and the modulus of the function f(z) of order m, respecti-
vely.

(e¢) Let IT be any partition —T =g, <2, <... <@y =T of the
interval {—T, T). Given » >> 1, T > 0 and a positive integer m, we write

(m] [ A(m) Ty 1+7"'n Ly, — Ty _y |r 1
T2 T om ‘ '

Then we call the value

V) =T V)

T

where 7

the r-th variation of the function f(z) of order m.
(d) A(x) will denote any continuous increasing function, defined for
>1 and such that A(n) = 4,, and u(z) the function inverse to 1(x).
Similarly, given an increasing function ¢(z), we denote by w(z) the
function inverse to g(z). .

2.2. Levwas. (i) If a; > a3 > ... >0 and = is o rveal, then the serics

o =]
2%a,  and Z n*lq,
y=1 n=]1

are either both convergent or both divergent.
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(ii) Suppose that r Then

M4 f; 2, BT} <

=21, h>0,m=1,2,...
2mh [VEO ()T
(iti) Given ¢ >0, b >0 and a positive integer m, we have

(a1 DI = 272(Ja, 4 B9 sin A,

iv) If 1<p <2, 1/p+1/g =1 and feB®, then
[3) antt+ a9]"* < [M{1f (@) )]
n=1

(the Young-Hausdorff inequality).
(V) If1l<p <2,1jp+lfg=1,feB’and 4, = {n:
then for arbitrary positive integer m,

2, Uanl®+ 16,9 <

ned,,

2T M{| A (f; @, 27 PO,

(vi) By the assumptions of (v) we have

D0 (|7 [B,[%)2

ned,

< Lu(@m) — p(@ 7 R 1P [ 3 (a4 B,19] 77,

ned,
where n, = maxn.
ned,
(vil) Given 0 < y < gq, the series

Sintllanr+ b7 ond 3w (a0 [Baf?)

are either both convergent or both divergent.

2.3. Proofs of the lemmas. Lemma (i) is known (see e.g. [10],
p. 13).

To prove lemmsa (ii)(4), suppose that V{™(f) < co. Given & >0,

let us choose a number 7, >0 such that for T > T,
[V sl DT < 2(T4 3m)}{[VE(£)] + ¢} -

(*) This lemma has been proved for m = 1 for periodic functions by L. C. Young
([18], p. 259) and for almost periodic functions by the author ([10], p. 12, lemma 1)
with @-th variation instead of r-th variation. Lemma (ii) remains true, of course,
also for @-th variations.
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For fixed T > T,, let us consider the partition —T =z, < @, < ... < &y

=T, defined by formulas @,—®, ; =2mh for n=1,2,..., N1,
By—2y_; < 2mh. Then
T mh N—1 i o .
f[A(m)(f;a;,h)l”dmz A‘m)(f, e ""—‘) dt+
~T —mh n=1 2 m
(Ey—2y-1)/2
+ P (f--—“"1+”N +1 h)
~@y gy
2BV o (AT < 4mh (T4 3mh){[ VD (/)T + o).

Thus

M{A™(f5 2, 2)|"} < 2mh{[VED (AT + ¢}

Equality (iii) follows from formulas

al™t) = 2bMsin b, BMHD =

—2a{"sind,h  (m =0,1,2,...).
The proof of the Young-Hausdorff inequality (iv) may be obtained
as in the periodic case without essential changes (compare the proof for
periodic functions in [87).
Now we prove (v). Applying (iv) to the function 4™ (f;»
then (iii), we obtain

,277 1 and

2 (1ol B sin 27" < 3~ (M| A, 27 ) e,
Since for ned,, |sin,27"7Y > 272, we have
D) (a7 15,17 < 2792 3T ([, (1,19 sin 2, 272
ned, n=1
< 2—mqlﬂ[M{|A(7n)(f; @, 2~u—1)\p}]1/(p—1)_

To prove (vi) let us denote by |4,] the number of elements of the
set A4,. It follows from the Holder inequality that

I q Ve < ] i
z;“ (4 Ity <[ 2 @D 3T (aaf 4 B,

ned,

SALLAL] 3T (lanlt 13,0]
ned,
Sinee |4,] < p(2'm)—u(2" " n)+1, we obtain (vi).
Lemma (vii) follows from inequality 3(14 292 < 1-4+a7 <2 (14-=)"e,
valid for 0 <o <L, 0 <y <gq.
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3. Now we prove two theorems concerning the convergence of se-
ries (2), analogous to theorems 1 and 2 of [10]. The first generalizes the
known theorem of Bernstein /[1] and [2]), Szész ([14] and [15], p. 376,
theorem 3.1) and Hardy ([7], p. 631, theorem 8 and [17], p. 143, example 6),
the second one the theorems of Zygmund ([17], pp- 136 and 138), Hargila-
dze ([4], p- 203) and others. We shall apply indications introduced in 2.

3.1. Given $ =0 and 0 <y <2,

j (2w

r=1
for a positive integer m. Then series (2) is convergent.
32.If 20, 0<y <2, feB?, f(2) is for a certain 1 <7 <
finite r-th variation of order m and
o0

D (2 ) — (2

=1

let us suppose that feB? and

)= (IR LTI 0 (37T < oo

p of

)L 1] e Do —w/B [ gy (™) (27)PNIP < oo,

then series (2) is convergent(s).

3.3. Theorem 3.1 follows from (vii), (vi) and (v).
To prove 3.2 let us remark that, given T >0, we have

U{A™ (52,277} < essup (AP, 8/2) P M{|A™ (f30, 277"

=T, gl
Supposing T — oo we obtain

A F; 2, 2777} < [ (@) P M{AM (5 2, 277

To the above inequality we apply inequality (ii) and then the inequality
obtained to (v). Then according to (vii) and (vi) we obtain 3.2 in the
same way as 3.1.

Now we shall consider some applications of theorems 3.1 and 3.2
assuming that A, satisfies further conditions.

4. We consider an increasing sequence ¢, > 0 such that for every
e >0 there exists a positive integer ¥ not depending on = such that
@n < &g, Tor n =1, 2,... Let us suppose that ¢, = O(g,_;) and that
the “sequence 1,1 co satisfies the condition ¢, = 0(4,). We choose
increasing functions ¢(z) and A(x) such that ¢(n) = ¢, and i(n) = 4,.
Then for every ¢ > 0 there exists a number &' > 0 such that ¢(») < ep(k' )
for # > 1. Moreover, ¢(x) = O[p(z—1)] and @(z) = O[A(#)].” Let us
denote by w(z) and u(z) the functions inverse to ¢(z) and Ai(=x), respec-
tively. Then, given any % >0, there exists a %' such that y(kz) <k v (2),

(*) In 8.1 and 3.2 and in all the subsequent theorems in this paper as well one
must pay attention to(3).
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whence ¢(x) = 0[A(z)] implies pu(z) = O[w(x)]. Especially, we obtain
w(@m)—p (@ Im)+1 < p(@n)+1 = 0(y,),

where v, = p(n). Similarly, n, = mixn = O(y,). Hence theorems 3.1
Nne
and 3.2 can be formulated as follows. ~
4.01. Let us consider an increasing sequence p,>0 satisfying the follow-
ing condition: giwen an arbitrary & >0, there exwists o positive integer &
such that @, < ey, for n=1,2,... Let us suppose that @, = O(p,_,),
feBp7 Pn = O(An) and

(3) D T [P (27 < oo
y=1
for ceriain f >0, 0 <y <2 and a positive integer m. Then series (2) is
convergent. .
4.02. Let us suppose the sequence p, >0 to salisfy the same condition
as in 4.01 except (3). Further let us assume that f(x) is of finite r-th variation
of order m for a certain 1 <r < p. If we have

o
(4) Z'wg:rlwm«l)mz—w/p [o™ @27 e-P < oo
y=1
for certain >0 and 0 <y < 2, then series (2) is convergent.
4.1 If we put in 4, ¢, = nlogin, where o >0 and ¢ is a real, and
take p(a) = #¢loggm, then p,, = 0(2%~%). Thus, if we have p, = 0(4,)
then conditions (3) and (4) follow from the conditions

(=]
(5) Z QU= E-Dipbley 3B 1=y@—TBlle [ 1, (m) (9 ) P < oo,
=1
and i
e
(6) 2 2[BP+D(-7)+y(L—e)ojep ,,~O[8+1—y(P~1)/plfe [w™ (2 PP < oo,
r=1
respectively.

To simplify the notation we first consider the case 6 = 0 in detail.

) 42 Suppose .tya:t n® = 0(4,) for a certain o > 0. Then lemma (i)
implies that conditions (5) and (6) are equivalent to the conditions

00
(7) E e @=Blle [0 (1) P < oo
n=1
and
oo
(8) 2 plB+1—e—2)p-ty(l—a)ljep [w(m.) (“—1) ]y(}J-r)/p < oo,
n=1

respectively. Hence we have the following theorems.
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4.21. If n® = 0(4,), feB®, >0, 0 < y < 2 and condition (7) holds,
then series (2) is convergent. -

4.22. If n® = 0(h,), feB?, V{I(f) < oo for a certain 1 <7 < p,
=0, 0<y<2 and forapositive inieger m and if condition (8) holds,
then the series (2) is convergent.

Theorems 4.21 and 4.22 contain theorems 3 and 4 of [10] if we put
B =0, p=2 and m = 1. Moreover, theorems 4.21 and 4.22 imply for
almost periodic functions a mumber of known theorems, e. g. some theo-
rems of Bernstein [2] and Steékin [18]for f =0, m =p =y =1,p = 2,
a theorem of Zygmund (see e. g. [13], p. 231)forf =0,m = g =y =71 =1,
p =2, a theorem of Szész ([15], p. 376, theorem 3.1) and others(®).

4.3. Now let us suppose that =2 = 0(4,) and wf™(h) = O(k") for
small & for certain ¢ >0, a > 0. Then the following corollary results
from 4.21.

4.31. If %2 = O(4,), feB?, o (h) = O(h®) for small b and

- p(B+1)

- ptagp—1
for certain 9 >0, a >0, =0 and 0 <y < 2, then series (2) is conver-
gent.

Remark. Since, for >0, p(8+1)/(p-+ app~—1) decreages by in-
creasing p, the minimal value of y also decreases by increasing p.

If we put in 4.31, § = 0 and m = p = 1, then we obtain the Szisz-
-Hardy theorem (see [14], [7], p. 631, theorem 8 and [17], p. 143, example
5) for almost periodic functions and 1 < p < 2.

Theorem 4.31 yields for f = 0 and y = 1 the following condition
of absolute convergence of series (1).

4.32. If n® = O(4,), feB? and w{™(h) = O (k%) for small h for certain
0 >0 and a >1[op, then series (1) is absolutely convergent.

4.4. We obtain from 4.22 the following corollary.

4.41. Let us suppose that the function j<BP satisfies for certain ¢ >0,
1<r<p,a>0,8>0,0<y<2and a positive inieger m the conditions
e = 0(L,), VI (f) < oo, o™ (k) = O(h°%) for small h and

p(B+1)
(p+agp—1)+o(l—ar)
Then series (2) is convergent.

9 v >

(°) Theorem 4.21 has been proved in the case f =0, =7y =1, p=2 inde-
pendently by the author ([10], p. 14, where it is called the Bernstein condition and
follows from theorem 3 on p.13) and by Kupcov (see [9], p. 169, theorem 3).
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If p =2 then inequality (9) may be replaced by the inequality

y >r(f+1)j(r+e—1) for l—ar = 7M().

This theorem constitutes a generalization of known results of Zyg-
mund-Waraszkiewicz (see [17], p. 138) and Harkiladze (see [4], p. 203,
theorem 4) for almost periodic functions. The first may be obtained
from 441 by f=0, m=p=r =1, p =2, the second by f = 0,
o=r=y=1land m=p =2

Theorem 4.41 yields the following condition of absolute convergence
of series (1).

4.42. If fB?, n8 = 0(4,), VI (f) < o0 and o™ (h) = O (h%) for small
h for certain constants o >0, 1 <7 <p, a >0 and a > (L—p)/o(p—r),
then series (1) is absolutely convergent.

4.5. Now we shall investigate conditions which appear if we re-
place the assumptions w{®(h) = O (k%) and o™ (k) = O (h*) by wf™(h)
= 0(h*logy®h) and ™ (k) = O(k%log;®h) (b > 0), respectively(®). We
formulate only a theorem, analogous to 4.32. .

4.51. Let us suppose that the fumction feBP satisfies the conditions
n® = 0(4,) and of?(h) = O(h*logz*k) for small h, where ¢ >0, a >0
and o' real are certain constants. Further let us assume that either a > 1/pp
or a =1[pp and o' >1. Then series (1) is absolutely convergent.

4.6. Now we return to the general case @, = ntlogin (see 4.1) for
¢ >0 and § > 0. We formulate theorems 4.61 and 4.62, analogous to
4.32 and 4.42, respectively.

4.61. Let us suppose that feB”, n°login = O(4,) and o™ (k) = O(h%)
for small h for certain ¢ >0, 8§ = 0 and a > 0. Moreover, assume either
a>1fop or a =1]gp >1]b. Then series (1) is absolutely convergent.

4.62. Let us suppose that the function feBP satisfies the conditions
nlogdn = 0(,), VI (f) < co and o™ (k) = O (%) for small h for certain
>0, 620, 1<r<p and a >0. Further let us suppose that either

(") If p = 2 then feB? for 1< p << 2. Let us put y(p) in place of the right hand
side of inequality (9). If y > y(p) for a certain 1 < p < 2, then one may apply 4.41.
Evidently, the best choice of p is such that ¥ (p) is minimal. Since for 1— ar < g1,
y(p) decreases, y(2) < ¥ (p) and the best value is p = 2. However, for 1—ar > p~1,
7(p) increases, ¥ (1) << y(p) and the best value is p = 1. Thus it suffices to take
y > p{1). For 1—ar = o=, y(p) = const.

(®) Compare [5]. The first part of theorem 2 in [5], p. 804, is a special case of
theorem 4.51 formulated below. Theorem 3 in [5] can also be generalized by applying
the method used here. X
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a>(1—g)le(p—r) or a=(1—g)fe(p—r) > (1—0)/(8—¢r). Then series
(1) is absolutely conwvergent.

4.7. Theorems 4.31-4.42 remain true if we replace the hypothesis
n? = 0(2,) by the hypothesis n?login = O(4,), where & < 0.

4.8. Let us also remark that the terms of the series (2) may be re-
placed by more general ones of form nflogi'n, where g > 0 and £’ > 0.
Also, instead of the sequence »®, a sequence o, >0, o, ¢ o can be
considered if the following condition is satisfied: given any positive integer
k, there exists a number %' > 0 such that o3, <%'o, for n =1,2,...
The method of proof is analogous to that used above. The same applies
to the results presented below.

5. Now we consider an increasing, differentiable and weakly concave(?)
function ¢(z) > 0, defined for # > 1. We suppose that the sequence’i,
satisfies for a certain ¢ > 1 the inequality ,,,/2, > ¢?®*1~%™(10). Then the
sequence 1,/¢°™ is non-decreasing. We choose a function A(z) such that
A(n) = A, and that 1(z)/g°® is a non-decreasing function. It is easily seen
that the funetion A(w) is increasing. Denote by v(z) and u(z) the functions
inverse to @(x) and A(x), respectively. We have ¢ (u(z)) < log, (A7 ¢*Ma).
Moreover, @(y) = log,z—log,(A(¥)/¢"¥) for y = u(x). Hence, if we
indicate ¥, =¢{u(»)) and ¥, =g¢(u(2z), then we obtain y,—y;
=0(1) and p(20)— p(z) < (Ya—¥1) v’ (¥2) = Oy’ [log,247¢*M 2]}, whence
w(@m)— p(2 7)) +1 = Oy’ (log,C2")], where € = i'¢*®x. Moreover,
n, = maxn < u(2'n) < k), where k =log,20. Hence theorems 3.1

ned,
and 3.2 imply the following theorems.

5.01. Let us suppose that the funciton feBP satisfies the condition
Ini1fAn = PO for g certain ¢>1 and an increasing, weakly concave
and differentiable function @(z) > 0. Further let us suppose that for certain
=0 and 0 <y <2,

oo

D9 () [y (log, €2) 0P [0 (27) ] < o0

(10)

v=1

for every 1 = 1(11). Then series (2) is convergent.

() Le gllz+y)/2]1 = [p)+o@)]/2.

(%) For p(n) = » this means that series (1) is lacunary.

(**) If the function ¢ (r) satisfies the following condition: given any & > 0, there
exists a number & > 0 such that ¢ (r) << ep(kx) for every = > 1 (compare the assump-
tions of theorems 4.01 and 4.02) then it suffices to take I =1 in theorems 5.01 and
5.02.
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5.02. Let us consider a function feB? such that VI (f) < oo and
A1l = @I for certain 1 < v < p, ¢ > 1 and an increasing, weakly
concave and differentiable function @(x) >0. If

f v (1) [y (log, €2') 7D 2= [ (37) O < oo

v=1

(11)

for certain B =0, 0 <y < 2 and every | > 1, then series (2) is convergent.
5.1. Both the above theorems imply the following interesting corollary.

5.11. Given an increasing, weakly concave and differentiable function
@(2) > 0, defined for @ = 1 and satisfying the condition 27°°@ = 0 [¢’(x)]
for every & > 0, we consider a function f e BY such that Ay, 1[4, = ¢""+D="™ for
a cerlain ¢ > 1. Let us suppose that either of the following two conditions is
satisfied:

(e} of™(h) = O(k°) for small b and for a certain a >0,
(B) VE(f) < oo and o™ (k) < oo for certain 1 <r <p and h > 0.

Then series (2) is convergent for every f =0 and 0 < y < 2.

To prove this corollary let us first remark that the condition 2-¢7(®
= O[¢' ()] imples y'(2) = 0(2) for large #. Indeed, for a fixed ¢ >0
we can choose a number K, such that for z > 1, 277 K, ¢'(x). Hence
1/y'(@) < K,2® and we obtain y'(s) = 1/¢'(p()) < K,2%.

Thus we have y’(log,02") < 2” K, log,2C (supposing C > 1). Moreo-
ver, p(z) <p(l)4-2y'(z). Hence, given 1> 1, there exists a constant
K, such that

¥ (1) [y’ (log, 02") =701 Ky 9 080m20),
Now let us suppose (a) to be satisfied and choose

&< .

Then series (10) is convergent and we can apply theorem 5.01.
If the condition (B) is satisfied it suffices to choose

Y
< —_—
P (18+1og,20)
to obtain the convergence of series (11) and thus also of series (2). This
completes the proof of 5.11.
As an example of function ¢(z) satisfying the assumption of theorem
5.11 we can choose for instance ¢(s) = 42, where 0 < p < 1. Thus, 5.11
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is applicable to lacunary series (1) (o = 1)(*2) and to series (1) such that
the sequence 1, increases more slowly than for lacunary series but yet
sufficiently rapidly (0 < o < 1).

5.2. Applying (i), 5.01 and 5.02 one can obtain results analogous
to theorems 4.21, 4.22 and others and constituting generalizations of
theorems 6, 6’ and 7 of [10].

5.3. We remark that theorems 5.01 and 5.02 contain for A, = Cn®
(e >0) and B = 0 theorems 4.21 and 4.22, respectively. Indeed, the se-
quence 2, = (n’ satisties the condition 1,,,/1, = ¢?™+ =% with ¢ = 2
for p(x) = plog.z. Since y(z) = 27, we have y'(log,02°) = 0(2"°).

6. We also remark that the results obtained here for almost pericdic
functions of one variable can be generalized to functions of several va-
riables. One can apply here the method used by the author in [11]and [12]
for periodic functions.
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Remarque sur un travail de ]J. Schauder

*
par J. SzArSKT (Krakdw)

Le but de cette note est de combler une lacune dans le travail de
J. Schauder sur équation hyperbolique quasilinéaire aux dérivées par-
tielles du second ordre [2]. La lacune en question pourrait faire croire
au lecteur que la méthode, appliquée par J. Schauder dans son travail
fondamental pour la théorie des équations hyperboliques, n’est pas rigou-
reuse. (est pourquoi nous avons cru utile de montrer que cette lacune
ne tient qu’a 'application d’un théoréme peu général et qu’elle peut dtre
comblée grice & une généralisation de ce théoréme. Or, dans le travail
¢ité, J. Schauder fait intervenir un théoréme sur les limitations a priori,
dft & K. Friedrichs et H. Lewy [1], qui peut étre énoncé de la fagon sui-
vante.

Soit
C u = du
(1) ié:Aik(ib‘u coey Ey) Fr, 47;35(1‘1, cen m”)—a—m; FC(@yy ooey )t
=F(@yy ..o, @) (Ag = Ag)

une équation hyperboligue normale. Supposons que dans une pyramide
P,, dont la base b,,_; est située dans le plan z, = const et les faces laté-
rales possédent l'orientation d’espace par rapport & I’édquation (1), les
coefficients satisfassent aux conditions suivantes:

1° Ay, B;, C, F sont de classe Ct,

n—1
2° la forme quadratique > A 44, est positive définie et 4,, < 0,
ik=1
04y,
Om;

3° [yl B4, 101,

< M,.

Ceci admis, il existe deux nombres positifs i (M;) et C,(M;) dépen-
dant de M, tels que, pour toute solution u de Péquation (1) définie et
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