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traire, il est avantageux de choisir les valeurs des ces constantes de telle
manidre que les intervalles de variation permise des constantes caracté-
ristiques Mg, %y, sup|@|, kg, kg, T soient aussi grands que possible.
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The operational solution of linear differential equations
with constant coefficients

by W. A. CoppeL (London)

1. The operational calculus was developed by Heaviside [4] for
the solution of initial value problems arising in the theory of electrical
communication. He used the caleulus in a formal way and occasionally
was led to false results. ,,Shall I refuse my dinner”, he said, ,because
I do not fully understand the process of digestion 2”. Several methods
have since been proposed to put the operational calculus on a firm logi-
cal basis, the best known using contour integration [1] or Laplace trans-
forms [3](%).

The drawbacks of these methods have often been remarked. They
have no immediate connection with the problem in hand and they impose
restrictions which are by no means necessary, although they may be sati-
sfied in the majority of applications. Moreover one still has to verify that
the proposed solution satisfies all the requirements of the problem. In
many cases also the results they depend on lie deeper than those one is
trying to establish. Thus the complex variable method is based on Cauchy’s
theorem and the Laplace transform method on Lerch’s uniqueness the-
orem. This is particularly true of initial value problems for ordinary
linear differential equations with constant coefficients, for which such
paraphernalia seem quite out of place. The object of the present work
is to give, for this case, a justification of Heaviside’s calculus which is
as simple and direct as possible.

The method is founded on the following theorem:

If f(1) is any funciion which is continuous in the interval 0L t < T
and if

P(D) = poD"+p: D"+ ...+P0 (Do #0)

s any polynomial in D = d|dt with constant, real or complex, coefficients
then the differential equation
1 P(D)yx = f(1)

(1) Other methods are given in [2] and [6].
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Las one and only one solution which s defined throughout .t/w .'L‘%temml 0<
<t< T and which vanishes together with its first n—1 derivatives at t = 0.
The particular solution whose existence is a,.sserted will b.e called
the rest solution of the equation, since in mechanical prob}ems it repre-
sents a system which is initially at rest. The thgorom, as 18 wel.l-known,
is easily established by the method of successive appro.mma.m‘ons and
holds even if the coefficients p; are not constant. Alternatively, it can be
proved directly for the special case n =1 anfl the. gen_eml case reduced
to this by decomposing the polynomial p(D) into its linear fg.gtors.
The use of polynomial operators, such as p(D), depends only on
he properties
e o [Py(D)+ Py(D)]w = Py (D)w+Py(D)a,

[P,(D)Py(D)]w = P, (D)[Ps(D)],

which follow at once from the fact that differentiation is a linear pro-

Cess:
D (0@ + ¢3@5) = ¢y Dy 0, Dy,

for arbitrary constants ¢, ¢,. Our first object will be to extend these
relations to operators which are rational functions of D

2. If ¢(D)/p(D) is any rational function in which the degree of the
numerator does not exceed that of the denominabor we define [q(.D)/[p (D)]f
to be the function q(D)w, where © is the rest solution of the equation p(D)a
= f(1).

Thig definition depends only on the rational function r(D) =
= ¢(D)/p(D) and not on the particular representation of »(D) as a quo-
tient of polynomials. In fact any rational function »(D) has a pmque rep-
resentation r(D) = ¢(D)/p (D), where ¢(D) and p(D) are relatively prime
polynomials and p(D) has leading ecoetficient 1; every other Tepresen-
tation has the form 7(D) = n(D)q(D)/n(D)p(D), where =(D) is an
arbitrary polynomial. If in one representation the degree of the numerfm-
tor i8 not greater than that of the denominator then the same holds in
every representation. Thus we have only to show that

~(D)q(D) (D)

=(D)p (D) p(D)

The left side is equal to = (D)g(D)z, where x is the rest solution of the

equation w(D)p(D)x = f(t). If we put y = n(D)w then y is the rest
solution of the equation p(D)y = f(t). Therefore

= (D)¢(D)

=(D)p(D)

f=L2g.

_ _ D)
f =mn(D)g(D)ow = ¢(D)y = »(D) 1.
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If 7,(D) and ry(D) are rational functions in which the degree of the
numerator is not greater than that of the denominator then 71(D)~+-r4(D)
and »,(D)r,(D) are rational functions of the same sort. For any conti-
nuous function f; we have the following two fundamental properties:

2) [ry (DY +7,(D)1f = r1(D)f+7:(D)f,
(3) [r1(D)r5(D)1f = 7r,(D) [r5(D)F].

For let r,(D) = ¢,(D)[p,(D) and r,(D) = ¢:(D)/p:(D) be representations

of 7,(D) and 7,(D) as quotients of polynomials. Then the left side of (2)
is equal to

[4:(D)p2(D)+ q2(D)p, (D) 12,

where & is the rest solution of the equation p;(D)p,(D)a = f(t). Put
@y = p,(D)® and @, = p,(D)@. Then @, i3 the rest solution of the equa-

tion p,(D)x = f(f) and =, is the rest solution of the equation p,(D)x
= f(t). Therefore :

(D) . ¢:(D)
(D D == D D = — .
[ (D) 47 (D)]f = ¢y ( o1+ g2 (D), pl(D)f‘f‘pz(D)f
This proves (2). Similarly the left gide of (3) is equal to g,(D)gy(D)x.
If we put y =p,(D)& and z = ¢,(D)% then y is the rest solution of

the equation p,(D)w = f(f) and 2 is the rest solution of the equation
P1(D)2 = g,(D)y. Therefore

~ (D) (D) [w.D)
D)D) = 6D = 2 (D1 = 20 [pa( z f] .

This proves (3). The relations (2) and (3) extend by induction to sums
and products of any number of terms.

3. If o(D) is an arbitrary rational function it can be uniquely
expressed in the form

o(D) = =(D)+r(D),

where (D) is a polynomial without constant term and #(.D) is a ratio-
nal function whose numerator is not of greater degree than its denomi-
nator. We will refer to =(D) and »(D) as the polynomial part and the
proper rational part of the rational function (D). If n(D) = 0 then
(D) will be called a proper rational function. Tf f(t) is continuously diffe-
rentiable a number of times equal to the degree of = (D) we can define

e(D)f = =(D)f+r(D)f.
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This is consistent with the definition already given for proper rational
operators and with the definition of polynomial operators. It is casily
geen that the law (2) continues to hold: if o, (D) f and g,(D)f are defined
then so 18 [0,(D)+ 0o(D)If and

(4) [ou(D)+ 0o(D)]f = 01(D)f+ ea(D)S.

However (3) is no longer valid in general. Instead we have: if
01(D) [0:(D)f] 1s defmed then so is [0,(D)eo(D)]f and

(5) [o:(D) ga(D)If = el (D)o (DY 14 [ou(D) ea(DIN]1,

where y(D|f) denoles the polynomial part, without constant term, in the
expansion of

w00 Z L L0 ]

according to powers of D. The series between the brackets may be regar-
ded as the Taylor series of the function f(¢). In fact D™1 = '/»!, since
@ = 1"[»! is the rest solution of the equation D'w = 1.

To prove (5) suppose first that g,(D) == ry(D) = ¢u(D)[po(D) is
a proper rational function; therefore go(D|f) = 0. If ¢(D) = m (D)+
+7,(D) then by (4)

[01(D) ea(D)If = [my(D)ry(D)If+ [r1 (D) ro(D)]f

7y (D) g3(D) = 5(D) po(D)+1(D),

where s(D) is a polynomial without constant term and ¢(D) is a poly-
nomial of degree not greater than that of p,(D). Then

Let

_ D), L Dy
: [m(D)Ta(D)]f—S(D)f-l—pzw)f = §(D)po(D) pa(D)Ht( ) pE(D)f
1
= 7y (D) (D) ;1_0;(*17)]‘ = my (D) ro(D)f.
Hence
[02(D) 0a(D)]f = my(D)-79(D)f 471 (D) -1y (D) f = 0:(D)- ga( D),

in accordance with (B). Suppose next that o,(D) = (D) has only
2 polynomial part. Then p,(D)e,(D|f) is a polynomial without constant
term and hence [o,(D)es(D|f)]L = 0. On the other hand if g,(D) =
= 1,(D)+7,(D) then

[91(1)) 02(D)1f = [m((D)m
= 1, (D) my (D

o(D)1f+ [mey (D)ra (D) If
V4 (D) ro(D)f = 01(D): ea(D)f-
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Thus (5) holds also in this case. Therefore, since both sides of (5) involve
01 and g, linearly, we can suppose that p,(D) is a proper ratioral func-
tion and g,(D) a polynomial without constant term. In fact, we can
suppose gy(D) = D" (v 2 1). Again, if ¢;(D) = ¢,(D)/p,(D) then by
what has already been established:
1
) [TD) ez(D)]f )

Le1{D) e2(D)]f = g1 (D
1

(D) [0 (D = (D) —= 21)7
e (D) [eo(P)f] = qu( )pl(D)[e( )

6@ o]

) = 1/p,(D) it holds also with g,(D)

. Thus we have only to show that

D +f(0) D4
?(D)

Lo:(D) e (DIN1L =

Therefore if (5) holds with g,(D
= ¢:(D)/p,(D)

) [ = o e [

We will prove this by induction on ». If y = 1 the relation to be pro-

ved reads:
") [ ]f— ! f1+[f( ;)1;]1

The funection .y = [D/p(D)]f is a solution of the equation p(D)y = Df
and it satisfies the initial conditions D'y =0 (4 =0,...,n—2),
po D" Yy = f(0), where p, is the leading coefficient and = the degree
of p(D). The function z = [f(0)D/p(D)]1 is & solution of the homoge-
neous equation p(D)z = 0 and it satisfies the same initial conditions.
Therefore » = y—=z is the rest solution of the equation p(D)z = Df;
that is,

A O)D] .

1

= ——[Df].
@ p(D)[ 71

This proves (5”'). Suppose the relation (5‘) holds as written. Then on
differentiating we get

D D ey f(O)D”“H’(O)D”r.--+f‘""1(°)Di]
[I’(D)]f =0 Pt [ »(D) 1
HO) D 41 (0) D 4. 49 0)0]
—_ Dv-)-]
p(D)[ ! H[ (D)

by (5"') with f replaced by D’f. Hence (5') holds for any » >1. This

completes the proof.
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4. Oongider now the homogeneous differential equation p(D)a == 0
with arbitrary initial conditions D% = &f) (i ==0,...,n—1) at ¢ = (.
If & is a solution of this initial value problem it is differentiable any
finite number of times and by (5)

- |55 p@) o = 525 e [202] 1 - [22] 4

where p(D|x) is the polynomial part of

-y
)

Hence the solution, if it exists, is unique. Conversely we can show that
the function # = [p(Dlw)/p(D)]1 is in fact a solution. In the first place

p(D)w = p(D|z)l = 0.

Secondly, if y is any function such that Dy = o® (4 =0
at t = 0, for example

p(D)(wo+i’”b°—+...+

yoeey B—1)

t n—1
y = wo“l*”ﬁﬁ —l----+w$""l)ma
then by (5) again
y= [p(lp)p( D)y — o757 D) T+a
Therefore when ¢ = 0
o) =Dy = D'e (i = 0,...,n—1).

If we add to x the rest solution of the inhomogeneous equation (1) we
obtain the solution of the inhomogeneous equation subject to the same
initial conditions. Thus we can sum up as follows:

The differential equation p(D)w = f(t) has one and only one solution
which satisfies the initial conditions D' = afd) (i =0,...,n—1) at t =0,
for arbitrary values of the constamts af). This solution cam be empressed
in the form

) A ERRT
© ?=7D )” (D) "

where p(D\|x) denotes the polynom'ial part of the rational function

gn—l)
p(D) o0+ o o+ 2 1,)
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5. We have considered the effect of different rational functions of
D operating on the same function f. We are going to see now what happens
when fhe same rational operator acts on different functions f. Let »(D)
be any proper rational function. Then we will show that

(7) 7(D)(e1f1+ Cafs) = €;:7(D)f1+ ¢ r(D)fs,
(8) (D) (frxfa) = [r(D)f1l+fa

where ¢, and ¢, are arbitrary constants, f, and f, are continuous func-
tions and f,*f, denotes the conwolution product of f; and f,, i.e. the
function

-

[h—n)falx)dx.

The first of these relations follows immediately from the superposition
principle. To prove the second put 7(D) = ¢(D)/p(D), g = 1/p(D)t,,
and

i
b =grfy = [gli—7)falz)dr
0

The function g vanishes together with its first n—1 derivatives at
t =0, if » iy the degree of p(D). Differentiating under the sign of in-
tegration we obtain

Dh = (Dg)xfs+g(0)f2(t) = (Dg)+fa.

By 1epeatsed differentiation it follows in the same way that D%
= (D* g)*fs for ¢ < n. Hence
9(D)h = q(D)gxfa;, p(D)h = p(D)gsfy = fi*fa.

Moreover h vanishes together with its first #—1 derivatives at ¢ = 0.
Therefore it is the rest solution of the equation p(D)x = f,*f, and

7(D)(f*fs) = ¢(D)h == [g(D)gl+f> = [7(D)fr]*fe.
If we take f,(?) =1 in (8) we get [r(D)/D]f = [r(D)1]+f, since

: 1
1sf = dr = —f.
f=[imi = 5

In particular for (D) = D/p(D) it follows that

The rest solution of the equation p(D)w = f(t) can be expressed in the
form

(9)

p—(]'D—)—f = [Eé)]l*f
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A further property of rational operators deals with multiplication
by an exponential function:
(10) r(D) e ()] = e~ r(D—D)f.
To prove this we use the relation
(11) D'(e Mgy = ¢ (D—AYw

which holds for any integer » >0 and is simply a special case of Leibniz’s
rule for finding the derivatives of a product of two functions. Tt r(D)
= ¢(DY/p(D). If & is the rest solution of the equation p(D—A)w = /(1)
then by (11) y = ¢ ¥ is the vest solution of the equation p(D)y = e~¥f(1).
Moreover ¢ %g(D—2)» = ¢(D)y. Therefore

_M.Q(D"‘A)_ M, . . e (](])) i,
e p(l)——l)j_6 QYD—A)w == (J)).I/-?](D) Le™™f (t)].

These relations can easily be extended to arbitrary rational operators.

6. The solution of the differential equation (1), subject to arbitrary
initial econditions, is reduced by (6) and (9) to the evaluation of »(D)1,
where 7(D) = ¢(D)/p(D) is & proper rational function. This evaluation
will be carried out in the present section.

We have already seen in 3 that D71 = ¢'»!. Also,
D

Mo

D——Al’

since w == (¢ —1)/4 is the rest solution of the equation (D—2A)w = 1.
Therefore, using (10),

D
s 1= : 1 [ D 1] = = et
(D—12) (D—Ay~ LD—2 (D—ay~t
Al gy -1
==,
D (v—1)!

But by the theory of partial fractions the rational function r(D)/D can
be expressed in the form

r(D) m: Gy - Cis Cing
7 2 et

i=1

(?) The value of D/(D— Ayl can algo be obtained fr “that of — b
differentiation with respect to A. rom that of DDAt by
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where the ¢’s and A's are complex constants. Hence

- ¢ )
(D)1 = g;{cﬂ{—cﬁﬁ +...+qnim}e .
Thus we have the following rule:

To obtain r(D)1 espand the rational function r(D)/D in partial frac-
tions and replace (D— )~ by &4 j(r—1)!.

This completes our solution of a single differential equation. Howe-
ver, a few remarks may be made eoncerning the practical application
of the method. First, it is usually not necessary to perform the complete
decomposition of »(D)/D into partial fractions. It is sufficient to express
7(D) as & sum of rational functions (D) for each of which (D)1 is
already known. The value of r(D)1 for a variety of different rational
functions (D) may be read off directly from tables of Laplace trans-
forms. For on comparing the solutions given by the two methods it will
be seen that if )

=
r(s) = sf ey (t)dt
0
then ¢(t) = r(D)1.

Secondly, if 7(1) is itself a function of the form r(D)1 the two terms
in (6) can be combined and need not be evaluated separately. In gene-
ral, iowever, the solution will involve guadratures, as indicated by the
formula (9). The function f(¢) has been supposed continuous but (9) still
holds if it is only required to be integrable, provided we then define
a solution of the equation (1) as the derivative of any solution of the
equation

¢
p(D)x = [f(z)dv+ const.
0

T¢ the function actually required is (D), where ¢(D) is & polyno-
mial of lower degree than p(D), it can be obtained directly without first
finding . In fact

; Dg(D
Dy — LDIRD) | a(D) q(D)p(D\m>l+[ a )1]%

p(D) - p(D) »(D) »(D)

Similarly if the equation to be solved has the form p(D)x = q(D)g the
solution is given by

1 1 p(Dio). (D), p(Dln)—g(Dlg)
p=|——— (D = [q(D = 1.
’ [p(D)”“)]m S U Tyt )
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. 7 These results can be extended without difficulty to systemsy
pt deferent;ia.l equations. Indeed the advantages of operational méthod
in dealing with initial value problems are even greater for systems Ie:
f.be & column veetor whose coordinates fy, ..., f, are continuous éur:c-
tiong of ? for 0 ¢t < 7', and let R(D) = [r%(D)] be an m xm matrix
of proper 1ational functions. Then we define R(D)f to be the vector wh
coordinates are the functions ’ s

DDy (i=1,...,m).
The properties
[By(D)+ By (D)]f = Ry (D)f+ Ry (D)f,
[B,(D)R,y(D)]f = R,(D)[Ry(D)f]

c?rry over at once from scalar to vector functions. If ¢(D) is a matrix
of arbitrary rational functions it can be uniquely expressed in the form

e(D) = =(D)+R(D),

where (D) is & matrix of pol i i
_ _ ynomials without constant term and R
18 & matrix of proper rational functions. If the elements of n (D) a.re(log

degree < and if the coordinates of f are continuously differentiable

at least » times we define
e(D)f = n(D)f+ R(D)f.

It is easil shown that if D f and Z)f are oth ef]]]ed then 80
N 91( )
18 [91(1:) { eﬂ(L)]} and ga< ) " b "

le1(D)+e.(D)f = 01(D)f+ga(D)f.
ﬁglfi;l,l;srup_p ose the po}ynomial part of g,(D) is of degree n and let 04(D)
q times & matrix of proper rational functions. Then 01(D) [gg(,zD)j]

and [o,(D)g,(D)]f are both defined if
! - : ( n+7r>0 and fis continuous]
differentiable n--r times, or if n4-» < 0 and f is continuous. More::e};

[e2(D) ea(D)1f = 04(D)[ea(D)f1+ [0:(D) ea(DIf)]1,

where the vector g,(D|f) is th i i
i o Toatr o;( 1) € polynomial part, without constant term,

mmhm+%§+%¥+m]
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according to powers of D and [g,(D)gs(D|f)]1 denotes the vector function

which is produced when the vector differential operator o,(D)ga(DIf)

acts on the scalar function 1. To prove these relations we simply compare

coordinates on both sides and use the corresponding scalar results.
Consider now the system of linear differential equations

(12) P(D)w = {(1),
where
(13) P(D) =Py D"+P, D" ' +...+P,

is a polynomial in D whose coefficients P; are constant m x m matrices.
We will suppose also that P, is non-singular. This is the case of prac-
tical importance and the only one in which the initial conditions can
De prescribed arbitrarily. From algebra it is known that under this assump-
tion there is & unique matrix of rational functions P~ (D) such that

P-1(D)P(D) = P(D)P-1(D) = the m-rowed identity matrix.
Moreover the expansion of P~1(D) in descending powers of D begins with
the term PylD™™:

PY(D) = Py'D"+ D' (a matrix of proper rational functions).

We will show first that the system (12) has one and only one solu-
tion which is defined throughout the interval 0 <t < 7 and which
satisfies the initial conditions D'z =0 (¢ =0,...,n—1) at t=0.
In fact if # is such & solution then

P-1(D)f= P-1(D)[P(D)e] = a—[P~H(D)P(Dl»)]1 = =,
since P(D|z) = 0. Conversely, if = P-1(D)f then z is continuously
differentiable n times and Dz = 0 at ¢ =0 for i <n. Moreover
P(D)e = P(D)[PD)f1=1,

gince P~1(D) is without polynomial part. Thus z is the required solu-
tion.
Consider next the homogeneous system

(14) P(D)w = 0.

Tt » is & solution such that D's = af) (4 = 0,...,n—1) at ¢ =0 then
it is differentiable any number of times and

@ = [P(D)P(D)]e = [P(D)P(Dia)}1,
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since P(D)w = 0. COonversely the function » = [P-Y(D)P(D|s)]l is
a solution of (14), since ’
P(D)w = [P(D)P-1(D)P(Djz)]1l = P(D|x)l = 0.
It also satisfies the initial conditions. For
Dy = [D*P-1(D)P(D|x)]L.
But
-’I/'[', ,gn—l)
P(D|z) = P(D) w0+—1—)—+ . -D—n_—l) -+ proper rational function
and therefore, if ¢ < #,

D*P~Y(D)P(Djz) = (polynomial without constant term)-- -+

-+ D~1 (proper rational function).

O(gera.ting on 1 the first term gives zero, the second term gives back
m“i » and the third term gives a funetion which vanishes at ¢ == 0. Thus
Dislsey = aff).
Summing up, we can say:
) The system (12) ha,si one and only one solution which satisfies the ini-
iyt ; .

tial coml(zitwns Do = e (1=0,...,n—1) at t =0 for wbitrary initial
vectors o). This solution is given by the formula

(15) @ = P=1(D)f+[P~1(D)P(Djw)]L,
'whe'rfe P~2(D) is the inverse of the matriz P (D) and P(D|x) denotes the poly-
nomial part of the vector
xl m(n—-l)
P(D) (m0+ f" Fok —Dl,:-f)

8. Rational operators have long been used in a somewhat different
sense from the one above. Boole represented, any solution of the equation
p(D)p = .f(t) by the symbol [1/p(D)]f. He also showed that from the
decomposition of 1/p(D) into partial fractions:

o 1 o L G G
(D) Z{D—a F(D—M)Z-F“'—F(DJZ)“}

i=1

& solution # = () could be at once obtained:

< i
:l‘(t) = 2{0114“ C{QI'_ + ... +0"ﬂ1:

=1 : (ng—1)!

e |

Lo,
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The proofs of Boole’s result given in textbooks, for example in Kamke
[5], are valid only if f is differentiable a sufficient number of times,
since they apply polynomial operators of degree greater than v to the
solutions of the equation (D—AYx = f(f). Our proof merely requires
1(#) to be continuous and shows that z(t) is in fact the rest solution. More
important, we have put the operabional caleulus itself on a firm foun-
dation. This is the essential part of Heaviside's work, the expansion for-
mula being merely a particular application.

9, The same method can be applied almost without change to the
solution of linear difference equations with constant coefficients
(ef [7]). The basic’ theorem now reads:

If f(t) is any function which is defined on the set ¢ =0,1,2,... and
if

p(4) = poA"+p A" A pn (Do #0)
is any polynomial in A with constant coefficients then the difference equa-
tion p(A)x = f(t) has one and only one solution which vanishes together
with its first n—1 differences at 1 = 0.

Since A is a linear transformation and A1 = 0 the argument of sec-
tions 2 and 3 establishes the formulae

[01(4)+ 0o (A)]f = ea(A)f+ ea(A)],
[oy(d)es(A)f = 01(A) () f1+ [e1(4) ea(4INH]L

where p(4|f) denotes the polynomial part, without constant term, in
the expansion of

(1) (2)
LI PO

(%) = A*
Y Y, ..], f2(0) = 4%(0).

e(A)[f(O)

If we define the convolution produet ot two functions f,() and f,(?) to
be the function

0 for =0,
forhalt) = {122
D hit=1=0)fs(x)  for

LT =0

1=1,2,...

we will have
A(fr+fs) = (Af)*fat+11(0)fa(2).

Tt then follows as before that for any proper rational function »(4)

r(A){fr+f2) = (M) f1]%fa.
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In particular, since 1+f = A,

=Lt
e f = |1 1
p(A)f p(4) !
The analogue of (10) is the relation
T(A)(a,'m) = a’-r(aA+a—1)w.

Using this relation we obtain from

47 = (Z) (binomial coefficient)
and

4 - 1\
Tl =+

the more general result

A4 i .

—_—]1 = A1),
(A——l)v (’V—“l)( + )

The value of r(4)1 for any proper rational function r(4) can now he

obtained by decomposing 7(4)/4 into partial fractions. No tabulation

of these values appears to have been made.
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