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On the functional equation F(z, ¢(x), ¢[f(2)]) =0

by J. KorpYLEWSKI and M. KuczMa (Krakéw)

§ 1. The object of the present paper is the functional equation

(1) F(m7¢(w)"?[f(m)]) =0,

where g(») denotes the required function, and f(@) and F(z,y,#) denote
known functions.
Equation (1) is & natural generalization of the equation

(2) p(@)+olf(2)] = F(2)

solved in [2] by the second author of this paper. Equation (2), under
some natural assumptions, possesses infinitely many solutions, which
are continuous for every z that is not a root of the equation

(3) fl) = z.

However, if we require the solution to be continuous for z = @,, fulfilling
(3), then it turns out that there exists at most one such solution.

Tn this paper we have tried to get similar results for equation (1),
with partial suceess only. The results regarding the solutions of equation
(1) which are continuous for roots of equation (3) are not quite satisfying.
Tspecially the hypotheses of theorem VI seem to be absolutely too strong.
Likewise the problem of finding some natural criteria for the function
F which would guarantee the existence of such golutions remains open.

T, Kitamura [1] discusses a similar equation. Namely, he proves
that the equation

F((p[f(d}, N1, p(w), =, A) =0

possesses, under suitable conditions, a solution containing an arbitrary
function. His paper, however, is less general than ours (the parameter A
is quite unnecessary, since it may be include din the definition of the
functions F and f); he does not discuss the regularity of solutions and
e assumes the hypotheses regarding the function F' to be fulfilled in the
whole space. Moreover, not all of his results are correct (see §3 below).
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A. H. Read [3] treats the functional equation

Pz, plf(2)]) = ol2)
for complex z. However, he finds analytic solutions only.

§ 2. Bvery interval I such that f(I) = I will be called a modulus-
-interval for the function f(#). For each integer & we shall denote by f*(w)
the k-th iteration of the function f(s), i.e. we shall put

fo(a) = a,
@) =f(fF @), @) =),

The following lemmas may be proved:

LumMma I. Suppose that the function f(z) is continuous and strictly
TRCTERSINg in'(m interval {a,b>. In order that the interval {(a, b> be a mo-
dulus-interval for the function f(x), it is necessary and sufficient that a and
b be roots of equation (3).

LeMMA IX. Let f(») fulfil the hypotheses of lemma I and let @ < b be
two consecutive roots of equation (3). Let us-suppose further that f(z) > &
for all @ in the interval (a, b). Then, for each we(a, b), the sequences {f™(x)}
and {f (@)} are monotone and

E=0,41,42,...

lim /*(#) = b,

N —»o0

lim f™™(2) = a.

N—»00
The proofs of these lemmas are to be found in [2].

In what follows we shall assume that:

(i) The function f(z) is continuous and strictly inereasing in an inter-
val {a, b, where « and b are two consecutive roots of equation (3).
The expression f(z)—a is then of constant sign in (a, b). We can
assume that f(#)—ax > 0 in (4, b).

(ii) The function F(xz,y,2) is continuous in a convex region £, and
possesses continuous derivatives F, and I, neither of which vani-
shes in the region 0.

(iii) The equation,

(4) ¥z, y,2) =0

represents in 2 a simple connected piece of surface.

(iv) The interval (a, b) is contained in a set for each point of which there
exist such y and z that the point (x, y, 2) belongs to Q2 and fulfily
the equation F(z,y,z) = 0:

(a, b)CE](Iw]g(w, Y,2)e R, Flw,y,2) =0).
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On account of (ii) and (iii) surface (4) is single-foliaged in £ with
respect to the planes zy and az (i.e. every straight line perpendicular
to the plane zy or zz meets this surface in at most one point). There-
fore on account of (iv) the intersection of surface (4) with the plane
@ = xye(a, b) is a curve which is single-foliaged with respect to the axes
y and 2. Let

(8) 2=@G(,¥), y=H(®,2),
be the equation of this curve for a fixed @,<(a, b) (the functions ¢ and
H are obtained by solving equation (4) with respect to z or y).

The function G(z,y) is defined and continuous and has a continu-
ous derivative &, # 0 for

F(®y,y,4) =0, (%,¥,2)eQ

a<o<b, a@<y<p@),

and the function H (%, #) is defined and continuous and has a continuous
derivative H, == 0 for
a<e<b, yl@)<z<i@),
where the intervals (a(z), f(#)) and {y(z), 6(»)) are, = being kept fixed,
the projections of curve (5) on the axes y and # respectively. It is obvious
that the image of the interval (a, 8) by the function & is the interval
(v, 8) and conversely, the image of the interval (y, d) by the function
H is the interval (a, f).
Lastly let us suppose that

{v) y(@) =alf@)], o) =p[fx)] for

Geometrically this supposition means that the projection on the z axis
of the curve obtained by the intersection of surface (4) with the plane
# = , is identical with the projection on the y axis of the curve ob-
tained by the intersection of surface (4) with the plane & = f(z,). This
supposition guarantees the possibility of inserting the value 2 calculated
from the equation

ze(a, b).

# = G{%y; Yo)
in the function G(f(m),2).
TemoreM L. Under the hypotheses (i)-(v) equation (1) possesses an infi-
nite number of solutions which are continuous in the open interval (@, ).
Proof. Let us take an arbitrary ,e(a, b) and let us put a4, = f* (),
n=0,+1,42,... Let @(x) be an arbitrary function, defined and
continuous in the interval <{#,, #,), such that

(6) a(w) < P(z) < pl@) for  @elay, @),
(M lim () = (w0, ?(@0))-

BT —


GUEST


24 J. Kordylewski and M. Kuczma

Oonditions (6) and (7) are not contradictory, for, since

a(my) < @(my) < f(2),

the function ¢ iy defined at the point (v, #(a,)) and fulfils the inequa-

lity .
¥ (@g) < Gy, ® (@) < (mq),
i. . according to (v):
a(®,) < G{wyy Pl@y)) < Blwy).

Lot
@(w) ‘ for  welwy, @q),
(8) p(w) £ 1 G(f (@), o[ (2)]) for  @eldn, Bnyn),
H(w, p[f()]) for — welw_y, @ pyi)y 10,

‘We shall show that:

1° Formulae (8) define the function ¢(x) in the whole interval (a, b).
2° The funetion ¢(#) is continuous in (a,b).

3° The function ¢(#) is a solution of equation (1).

Namely, we shall show that:

(¥) Formulae (8) define a function which is continuous and fulfils the
inequality

(9 a(®) < p(z) < f(@)
in every interval {w,, @,), and {@_,.1, %), # = 1,2, ...

Hence, on account of the equality

(@, ) = Q {Bn s Bnya)s

resulting from (i) and lemma II, 1° and 2° follow. That the function
p(z) satisfies equation (1) follows immediately from formulae (8) and
equivalence (5).

We shall prove assertion () for the intervals <w,,#,), the proof
foithe intervals {w_,,., ®;) being quite similar. The proof will be by in-
duetion.

I. For n = 1 the assertion is obvious.

II, n = 2. From (8) we have for me{w, ¥,)
p(@) = G(/~(z), o[/ (2)]).

For welm,, ®y), f(®)elw,,»,). Consequently, according to (6), the
funetion G(f‘l(m),t?[f‘l(_m)]) is defined and continuous (as tho su-
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perposition of continuous funetions) in (w,, ;). Moreover, the ine-
qualities

P @)] < ple) < 8[F(@)],
i. e. according to (v)
a(e) < @(@) < fl#),
hold for zelw,,®,).
Now we need to show only that () is continuous at the point v = =, .
‘We have:
(@) = G(mm @(wu))i

lim ¢() = p(2;), since ¢(x) is continuous in (@, #.);

o)

lim o(z) = Gy, ¢ (@) = p(@)

BTy

on account of relation (7).

Hence follows the continuity of the function ¢(z) in the whole interval
By, s) -
TIT. Now let us suppose that the function () is defined, continuous,
and fulfils inequalities (9) in an interval {@,, #p), p = 2.
For wed@y, Tpy1), JH(B)el@p_y, %p). Consequently, according to (9),
¢[f-1(2)]e (alf~(@)], Bf*(2)]) for we(oy, &py), and the funetion
(@) = G(f~(), ¢ [f*(2)])

is defined and continuous (as the superposition of continuous functions)
in the interval (@, @p,:). Moreover we have the inequalities

I @)1 < glo) < 8[f ()],
i. e., according to (v),

a(@) < @(#) < Bl@),

we{Bp, Tpy1)s

Ze (.’L’I,, $p+1) .

Now we need to show that p(x) is continuous at the point # = .
We have:

‘P(wp) = G(mp—lz ‘P(wﬂ—l));

Lim @) = p(u,), since @(x) is continuous in (@, Bpya);

LTyt
lim g(o) = lim (' (2), [F@)]) = 6 (@), o[F (@)
w-—»acp—- T Tp—

= G(“"p—u ?’(%-—1)) = (%)

on aceount of the continuity of the functions & and f and of the func-
ction ¢ for # = @, ;. Thiy completes the proof.
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Taking as ®(z) all possible functions that are continuous in the
interval <z,, #,) and fulfil conditions (6) and (7), one can obtain all golu-
tions of equation (1) which are continuous in (a, b) and pass through the
region £ (%).

Remark. If we take as @ () all functions defined in {x,, #,) and ful-
filling condition (6), then formulae (8) will define all solutions of equa-
tion (1) passing through the region 2. From the proof of theorem I it
is obvious that if we do not require the continuity of solutions, then the
assumption of continuity of the function I with respect to @ may be
omitted.

§ 3. Theorem I, in view of the above remark, gives an extension
of theorem 3 from Kitamura’s paper [1] and makes it more precige. As
the region Q Kitamura admits the whole space. Kitamura omits hypo-
theses (iii), (iv) and (v). We shall show that these hypotheses are cssen-
tial.

Bxamere I. Consider the equation

(10) &+ @ + U@ — .
In this ease the function F(o,y,?) = e+ ¢* is defined and conti-
nuous in the whole space. Also the derivatives F, = ¢’ and F, = ¢" are
continuous and do not vanish in the whole space. Meanwhile equation
(10) evidently has no solution. Hypothesis (iii) is not fulfilled here, be-
cause the equation
eV =0

represents the empty set.

Exampre II. Consider the equation

(11) PO gy = ¢,

In this case the function F(w, y,2) = 'Y —w is defined and continuous
in the whole space. Also the derivatives F, = F, = ¢**¥ are continuous
and do not vanish in the whole space. Hypothesis (iii) is fulfilled, but
hypothesis (iv) is not, because the interval (a,b) = (— oo, oo0) is not
contained in the set F ([T 3 ¢*¥~u = 0) = (0, o0). It is obvious that

@ X YR

equation (11) has no solution in the whole interval (a,b) = (-
because it is not fulfilled for any o < 0.

Examrrm IIT. Consider the equation

00, ),

(12)

(@) — V@ — ¢

() L. e. such that (z,p(w), p[f(w)])e 2.
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In this case the function F(z,y,#2) = y—e® is defined and continuous
in the whole space. Algo the derivatives F, =1 and F, = —¢° are con-
tinuous and do not vanish in the whole space.

Hypotheses (iii) and (iv) are evidently fulfilled. But hypothesis (v)
is not fulfilled, because (a(x), B(x)) = (0, c0) and (y(x), (%)) = (—o0, o0),
and consequently the equality y (@) = a{f(»)] does not hold.

We shall show that equation (12) has no solution defined in the
whole interval (@, b), which is the modulus-interval for the function
f(®). The proof follows by reductio ad absurdwm.

Let us suppose that the function ¢(x) satisfies equation (12) in (a, b).
Let us take an arbitrary ®,e(a, b). We shall define the sequence {e,}:

gg =0, gy =¢™,

Since &, — oo, there exists an index N such that ¢(w,) < ey. According
to (12) there must be

@[f(#0)] = Ing(®g) < ey_1;
next
@[f*(5e)] = Ing[f(#)] < en—a;

continuing this procedure, we shall get
o[ (20)] = [N @o)] < &0 =0, gl (@)] = lnglf" (@)].

But ¢[f" (z,)] is negative, and the function ¢(x) is not defined at the
point @ = ¥+ (w,) e(a, b).

Hypothesis (i) differs from the analogous hypotheses in Kitamura's
paper in so far as Kitamura assumes the function f(v) strinetly monotone
(not necessarily increasing). Kitamura commits here an error. One can
discuss equation (1) with the function f(») decreasing, but it is quite
o different problem, and the methods used by Kitamura and by us in
the present paper in general are not applicable here. In Kitamura’s paper
theorem 2 is wrong even for f(x) = 1/.

§4. Wo shall discuss now the continuity of solutions of equation
(1) at the ends of the interval (a, by, where ¢ and b are two consecutive
roots of equation (3). In what follows we shall assume that hypotheses
(i)-(v) are fultilled, but in hypotheses (iv) and (v) the open interval
(@, b) must be replaced by the closed interval <a, b).

The values ¢ = gp(a) and ¢ = ¢(b), assumed by a solution of equa-
tion (1) at the ends of the interval (a, by, must fulfil the equations

F(a,0,0) =0,
F(b,d,d) =0.

(13)
(14)
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A priori equations (13) and (14) may have no solutions, & finite number

of solutions, or infinitely many solutions. We shall prove, however, the
following two theorems:

TamorEM IL. If F, R, > 0 in the region 2, then there exist ewactly
one value ¢ and evactly one value d such that the points (a, ¢, ¢) and (b,
d, d) belong 1o the closure £ of the region £ and equabions (13) and (14)
are fulfilled.

Proof. Relation (13) is equivalent to the relation

(15) ¢ = G, e).

The function z == G(a,y),yelula), f(
= —F,|Fy< 0 in Q.
that ¢ = G(a, ¢).

On the other hand, et us suppose that (15) does not hold for any
¢ from the interval {a(a), B(a)y, i.e. that G(a,y) £y for yelu(a),
B(a)>. For example let G(a,y) >y for yelula), f(a)).

The values which the funetion &(a, y) assumes in the interval {a(a),
B(a)> fill the interval {y(a), 6(a)>. Sinece G(a,y) is decreasing, we lhave
(@) = Gla, f(a)] > f(a) > a(a),

which contradicts hypothesis (v).

The proof for the point (b, d, d) is quite analogous.

TuroreM III. If B, F, < 0 in the region 2, then there cawist wt least
two values ¢ and two values d such that the poimts (a, ¢, ¢) and (b, d, d)
belong to the closure  of the region 2, and equations (13) and (14) are ful-
filled.

Proof. The function z = G(a, y) is increasing in the interval {a(a),
B(a)>. Then, according to (v),

Gla, a(a)] = y(a) = a(a), G[a, f(a)] = d(a) = f(a),
which proves that ¢, = a(a) and ¢, == #(a) both fulfil
(13) (these values may be infinite (*)).

The proof for the point (b, d, d) is quite snalogous.

CorROLLARY. Hguations (13) and (14) always possess ab least one solu-
tion (finite or not) in Q.

Now we shall prove the foliowing theorem,:

@)y, iy decreasing, because 2 =
Congequently there exists at most one value ¢ guch

(18), whence algo

(*) We shall call 6 = co the root of equation (13) if
lim @(a,y) =

Yr00

lim H(a, 2) = oo.

B0
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TurorREM IV. Let ¢ and d be fimed finite roots of equations (13) and (14).

If \Fy(z,y, 2)|F(w,y,2) =1 (|[Fo(m, ¥, 2)[Fy(2, ¥, 2} = 1) in o neigh-

bourhood of the point (b,d,d) ((@,c,0)), then there ewisis at most one

function @(@), continuous in the interval (a,b> ({a,b)), which satisfies

equation (1) and the condition p(b) = d (p(a) = o).

Proof. Let us assume that

\ FQI (w7 y? z)

Fy(z,9,2)

in a neighbourhood of the point (b, d, d). Further, let us suppose that
there exist functions ¢(#) and p(2) = (), which are continuous in the
interval (a, by and satisty equation (1) and the condition ®(b) = p(b) =d.
Let ug put

(16) >1

o(@) £ y(@)—¢(2).
The funetion g(m) is evidently continuous in (a, d>, o(b)
O#F(wﬂ/’ (), w[f(= )) ( 7‘1’[“@)])

= 0. We have

= Plo, p(@)+ o(@), o[f( w“)]+e[f m)])—F(w,qﬂ ), p[f(2)])
= F,,(. ) P (‘ Y+ Do(®), ¢ [f (@) ]+ de [f(#)])e (@
+Fy (2, o(@)+do(z ﬂF’[f () 1+ Polf(m )e[z‘(w)]
Hence
Fy(z, ¢(@)+ Do (@), p[f (@) 1+ Fa[f(2)])

an  elf@l=— ().

Fo(w, ¢(@)+ 9e(@), o[f(2)]+delf(®)])

Since o(2) = 0, there exists a point », such that () #* 0. Let us put
@, = @), B =0,1,2,... By (17) o{z,) # 0 for n =0,1,2,... and.

FU(WM P (%) + P 0 (@), @ (Bp41) + On Q(mn+1))

F, (mm @ (@)~ D 0 (%n) 5 @ (W4 + 0 (mn+1))

#, — b, and consequently, since g(b) = 0 and the funetions ¢(») and
fH—>00

(18) 9("”1L+1) = (%) -

o(®) are continuous at the point » =b, we have

(19)  e(@) == 0y @@t Oue(m) @ @)t B @(Bg) - @

Hence, fucoordmg to (16), there exists an index N such that for » > N

(wnv @ (@) + T 0(@n), (mn+1)+"9n()(mn+1))
-lﬂ (mm @ (%) + D 0(@n), @ (Bnya) + P (wn-u))

and by (18) for n = N

=1

le(@nn)l 2 lo(@a)] = .. = lel@n)] >0,

which contradiets relation (19).
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The proof for the interval (a,d) is quite analogous.

Remark. If |F,/F,| <1 in a neighbourhood of the point (b, d, d),
then equation (1) may possess infinitely many golutions which are con-
tinuous in (a, b) and admit the common value at the point @ == b. For
example, every solution of the equation

(@)+ 2¢(Vat) —2 -1 = 0
which is continuous in the interval (0, 1) fulfils the condition

lim p(2) = 0,
By L
§5. The question now arises how to find that unique solution of
equation (1) which ig continuous in the interval (a, > or {a, b). In this
section we shall try to give a partial answer to this question.
Let ¢ and d be fixed finite roots of equations (13) and (14). We ghall
define two functional sequences {h,(®)} and {g,(®)}:

H(w, 1 [f(®)]),
(@), gulf T (@)]),

TurorEM V. If the functions F', G-, H are continuous in the closure

0 of the region Q and if the sequence h,(®) (gn(®)) converges for o = m,,

then it converges also for o = f(w,) and ® = f~(w,), and moreover the func-

tion h(2) = limh,(z) (g(z) = limg,(®)) satisfies equation (1) for ® = x,.
N—>00 N—>00

ho(2) = d, we(a, by,

wela, b).

n I-l(m

go(®) =0, gnya(®) =

Proof. Let us suppose that h,(w,) — h(z,). We have by (20)
T [f2 ()] = H(f 11—1(”0))

Pagsing to the limit, we obtain on account of the continuity of the func-
tion H

R{f(w0)] =”1ilghn[f“1(wo)] = H(f~ (o), h(wo)).

The second relation of (20) is equivalent to the relation
ha[F(@)] = G{o, by (@)
Hence, by the continuity of the function @,
h{f(@o)] =nlj$hnff(wo 1 == G(wo, h(ay)).

The second relation of (20) is also equivalent to the relation

F(w, by (@), hoy [F(2)]) = 0.

icm
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Passing to the limit, we obtain on account of the continuity of the func-
tion I

F(mmh To)y h[f(mo)]) =0

which proves that the function k() satisfies equation (1) for » = w,.

The proof for g,(») is quite analogous.

'We shall prove the following theorem, which partially answers the
question stated at the beginning of this section:

TarorEM VI. If |Fy(w,¥,2)[F.(0,y,2)] =1 in the whole region Q
and if p(w) is the solution of equation (1) which s continuous tn the inter-
val (a,b> and fulfils the condition p(b) = &, then

ho(2) = o(®)

<atn,by
for every n > 0.
Similarly, if |Fu(z,y, 2)[Fy(w, y,2)] =1 in the whole region Q and
if w(®) is the solution of equatwn (1) which 1s continuous in the interval
{a, b) and fulfils the condition v(a) = ¢, then

gn(®) = 9 (m)
(a,b—-n>

for every n > 0.
Proof. Let us assume that |Fy(2,y,e)/F.(@
ghall define the functional sequence {A,(®)}:

,¥,2) =1 in 2. We

Zo(m) = ‘P(m)y ﬁn+1(m) = H(wl En[f(m)])

It is easy to show that %,(z) Thig follows

immediately from the relation

= p(x) for n=10,1,2,...

Ho, 9lf(®)]),

which is equivalent to the relation

q{(m) =

F(maf)’( )y @@ ])
We have

(@) — hn (@) = | H (@, Fops [ (@)]) —E (0, Bna [F(@)])]
= | [, hocs U @)1+ 83 s [F (@)1= s [ (@)]) | X

X [Fpca (@)= Baa[f@)]] (0 < By <1).
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Proceeding thus, we shall obtain after u steps

Fin () ()] = [ J1EL(1" ) T U T4 o F (00 o 2 )
=1
% B[ () ]— Ry [f™ ()]
= mn (772 @) by T @)1y e [ (0 B [ ()]
pe=l
x e [f" (@)1~ d].
By the assumption |[H,| = |F,/F,| <1 wo have [“[ |[H,| < 1 and hence
lh @) — Ty, ()] < | l/m

Let us take an arbitrary e > 0. Since ¢(@ )

such that

lp(w)—d| <e for we(b—38,b).

Hlo+1n) —b, and therefore there exists an index N such that for
n >N
P latn)e(b--0,b>.
Now let us take an arbitrary xela-9,bd>. f*(a) = [*(a+7y), for
f*(») is increasing with f(»). Consequently, for w > N, /"(@)e(b-~ 6 by

and |p[f*(@)]—d| < e, whence, for n > N and wela-t+n, b
lﬁn(w)"'hn(m” <&

g (@) — b (@)] <,

which proves that h,(x) = ¢().
<a+n,by
The second part of this theorem may be proved in a quite similar
manner, , .
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On a problem of S. L. Cheng concerning sequences of
functions with convergent %-th differences

by K. UrBANIK (Wroctaw)

In the present note we use the notation

x
Af(@) = 3 (—1 (i@t (b =1,2,..0.
i=o
The aim of this note is to prove the following theorem, which is the solu-
tion of a problem raised by 8. L. Cheng.
THEOREM . Let f,(2) (n =1,2,...) be a sequence of Lebesgue measur-
able real-valued functions on the line. The convergence

(%) Hm AP, (z) = 0

for each h uniform with respect to x in every finite interval is equivalent
to the equalities
k-1
() ) = D apdltgula) (n=1,2,..),
F=0
where ay, (§=0,1,...,k—1;n =1,2,...) are constants and the sequence
gn(®) (m=1,2,...) converges to O uniformly in every finite interval.
Remarks. (a) H. Whitney ([2], p. 67-68) has proved the following
fundamental theorem:
For each integer k = 1 there is a number Cy, with the following property.
Let I be any closed finite interval. Then for any continuwous function f(w)
in I there is a polynomial P(xz) of degree at most k—1 such that

1459 f()

max |f(z)—P(x)] <0 max
wal w+jhel; §=0,1,..,,k
If f.(@) (n =1,2,...) are continuous functions and if the conver-
gence () is uniform with respect to h and ® in every finite square, then
(#%) is a direct consequence of -the theorem of Whitney.
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