cm[©]

Proceeding thus, we shall obtain after n steps

$$\begin{split} |\overline{h}_n(x) - h_n(x)| &= \prod_{\nu=1}^n \left| H_s \Big(f^{\nu-1}(x) \,, \, h_{n-\nu} \big[f^{\nu}(x) \big] + \vartheta_{\nu} \Big(\overline{h}_{n-\nu} \big[f^{\nu}(x) \big] - h_{n-\nu} \big[f^{\nu}(x) \big] \Big) \right| \times \\ & \times |\overline{h}_0 \big[f^n(x) \big] - h_0 \big[f^n(x) \big] | \\ &= \prod_{\nu=1}^n \left| H_s \Big(f^{\nu-1}(x) \,, h_{n-\nu} \big[f^{\nu}(x) \big] + \vartheta_{\nu} \Big(\overline{h}_{n-\nu} \big[f^{\nu}(x) \big] - h_{n-\nu} \big[f^{\nu}(x) \big] \Big) \right| \times \\ & \times |\varphi \big[f^n(x) \big] - d \, |. \end{split}$$

By the assumption $|H_z|=|F_z/F_y|\leqslant 1$ we have $\int \int |H_z|\leqslant 1$ and hence $|\overline{h}_n(x)-h_n(x)|<|\varphi|f^n(x)|-d|$.

Let us take an arbitrary $\varepsilon > 0$. Since $\varphi(x) \xrightarrow[x \to b]{} d$, there exists $\delta > 0$ such that

$$|\varphi(x)-d|<\varepsilon$$
 for $x\in(b-\delta,b)$.

 $f^n(a+\eta) \xrightarrow[n \to \infty]{} b$, and therefore there exists an index N such that for n > N

$$f^n(\alpha+\eta) \in (b-\delta,b)$$
.

Now let us take an arbitrary $x \in \langle a+\eta, b \rangle$. $f^n(x) \geq f^n(a+\eta)$, for $f^n(x)$ is increasing with f(x). Consequently, for n > N, $f^n(x) \in (b-\delta, b)$ and $|\varphi|f^n(x)|-d| < \varepsilon$, whence, for n > N and $x \in \langle a+\eta, b \rangle$

$$|\overline{h}_n(x) - h_n(x)| < \varepsilon,$$

i. e.

$$|\varphi(x)-h_n(x)|<\varepsilon,$$

which proves that $h_n(x) = \varphi(x)$.

The second part of this theorem may be proved in a quite similar manner.

References

- [1] T. Kitamura, On the solution of some functional equations, The Tôhoku Mathematical Journal, 49, Part 2, February 1943, p. 305-307.
- [2] M. Kuczma, On the functional equation $\varphi(x)+\varphi[f(x)]=F(x)$, Ann. Polon. Math. 6 (1959), p. 279-285.
- [3] A. H. Read, The solution of a functional equation, Proc. Roy. Soc. Edinburgh, Section A, 63 (1952), p. 336-345.

Reçu par la Rédaction le 10.12.1957

ANNALES
POLONICI MATHEMATICI
VII (1959)

On a problem of S. L. Cheng concerning sequences of functions with convergent k-th differences

by K. Urbanik (Wrocław)

In the present note we use the notation

$$\Delta_{h}^{(k)}f(x) = \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} f(x+jh) \qquad (k=1, 2, \ldots).$$

The aim of this note is to prove the following theorem, which is the solution of a problem raised by S. L. Cheng.

THEOREM. Let $f_n(x)$ (n = 1, 2, ...) be a sequence of Lebesgue measurable real-valued functions on the line. The convergence

$$\lim_{n \to \infty} \Delta_h^{(k)} f_n(x) = 0$$

for each h uniform with respect to x in every finite interval is equivalent to the equalities

(**)
$$f_n(x) = \sum_{j=0}^{k-1} a_{jn} x^j + g_n(x) \quad (n = 1, 2, ...),$$

where a_{jn} (j = 0, 1, ..., k-1; n = 1, 2, ...) are constants and the sequence $g_n(x)$ (n = 1, 2, ...) converges to 0 uniformly in every finite interval.

Remarks. (a) H. Whitney ([2], p. 67-68) has proved the following fundamental theorem:

For each integer $k \geqslant 1$ there is a number C_k with the following property. Let I be any closed finite interval. Then for any continuous function f(x) in I there is a polynomial P(x) of degree at most k-1 such that

$$\max_{x \in I} |f(x) - P(x)| \leqslant C_k \max_{x + jh \in I; \ j = 0, 1, \dots, k} |\Delta_h^{(k)} f(x)|.$$

If $f_n(x)$ $(n=1,2,\ldots)$ are continuous functions and if the convergence (*) is uniform with respect to h and x in every finite square, then (**) is a direct consequence of the theorem of Whitney.

- (b) The theorem would fail if we omitted the hypothesis of measurability. In fact, for $k \ge 2$ the sequence $f(x), f(x), \ldots$, where f(x) is a non-measurable function of Hamel ([1]), satisfies (*) and does not satisfy (**).
- (c) As a particular case of the theorem we obtain the following well--known result:

If f(x) is a Lebesgue measurable function and for each h and x $\Delta_{k}^{(k)}f(x)=0$, then f(x) is a polynomial of degree at most k-1.

Before proving the theorem we shall prove two lemmas.

LEMMA 1. If

$$\lim_{n\to\infty} \Delta_h^{(k)} f_n(x) = 0$$

tor each h and x, then

$$f_n(x) = \sum_{j=0}^{k-1} a_{jn} x^j + g_n(x) \quad (n = 1, 2, ...),$$

where

34

$$\lim_{n\to\infty}g_n(w)=0$$

tor each rational w.

Proof. For every h (0 < $h \le 1$) wedenote by $Q_{nh}(x)$ the polynomial of degree at most k-1 satisfying the equalities

$$Q_{nh}(jh) = f_n(jh) \quad (j = 0, 1, ..., k-2, [k/h])$$
 (1).

By the lemma of Whitney ([2], p. 72) there are numbers $a_0^{(s)}, a_1^{(s)}, \ldots, a_l^{(s)}$ $(l = \lceil k/h \rceil - k)$ such that for any $0 < h \le 1$

$$f_n(sh) = \sum_{i=0}^{l} a_h^{(s)} \Delta_h^{(k)} f_n(jh) + Q_{nh}(sh) \qquad (s = 0, 1, ..., \lfloor k/h \rfloor).$$

Hence, taking into account assumption (1), we obtain the convergence

(2)
$$\lim_{n \to \infty} (f_n(sh) - Q_{nh}(sh)) = 0$$
 $(0 < h \le 1, s = 0, 1, ..., [k/h]).$

Let r be a positive integer. From (2) it follows that

$$\lim_{n \to \infty} \left(f_n \left(sr \frac{h}{r} \right) - Q_{n,h/r} \left(sr \frac{h}{r} \right) \right) = 0 \quad (0 < h \leqslant 1, s = 0, 1, \dots, k-1).$$

Consequently, in view of (2),

$$\lim_{n \to \infty} (Q_{n,h}(sh) - Q_{n,h/r}(sh)) = 0 \qquad (0 < h \leqslant 1, s = 0, 1, \dots, k-1; r = 1, 2, \dots).$$

Since $Q_{nh}(x)$ are polynomials of degree at most k-1, the last formula implies

$$\lim_{n \to \infty} (Q_{nh}(x) - Q_{n,h/r}(x)) = 0 \quad (0 < h \le 1, r = 1, 2, ...)$$

uniformly in every finite interval. Hence for every pair of non-negative integers p < q

$$\lim_{n\to\infty} \left(Q_{n1}(x) - Q_{n,1/q}(x)\right) = 0, \quad \lim_{n\to\infty} \left(Q_{n,p/q}(x) - Q_{n,1/q}(x)\right) = 0,$$

which implies

$$\lim_{n\to\infty} \left(Q_{n1}(x) - Q_{n,p/q}(x) \right) = 0$$

uniformly in every finite interval. Thus, in virtue of (2), for every rational w $(0 \le w \le 1)$

(3)
$$\lim_{n\to\infty} (f_n(w) - Q_{n1}(w)) = 0.$$

In an analogous way we find that there are polynomials $G_n(x)$ and $H_n(x)$ $(n=1,2,\ldots)$ for degree at most k-1 such that for rational w $(\frac{1}{2} \leq w \leq \frac{3}{2})$

$$\lim_{n \to \infty} \left(f_n(w) - G_n(w) \right) = 0$$

and for rational $w \ (-\frac{1}{2} \le w \le \frac{1}{2})$

(5)
$$\lim_{n\to\infty} (f_n(w) - H_n(w)) = 0.$$

Hence and from (3) it follows that for every x

$$\lim_{n\to\infty} (Q_{n1}(x) - G_n(x)) = 0, \quad \lim_{n\to\infty} (Q_{n1}(x) - H_n(x)) = 0.$$

Consequently, in virtue of (4) and (5), relation (3) holds for every rational $w (-\frac{1}{3} \le w \le \frac{3}{3})$. By iterating this procedure we finally obtain (3) for every rational w. Putting $g_n(x) = f_n(x) - Q_{n,1}(x)$ (n = 1, 2, ...) we obtain the assertion of the lemma.

LEMMA 2. If for every finite interval I

(6)
$$\sup_{x \in I} \limsup_{n \to \infty} |z_n(x)| < \infty, \quad \lim_{n \to \infty} \Lambda_h^{(k)} z_n(x) = 0$$

for each h and x, and

$$\lim_{n\to\infty} z_n(w) = 0$$

for each rational w, then the sequence $z_n(x)$ (n=1,2,...) converges to 0 for each x.

^{(1) [}x] denotes the greatest integer $\leq x$.

Proof. Given an arbitrary number x, there are rational numbers w_r (r=1,2,...) such that

(8)
$$x < w_r \quad (r = 1, 2, ...),$$

(9)
$$h_r = \frac{w_r - x}{k!} < \frac{1}{r} \quad (r = 1, 2, ...).$$

The definition of $\Delta_h^{(k)} z_n(x)$ gives the following equality:

$$(10) z_n(w_r) - z_n(x) = \frac{(-1)^k}{r} \sum_{s=1}^r \left\{ \Delta_{sh_r}^{(k)} z_n(w_r) - \Delta_{sh_r}^{(k)} z_n(x) \right\} - \frac{1}{r} \sum_{j=1}^k \left(-1 \right)^j \binom{k}{j} \sum_{s=1}^r \left(z_n(w_r + jsh_r) - z_n(x + jsh_r) \right)$$

$$(n = 1, 2, \dots; r = 1, 2, \dots).$$

Moreover, in view of (9), the equality

$$\begin{split} &\sum_{s=1}^{r} \left(z_{n}(w_{r} + jsh_{r}) - z_{n}(x + jsh_{r}) \right) \\ &= \sum_{s=r-k \mid r+1}^{r} z_{n}(w_{r} + jsh_{r}) - \sum_{s=1}^{k \mid j} z_{n}(x + jsh_{r}) \quad \ (n = 1, 2, \ldots; r \geqslant k!) \end{split}$$

holds. Hence, according to (6), (7) and (10), it follows that

$$\begin{aligned} (11) & \limsup_{n\to\infty}|z_n(x)| \leqslant \limsup_{n\to\infty}|z_n(w)-z_n(w_r)| + \limsup_{n\to\infty}|z_n(w_r)| \\ \leqslant \frac{1}{r}\sum_{j=1}^k \binom{k}{j} \Bigl\{ \sum_{s=r-k|j+1}^r \limsup_{n\to\infty}|z_n(w_r+jsh_r)| + \\ & + \sum_{s=1}^{k|j} \limsup_{n\to\infty}|z_n(x+jsh_r)| \Bigr\} \quad (r \geqslant k!). \end{aligned}$$

Since, according to (8) and (9),

$$x < x + jsh_r < w_r + jsh_r \le x + 2k!$$

($j = 1, 2, ..., k; s = 1, 2, ..., r; r = 1, 2, ...$)

we have, in virtue of (11), the following inequality:

$$\limsup_{n\to\infty} |z_n(x)| \leqslant \frac{1}{r} \sum_{j=1}^k {k \choose j} 2 \frac{k!}{j} M \leqslant \frac{1}{r} 2^{k+1} k! M \quad (r \geqslant k!),$$

where

$$M = \sup_{x \le y \le x + 2k!} \limsup_{n \to \infty} |z_n(y)| < \infty.$$

Hence, letting $r \to \infty$, we obtain the assertion of the lemma.

Proof of the theorem. The sufficiency of (**) is obvious. To prove the necessity of (**) it is sufficient to prove that the sequence $g_n(x)$ $(n=1,2,\ldots)$ defined by lemma 1 converges to 0 uniformly in every finite interval. Suppose the contrary, i.e. that there exists an interval I_0 such that for

(12)
$$M_n = \sup_{x \in I_0} |g_n(x)| \quad (n = 1, 2, ...)$$

we have

$$\limsup_{n\to\infty}M_n>0.$$

Since we can choose a convergent subsequence $M_{m_n}>0$ $(n=1,2,\ldots)$, $\lim_{n\to\infty} M_{m_n}>0$, for the sake of simplicity we shall assume — without restricting the generality of our considerations — that

(13)
$$M_n > 0 \quad (n = 1, 2, ...),$$

$$0 < \lim_{n \to \infty} M_n \leqslant \infty.$$

Now we shall prove that M_{n_k} are finite for a subsequence $n_1 < n_2 < \dots$ Suppose the contrary, i.e. that there exists a sequence of points y_{mn} $(m=1,2,\dots;n\geqslant n_0)$ belonging to I_0 such that

$$|g_n(y_{mn})| \geqslant 2^k m + 1 \quad (m = 1, 2, ...; n \geqslant n_0).$$

Using the notation

(16)
$$d_n(h) = \sup_{m \ge 1} |\Delta_h^{(k)} g_n(y_{mn})| \qquad (n \ge n_0)$$

from the formula

(17)
$$g_n(y) = \Delta_h^{(k)} g_n(y) - \sum_{j=1}^{\kappa} (-1)^{k-j} {k \choose j} g_n(y+jh)$$

we obtain the inequality

$$(18) \quad |g_n(y_{mn})| \leqslant d_n(h) + 2^k \max_{1 \leqslant j \leqslant k} |g_n(y_{mn} + jh)| \qquad (m = 1, 2, \dots; n \geqslant n_0).$$

By assumption the functions $f_n(x)$ are measurable. Consequently, the functions $d_n(h)$ are also measurable. (The functions $d_n(h)$ may take on the values ∞). Putting

$$A_n = \{h: 0 < h \leq 1, d_n(h) \leq 1\}$$
 $(n = 1, 2, ...)$

On a problem of S. L. Cheng

39

we have, according to (*) and (16),

$$\lim_{n \to \infty} \max A_n = 1,$$

where mes A denotes the Lebesgue measure of A. Further, in view of (18), we obtain the inequality

(20)
$$\max_{1 \le j \le k} |g_n(y_{mn} + jh)| \ge m$$
 for $h \in A_n$, $m = 1, 2, ..., n \ge n_0$.

Put

(21)
$$B_{mj}^{(n)} = \{y_{mn} + jh : 0 < h \le 1, |y_n(y_{mn} + jh)| \ge m\}$$

 $(j = 1, 2, ..., k; m = 1, 2, ...; n \ge n_0).$

Taking into account (20), we obtain the inequality

(22)
$$\max_{1 \le i \le k} \operatorname{max} \operatorname{mes} B_{mi}^{(n)} \geqslant \frac{1}{k} \operatorname{mes} A_n \quad (m = 1, 2, ...; n \geqslant n_0).$$

Let U_0 be a finite interval containing all points of the form x+jh $(x \in I_0, j=1, 2, ..., k; 0 < h \leq 1)$. Define the sets

(23)
$$C_m^{(n)} = \{x : x \in U_0, |g_n(x)| \ge m\} \quad (m = 1, 2, ...; n \ge n_0).$$

Obviously, in view of (21), $C_m^{(n)} \supset B_m^{(n)}$ $(j = 1, 2, ..., k; m = 1, 2, ...; n \ge n_0)$, which implies, according to (22),

$$\operatorname{mes} C_m^{(n)} \geqslant \operatorname{max} \operatorname{mes} B_{mj}^{(n)} \geqslant \frac{1}{k} \operatorname{mes} A_n \quad (m = 1, 2, ...; n \geqslant n_0).$$

Consequently, taking into account (19), we have

$$\operatorname{mes} \bigcap_{m=1}^{\infty} C_m^{(n)} > 0$$

for sufficiently large n. There are then an integer $n \ge n_0$ and a point $u \in U_0$ such that $|g_n(u)| = \infty$, which contradicts the assumption that $g_n(x)$ is real-valued function. Thus M_n is finite. Therefore in the sequel we shall assume — without restricting the generality of our considerations — that

$$M_n < \infty \quad (n = 1, 2, \ldots).$$

By x_n we denote a point belonging to I_0 such that

(25)
$$|g_n(x_n)| \geqslant \frac{1}{2} M_n \quad (n = 1, 2, ...).$$

Hence and from (17), setting

(26)
$$e_n(h) = |\Delta_h^{(k)} g_n(x_n)| \quad (n = 1, 2, ...),$$

we obtain the inequality

$$|\max_{1 \le i \le k} |g_n(x_n + jh)| \geqslant \frac{1}{2^{k+1}} M_n - \frac{e_n(h)}{2^k} \qquad (n = 1, 2, \ldots).$$

Putting

$$E_n = \{h: 0 < h \leq 1, e_n(h) \leq \frac{1}{4}M_n\} \quad (n = 1, 2, ...)$$

we have, according to (*), (14) and (26),

$$\lim_{n \to \infty} \operatorname{mes} E_n = 1$$

Moreover, in view of (27), we obtain the inequality

(29)
$$\max_{1 \le i \le k} |g_n(x_n + jh)| \geqslant \frac{1}{2^{k+2}} M_n \quad \text{for} \quad h \in E_n, \quad n = 1, 2, \dots$$

Define the sets

$$D_{nj} = \left\{ x_n + jh : 0 < h \leqslant 1, |g_n(x_n + jh)| \geqslant \frac{1}{2^{k+2}} M_n \right\}$$

$$(j=1,2,...,k; n=1,2,...),$$

(30)
$$D_n = \left\{ x \colon x \in U_0, \, |g_n(x)| \geqslant \frac{1}{2^{k+2}} M_n \right\} \quad (n = 1, 2, \ldots).$$

Obviously, $D_n \supset D_{ni}$ (j = 1, 2, ..., k; n = 1, 2, ...) and, in view of (29),

$$\max_{1 \le j \le k} \operatorname{mes} D_{nj} \geqslant \frac{1}{k} \operatorname{mes} E_n \quad (n = 1, 2, \ldots)$$

which implies, according to (28),

$$\operatorname{mes} \limsup_{n \to \infty} D_n \geqslant \liminf_{n \to \infty} \operatorname{mes} D_n \geqslant 1/k.$$

There is then, in virtue of definition (30), a point x_0 such that

$$\limsup_{n\to\infty}|z_n(x_0)|\geqslant 1/2^{k+2},$$

K. Urbanik

40

where $z_n(x) = g_n(x)/M_n$ (n = 1, 2, ...). Moreover, in virtue of (*), (12), (13), (14) and (24), we have

(32)
$$\sup_{x \in I_n} |z_n(x)| = 1 \quad (n = 1, 2, ...),$$

$$\lim_{n \to \infty} \Delta_h^{(k)} z_n(x) = 0$$

and for each rational w

$$\lim_{v \to \infty} z_n(w) = 0.$$

Further, if $x+jh \in I_0$ $(j=0,1,\ldots,k-1)$, then, according to (32),

$$|z_n(x+kh)| \leqslant |arDelta_h^{(k)} z_n(x)| + \sum_{j=0}^{k-1} inom{k}{j} |z_n(x+jh)|$$

 $\leqslant |arDelta_h^{(k)} z_n(x)| + 2^k \qquad (n=1,2,\ldots).$

Hence and from (33) it follows immediately that

$$\limsup_{n\to\infty}|z_n(x+kh)|\leqslant 2^k.$$

By iterating of this procedure we finally obtain for every finite interval I the inequality

$$\sup_{x\in I} \limsup_{n\to\infty} |z_n(x)| < \infty.$$

Hence and from (33) and (34), applying lemma 2, we obtain the convergence $\lim_{n\to\infty} z_n(x)=0$ for each x, which contradicts (31). The theorem is thus proved.

References

[1] G. Hamel, Eine Basis aller Zahlen und die unstetige Lösungen der Funktionalgleichung f(x+y) = f(x) + f(y), Math. Ann. 60 (1905), p. 459-462.

[2] H. Whitney, On functions with bounded nth differences, Journal de Math. pures et appliquées 36 (1957), p. 67-95.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 22.5.1958

ANNALES POLONICI MATHEMATICI VII (1959)

On a certain method of Toeplitz

by L. Włodarski (Łódź)

When considering a method of summability we come across a question of basic importance, namely that of the domain in which that method sums the analitical expansion $\sum a_n z^n$ of the function f(z) to the function f(z). The limitability of the geometrical sequence (a^n) plays a decisive part in considerations of this kind. The range of classical methods, as far as the limitability of a geometrical sequence is concerned, is rather restricted. The mean methods (the methods of Hölder and Cesàro), and the continuous methods of Abel-Poisson limit a geometrical sequence within the closed circle $|a| \leq 1$. The method of Euler (E, k) limits a geometrical sequence within an open circle |a+k| < k+1, adding the point a=1 (see for instance [1], p. 178 below), whereas the classical method of Borel limits a geometrical sequence within the open half-plane re a < 1, adding the point a = 1 (see [1], p. 183, th. 128).

In this paper we define a permanent method of Toeplitz which limits a geometrical sequence all over the complex plane, namely for a=1 to one, for a real greater than one to ∞ , and for any other complex a to zero. In this way the method in question sums the geometrical series $\sum z^n$ to the function 1/(1-z) all over the complex plane, with the exception of real numbers $z \ge 1$.

A sequence transformed by this method we define as follows:

(1)
$$\eta_m = 2^{-m} e^{-m} \sum_{n=0}^{\infty} \frac{m^{n \cdot 2^{-m}}}{\Gamma(n \cdot 2^{-m} + 1)} \, \xi_n.$$

The construction of this method is connected with Borel's continuous method \mathbf{B}_k ([4], p. 143) defined by the formula

$$B_k(t, x) = 2^k e^{-t} \sum_{n=0}^{\infty} \frac{t^{n \cdot 2^k}}{\Gamma(n \cdot 2^k + 1)} \, \xi_n.$$