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Proceeding thus, we shall obtain after u steps

Fin () ()] = [ J1EL(1" ) T U T4 o F (00 o 2 )
=1
% B[ () ]— Ry [f™ ()]
= mn (772 @) by T @)1y e [ (0 B [ ()]
pe=l
x e [f" (@)1~ d].
By the assumption |[H,| = |F,/F,| <1 wo have [“[ |[H,| < 1 and hence
lh @) — Ty, ()] < | l/m

Let us take an arbitrary e > 0. Since ¢(@ )

such that

lp(w)—d| <e for we(b—38,b).

Hlo+1n) —b, and therefore there exists an index N such that for
n >N
P latn)e(b--0,b>.
Now let us take an arbitrary xela-9,bd>. f*(a) = [*(a+7y), for
f*(») is increasing with f(»). Consequently, for w > N, /"(@)e(b-~ 6 by

and |p[f*(@)]—d| < e, whence, for n > N and wela-t+n, b
lﬁn(w)"'hn(m” <&

g (@) — b (@)] <,

which proves that h,(x) = ¢().
<a+n,by
The second part of this theorem may be proved in a quite similar
manner, , .
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On a problem of S. L. Cheng concerning sequences of
functions with convergent %-th differences

by K. UrBANIK (Wroctaw)

In the present note we use the notation

x
Af(@) = 3 (—1 (i@t (b =1,2,..0.
i=o
The aim of this note is to prove the following theorem, which is the solu-
tion of a problem raised by 8. L. Cheng.
THEOREM . Let f,(2) (n =1,2,...) be a sequence of Lebesgue measur-
able real-valued functions on the line. The convergence

(%) Hm AP, (z) = 0

for each h uniform with respect to x in every finite interval is equivalent
to the equalities
k-1
() ) = D apdltgula) (n=1,2,..),
F=0
where ay, (§=0,1,...,k—1;n =1,2,...) are constants and the sequence
gn(®) (m=1,2,...) converges to O uniformly in every finite interval.
Remarks. (a) H. Whitney ([2], p. 67-68) has proved the following
fundamental theorem:
For each integer k = 1 there is a number Cy, with the following property.
Let I be any closed finite interval. Then for any continuwous function f(w)
in I there is a polynomial P(xz) of degree at most k—1 such that

1459 f()

max |f(z)—P(x)] <0 max
wal w+jhel; §=0,1,..,,k
If f.(@) (n =1,2,...) are continuous functions and if the conver-
gence () is uniform with respect to h and ® in every finite square, then
(#%) is a direct consequence of -the theorem of Whitney.
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(b) The theorem would fail if we omitted the hypothesis of meagur-
ability. In fact, for % > 2 the sequence f(), f(®),..., where f(z) is
a pon-measurable function of Hamel ([1]), satisfies () and does .nob
satisfy (#x).

(¢) As a particular case of the theorem we obtain the following well-
-known. result:

If () is & Lebesgue measurable function and for each h and 2
A¥f(x) =0, then f(v) is a polynomial of degree at most %k—1.

Before proving the theorem we ghall prove two lemmas.

Lemwma 1. If
(1)  limAffa(e) =0

N—r00

for each h and x, then .

k-1
fa@) = Y @t/ +ga(a) (0 =1,2,..),
F=0
where
lim g, (w) = 0

for each rational w.

Proof. For every h (0°'< k< 1) wedenote by @,(v) the polynom-
ial of degree at most k—1 satisfying the equalities

Qu(jh) = fu(Gh)  (j = 0,1,..., k—2, [k/h]) (*).
By the lemma of Whitney ([2], p. 72) there are numbers af?, af?, ..., af?
(I = [k/k]—k) such that for any 0 <h <1
1

fu(sh) = Y af A8, (7h) -+ Qu (sh)

i=o

(8=0,1,..., [k/h]).

Hence, taking into account assumption (1), we obtain the convergence
(2)  lLm(fa(sh)—Qum(sh)) =0 (0 <h <1,8=0,1,...,[k/k]).
N—»00

Let r be a positive integer. From (2) it follows that
. h h
lm{fler—) = Quapler—)) =0 (0 <h<1,8=0,1,...,k~1).
nroo r r

Consequently, in view of (2),

E,(Q,,,,(sh)—q,,',,,,(sh)) =0 (0<h<<l,s=0,1,...,k—1;7r=1,2,..).

(*) [@] denotes the greatest integer << .
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Since @x(x) are polynomialy of degree at most %—1, the last formula
implies

lim (Qua (@)~ Quap(@) =0 (0 <h<1,7r=1,2,..)
N—>00
uniformly in every finite interval. Hence for every pair of non-negative
integers p < ¢
lim (in(w)’“Q«n,l/q(a’)) =0, lim (Qn,p/q(w)"‘@n,l/q(m)) =0,
N0 N—»00
which implies
lim (Qm(m)—Qn,p/q("”)) =0
N—r00

uniformly in every finite interval. Thus, in virtue of (2), for every ratio-
nal w (0 <w < 1)

(3) H(f’;(w)_q"l (w)) = 0.

In an analogous way we find that there are polynomials &, () and H,(x)
(n =1,2,...) for degree at most k—1 such that for rational w (} <w <})
(4) Lim (fy, (1) — G (w)) = O
00
and for rational w (—} <w < 3)
(5) 1m (f, () — Hy (1)) = 0.
N300
Hence and from (3) it follows that for every =
lim (in (a')—Gn(w)) =0, lim (in () —Hn(w)) =0.
N—00 N—00
Consequently, in virtue of (4) and (5), relation (3) holds for every ratio-
nal w (—} < w <£). By iterating this procedure we finally obtain (3)

for every rational w. Putting g, () = fu(@)—Qum(z) (n =1,2,...) we
obtain the assertion of the lemma.

LemmA 2. If for every finite imterval I

(6) suplimsup [z, (#)] < o0, limAPe,(w) =0
el N0 N300

for each h and », and
(7) lim 2, (w) = 0
Ny 00

for each rational w, then the sequence z,(x) (n =1,2, ..
for each .

.) converges to 0
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Proof. Given an arbitrary number », there are rational numbers
w, (r =1,2,...) such that '

(8) w<w (r=1,2,...),
We— B 1
(9) h,=4kT—<7 (r=1,2,...).

The definition of A% z,(w) gives the following equality:

1yk L
10) sl —rla) = b (a8 ) — A 0]} —

r =]l
k r
_ _1_2 (—1Y (7;) 2 (e 100+ 5Ty) — 2 (4 f5h)
F=1 8=1

(n=1,2,...50r=1,2,...).

Moreover, in view of (9), the equality

D (tn(wpt-shy) 2 @ b))

8=1
r kljd
= ¥ en(wptjsh) — Y zal@+ishy)  (n=1,2,..57 > k)
s=r—kijr+41 8=1

holds. Hence, according to (6), (7) and (10), it follows that

(11)  limsuple,(@)| < Hmsup |z, (@) —2,(w,)| -+ Limsup|e, (w,)]
N—00 . N-00

=300

<—j~—§‘(k){ Z" Lim sup |2, (wy+ jshe)| 4

s=r—kljj +1 M
kijf
+ thsup]zn( x+ jsh, )|} (r = k.

&=1

Since, according to (8) and (9),

' o < g+ jsh, < w,+ jsh, < 5+ 2k!
(F=1,2,..,k;8=1,2,...,r;7r=1,2,..)

we have, in virtue of (11), the following inequality:

1 k! '
1 <= i < 2k+1k11; r>=k!
msup 2, (2)] <~ § (7)27 o L (> k),

f=1
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where
M= sup hmsuplz”(y | < oo.
r<y<z+2k!
Hence, letting » — co, we obtain the assertion of the lemma.

Proof of the theorem. The sufficiency of (»¥) is obvious. To prove
the necessity of (#x) it is sufficient to prove that the sequence g, (z)
(n=1,2,...) defined by lemma 1 converges to 0 uniformly in every
finite interval. Suppose the contrary, i.e. that there exists an interval
I, such that for
(12) M, suplgu z)| (n=1,2,..)

we 0
we have

limsup M,, > 0.
N—>»00

Since we can choose a convergent subsequence My, >0 (n=1,2,...),
lim M,, > 0, for the sake of simplicity we shall assume — without re-
N—00

stricting the generality of our considerations — that

(13) M,>0 (n=1,2,..),
(14) 0 <lim M, < oo

Now we shall prove that M, are finite for a subsequence n, <<, <...
Suppose the contrary, i.e. that there exists a sequence of points ¥,
(m =1,2,...;n = n,) belonging to I, such that
(15) |9 Ymn)| = 25mA1 (o =1,2, .50 > ng).

Using the notation
(16) do (k) = sull)!Ag“’yn(?/m)I (n = ny)
me

from. the formula
k

an () = Ago)— 3 (— 17 ({) gly+ih)

i=1
we obtain the inequality

(18)  1gn(¥mn)| < dn(h>+2klga§ 00 Um0 (e =1,2, .50 > n,).
<

By assumption the functions f,(z) are measurable. Consequently, the -
functions d, (k) are also measurable. (The functions d,(h) may take on
the values oo). Putting

dy =0 <h<1,d(h) <1} (n=1,2,...)
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we have, according to (%) and (16),

(19) limmes 4, =1,

N—00

where mes A denotes the Lebesgue measure of A. Further, in view of
(18), we obtain the inequality

(20)  mAX |gy(Ymn+ih)| Zm  for hed,, m=1,2,..., n=n
W 1<i<k

Put

(21)  BY) = {Ymntih: 0 < b <L, |G (Ymnt+Gh) > m)
F=1,2,...,kim=1,2,...5n = ny).

Taking into account (20), we obtain the inequality

(22) lngs;kaengx,! > %mesAﬂ (m =1, 2, e T3 M) |

Let U, be a finite interval containing all points of the form @+ jh (wel,,

j=1,2,...,k;0 <h<<1). Define the sets

(23) 00 = (m:0eTy, lga(@) =m}  (m=1,2,...;0=n).

Obviougly, in view of (21), CWDB® (j =1,2,..,km=1,2,..;
% > n,), which implies, according to (22),

1
mes O > max mes By >—mesd, (m=1,2,..;nn).
1<i<k k
Consequently, taking into account (19), we have
. .
mes () O > 0
m=1

for sufficiently large m. There are then an integer m > m, and & point
ueU, such that |g,(u)| = oo, which contradicts the assumption that
gn(@) is real-valued function. Thus M, is finite. Therefore in the sequel
we ghall assume — without restricting the generality of our consider-
ations — that

(24) M,<oo (n=1,2,...
By @, we denote. a poiht belonging to I, such that
(25) el =3 M, (n=1,2,..).

1) » 1
- (27) g?;l%(%%—?h)l = geri Ma—
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Hence and from (17), setting
(26) en(h) = [ Mg ()] (n=1,2,..),

we obtain the inequality

on (h)
ok

(m=1,2,...).

Putting ]
B, =0 <h<l,6,(h) <iM,) ®=1,2,..)
we have, according to (), (14) and (26),

(28) lim mes H, = 1.
00

Moreover, in view of (27), we obtain the inequality
, 1
(29) max (g, (@ +jh)| = 5 M,  for heB,, n=1,2,..
1<i<k 2
Define the sets

. PO 1
D,y = {m,,+9h: 0 <h< 1, |ga(@,+ih)| >§mMn}

1
(30) D, = {m: weUyg, |gn(®)] 2-2—mMﬂ} n=1,2,..).
Obviously, D,D Dy; (j =1,2,...,%;n =1,2,...) and, in view of (29),

1
max mesD,; >—mesE, (n=12,..)
1<k k

which implies, according to (28),

meslimsup D, > liminfmes D,, > 1/k.
7n—00 fi—00

There is ‘then, in virtue of definition (30), a point @, such that

(31) Lmsup 2, (@0)] > 1/2%+2,
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where 2, (%) = g,(#)/M, (n=1,2,...). Moreover, in virtue of (x), (12),

(18), (14) and (24), we have
(32) plen(@) =1 (0 =1,2,..),
xely
(33) lim Az, (2) = 0
Ne=y00

and for each rational w

(34) limz, (w) == 0.

Tr00
o k—1),

k-1

APz, ()] 4 Z‘ ( )m (- 31)]

< |4z ()] + 2"

Hence and from (33) it follows immediately that

Further, if x+jhel, (j =0,1, then, according to (32),

[ (@ + Bh)| <

(n=1,2,...).

lim sup |#, (% + kh)| < 2°
P00

By iterating of this procedure we finally obtain for every finite inter-
val I the inequality

suplim sup |em (2
wel

Hence and from (33) and (34), applying lemma 2, we obtain the con-
vergence Um 2, (#) = 0 for each », which contradicts (31). The theorem

)i < co.

Tep OO
is thus proved.
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On a certain method of Toepiitz

by L. WropARskI (LédZ)-

When considering a method of summability we come across a ques-
tion of basic importance, namely that of the domain in which that
method sums the analitical expansion Y'a,¢" of the function f(2) to the
function f(z). The limitability of the geometrical sequence (a™) plays a de-
cisive part in considerations of this kind. The range of classical methods,
as far as the limitability of a geometrical sequence is concerned, is rather
restricted. The mean methods (the methods of Holder and Cesaro), and
the continuous methods of Abel-Poisson limit a geometrical sequence
within the closed circle |a| < 1. The method of Euler (E, k) limits a geo-
metrical sequence within an open circle |a+k| < k-1, adding the
point @ = 1 (see for instance [1], p. 178 below), whereas the classical
method of Borel limits a geometrical sequence within the open half-
-plane rea < 1, adding the point ¢ =1 (see [1], p. 183, th. 128).

In this paper we define a permanent method of Toeplitz which limits
a geometrical sequence all over the complex plane, namely for a = 1
to one, for & real greater than one to co, and for any other complex &
to zero. In this way the method in questnon sums the geometrical series
4" to the function 1/(1—=z) all over the complex plane, with the excep-
tion of real numbers z > 1.

A sequence transformed by this method we define as follows:

(1) = 27" HMZP 2—’"+1)

The construction of this method is connected with Borel’s conti-
nuous method B ([4], p.143) defined by the formula

k t tﬂﬂk
x(t @) =2 —Zl’(n 1) -
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