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Dby o* the coset in 9¢/C which containg . For a set S C 9 we define I =
{o*: weS). In particular, we have U = 9/T. It is evident that » and x*
have parallel rotation axes (that of z* passing through 0) and equal
rotation angles. Thus ¢* and ¥* have the rotation angle ¢ and rotation
axes perpendicular to each other. Such rotations are independent (ef. [2]).
This means that it T}, ..., [e¥* satisfy Ifi = &* or ¥ where ¢ =1
or —1 and I;TG,, # e (e = the unity of 9*), then I'I%...I%, #e.

From assumptions 1° and 2° it follows that the face common to T;,
and T, is not parallel to any face of T;_,. Hence T, cannot be obtained
from T;_, by a translation. Since Ty, = 0,...0;_,0,0,,0,... 07 (T,.),
it follows that 0;0,,,¢7. Thus OF0F , # ¢ and we infer by (€5) = ®*
or ¥* and by the indepéndence of @* and ¥* that 070;...0; ¢,

Let us denote by J the group of rotations which transform 7 into -~

itself. Since * is finite, we have, by the independence of o* and V¥
Or6}...0L¢S*. Consequently 0,0,...0, is not a combination of a trans-
lation and a rotation belonging to . Thus T, = 0,0,...0,(1) and T,
are not congruent by translation. :
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ON MEASURES IN FIBRE BUNDLES
BY

A, GOETYZ (WROCLAW)

In the presont paper I introduce the notion of a product measure
in a fibre bundle. For the theory of fibre bundles I use the terminology
and notation of Steenrod [2], and for the measure theory the terminology
and notation of Halmos [1].

1. Let B(B, X, Y,6) be a fibre bundle with a locally compact
hase gpace X, & locally compact fibre Y, and thus a locally compact
bundle space B. Consider Baire measures u and » given respectively in
X and Y, and denote by px» the product of those measures in the Carte-
gian product X X Y.

A Baire measure 4 in B is called the product measure of p and v in the
fibre bundle 9B if for every representation of % as a coordinate bundle
B(B,X,Y,&, V; @) and for each Baire set Z C V;x ¥ the equality

(1) (D) = (ux)(2)
holds.

2. TunoruM 1. A product measure A of p and v in @ fibre bundle
B(B, X, Y, ewists if and only if the measure v in Y is invariant under
transformations of the group @ (*).

Proof. a) Let us suppose that there exists in % & product measure A.
Consider any representation of the fibre bundle as a coordinate bundle
B(B, X, Y, &, V;, ¢;) and any fixed element ¢ of G. The coordinate bundle
B(B, X, Y,& V@) with V;="7; ¢,y =@, gy i stricly
equivalent to ©8. In fact, the functions iy (v) = PraPia =05 Gn(®) = 99::(%)
are continuous.

Tet A be a Baire subset of V; of positive finite measure u and F
a measurable set in Y. We then have

) Ay (A x B)) = p(4)v(B).

(') Evidently, the measure A is completely determined by # and ».
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" On the other hand, @; (A < B) = p; (4 xgE), and therefore
(3) Hgy (A x B)) = Ag}(4 x gB)) = u(4)»(gB).

From (2) and (3) follows »(¢9B) = »(B), i. e. the measure v is invariant.

b) Now let » be G-invariant. We define & Baire measure v, in every
fibre ¥, = p~*(z) setting for B, C ¥, and for any fixed representation
of 93 as a coordinate bundle

(4) Vo By) = 'V(‘P;;(Ex)L

where xe V).

It follows from the G-invariance of » that this definition is indepen-
dent of the choice of V; containing x and of the choice of the representa-
tion of 93 as a coordinate bundle. In fact, for any two equivalent coordi-
nate bundles 93 and 9% and for @« V;~ Vi we have i7" (By) = iy () oya(By),
hence w((p'i;](Ew)) s v(q)Z;(Em))

c) Let Z be any Baire set in B, and let Z, denote the com-
mon part of Z and Y, i. e Z,=Z~p ' (x). Z,is a Baire set in the
fibre Y,. It i8 easy to prove that the function »,(Z,) is w-measurable
in X. In fact, the Baire set Z being o-finite, it is contained in a denume-
rable family of sets p~* (V) for & fixed representation of 93 as a coordinate
bundle. Therefore it suffices to consider only gets Z which are contained
in a single p~*(V,), and in this case measurability follows from Fubini’s
theorem applied to ¢7'(Z) in V;x Y.

The required product meagure A is now given by the formula

(5) MZ) = [va(Za)du(a).

X

From (4) and from Fubini’s theorem it follows that this measure
ig in fact a product measure of x and » in the fibre bundle.

COROLLARY. For the product measure A in a fibre bundle identity (5)
holds.

Generally, the following “Fubini theorem” holds: If f is a real-valued
A-integrable function in Z C B, then f is v,-integrable on almost all Zg, the
function g(z) = 2[ fdv, is u-integrable on p(Z) and

'

. (6) Jran = [gin = [ [tis]|du.
z »(Z) P(2) Zy

3. Consider two fibre bundles 93 and 9B’ with the same locally compact
fibre ¥ and group G and with locally compact base spaces X and X'

icm

ON MEASURES IN FIBRE, BUNDLES 13

respectively. In X and X' are given respectively measures u and u',
in ¥ & G-invariant measure v. The product measures in 9B and 9’ are de-
noted respectively by A and A'. Let & be a bundle map B 9, and % the
generated mapping X - X'. From the definition of a bundle map imme-
diately follows

(7) vy (Zy) = ?’ﬁ(z)([h(z)]i(x))-

Therefore we have for any Baire set Z' C B’

(8) AN = [nl D2 du(a) = [var(Za ) du” (a'),
X b4

where '’ is a Baire moeasure in X' generated by 7 from p, i. e. u'(4’)

= lu(ﬁ_l(A')). B
From (8) it follows that if » transforms the measure p into u', i. e.

if p'" = u', then l(h“(Z’)) = A (Z'), i. e. h transforms the product measure

A into A’. In particular the following lemma holds:

LumMA. If b is a bundle map of a fibre bundle B into iiself and & pre-

serves the measure u, then h preserves the measure A.

4. For a given Baire measure A in the bundle space B and a given

@G-invariant measure v in ¥ we consider the following condition:

(0) For amy two Baire seis Z and Z' contained in B if vy (Zy) = kvg(Zy)
(% is a real positive constant) for every weX, then MZ) = kMZ").
TrrorEM 2. If the measures X and v satisfy the condition (C), then there

ewists in X a Baire measure u such that Ais the product measure of u and v (%),
Proof. It is sufficient to define the mesaure u for sets contained

in single V;-s of an arbitrary representation of the fibre bundle B as

a coordinate bundle.

'We tix arbitrarily a Baire set B in ¥ of finite positive measure » (H),
and set for ACV;

Moy (A x B)
(‘9) ,LL(A)‘ = —-((—P-j-i—(E—’{—'—)‘.

From condition (C) it follows that the above definifion does 1ot de-
pend on the choice of the representation of B as coordinate bundle and
on the choice of the set .

Indeed, if 4 C VW, ~V; for two representations, then v,{q;),(A x H))
= v,(pj (A x 1)) for overy w, and consequently Moy (A X B)) = Agi (4 X B)).

(*) Evidently, condition (C) is also a neocessary one.
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If we take another set B’ and write &k = »(H')/»(#), then we have

allpy (A X B)L) = »(B') == bo(B) = b ([ (4 X B)1.)
and hence
Nos (A X)) = ka(py (4 xB)).
Consequently

Mp(AxB) kg (AxE) N4 xB))
»(B) T (B TS

It is clear that the product measure A* of x and » coincides with
1 for sets of the form ¢;(A X .B), where the A-s are Baire subsets of the
V;-s and the H-s are Baire sets in Y. Consequently A* coincides with
A for all Baire sets in B.

5. If the G-invariant measure » in Y is unique up to a constant factor,
condition (C) in theorem 2 may be replaced by a weaker one (the principle
of Cavalieri):

(C)  If vo(Za) = vulZy) for every m, then A(Z) = A(Z').

(This is the case for instance if ¥ is a factor space G/H of the group ¢
and its closed subgroup H).

From (C’) follows the independence of the above definition of u of
the choice of the representation, but not of the choice of the set .

Let up be the measure in X defined for a fixed B C Y. Denote' by
A* the product measure of uz and v. The measure 1* then coincides with 1
for sets of the form g;(4 xH), AC V;. Fixing the set AC V;C X, we
take under consideration two measures in ¥: »,(B') = A*(p(4 X B'))
= ug(A)y(E') and »,(B') = Ap;(4 X B')).

The measure v, is G-invariant, for it is proportional to ». The G-inva-
riance of v, follows from the invariance of » and from condition. (C'). The
meagure v, coincides with », for the fixed set H; consequently, it follows
from the uniqueness of the G-invariant measure in ¥ that ¥y = v, and
thus 2* = 4, and the measure up is independent of the choice of .

However, the uniqueness of the G-invariant measure in ¥ i not
necessary for the possibility of replacing condition (¢f) by (C') in. the abova
theorem, as we see in the following example:

Bis a Cartesian plane (with -axis X and y-axis ¥) regarded as a fibre
bundle with trivial group @, consisting of the identical transformation.
of ¥ only. Bvery measure in Y is of course G-invariant, However, for
arbitrary Baire measure 4 in B and » in ¥ condition (0") is a sufficient
one for the existence of a measure x in X such that } = “ Xy,
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In the case of an atomic measure v with unequal measures on the
atoms condition (O) cannot be replaced by (C'). For example, let
Y = {a,b} be a two-point set and X = {0, 1) a unit interval, »({a}) =
=1/3, »({b}) = 2/3. Condition (C’) is satisfied for every measure 1 in
X x ¥, because there exists no pair of different sets Z and Z' in X x ¥
with v»(Z,) = »(Zs) for every x. The measure A may be taken in such
a way that it would not be a product measure in XX Y, e. g. H{Z) =
H{w: (2, 0) 2} |+ |{»: (=, b)Z}|), where | | denotes the Lebesgue measure
in X.

6. Now let B be a locally compact topological group and & its closed
subgroup admitting a local cross section. Then B may be regarded as
a fibre bundle with the factor space X = B/G as a base space, with the
fibre ¥ = ¢, and with group & acting on itself by left translations (cf.
(23, § 7).

THEOREM 3. If there exists in X = B|G a B-iwvariant measure u,
then the product measure A of u and the left invariant Haar measure v in
Y =& is a left invariant Haar measure in B.

Conversely, if the Haar measure A in B is the product measure of
a certain Baire measwre p in X = B|G and the Haar measure v in @,
then w 18 B-invariant.

Proof. The left tranglation of B by an element b being a bundle
map h of B onto itself generating the b-translation % in X, the first part
of the theorem follows from lemma of section 3. The second part is a simple
consequence of the fact that for Z = ¢;(A X E), ACV;, we have A(Z)
= u(A)v(E) and A(gZ) =X;.'Vm(lng]z) = »(B)p{gd), for p(92) = g4.

7. The well-known necessary and sufficient condition of the exis-
tence of an invariant meagure in X = B/@ (cf. [3], §9)

(10) Alg) = 8(g)  (g<&),

where A(g) = A(Zg)/A(Z), 6(g) = »(Bg)/»(B) (A denotes the left invariant
Haar measure in B, v the Haar measure in &, ZC B, FC @) has a very
simple intuitive interpretation when the group is regarded as a fibre
bundle. !

a) A right translation of B by an element ge@ is 2 h_omeomorphlsm
hy: B — B preserving fibres (i. e. hy(¥,) = Yy), but in general mnot
a bundie map. For any Baire subset Z, of ¥, we have v,(Z,g) = 6(g) v_m(Zm)-

If there exists an invariant measure u in X = B/@, then 1 is the
product meagure of u and » and consequently

MZ) = [va(Z)du (o).
X .
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Hence

MZg) = [va([Z91) dp(®) = [v4(Zng)du(w)
X X
=4

(9) [2(Za) dus(2)
X

On the other hand, A(Zg) = 4 (9)A(Z), and thus A(g) = 8(g).

b) Now suppose that (10) holds. In order to prove the existence of
the invariant measure u in B[@ it suffices to show that 1 and » satisfy
condition (C) (or (C’) on account of the uniqueness of the Haar meaguro).
‘We ghall use an argument closely related to Weil’s proof.

Let Z and Z' be two getis in B such that

5(9)A(Z).

(11) 15(Zy) = kvy(Zz)  (k = const)

for every ». Let yx(b) and x'(b) denote the characteristic functions of Z
and Z' respectively, i. e.

" 0 if be¢Z, 0 it bez',
POZ it bez, Tt pez.
Then )
(12) MZ) = [x(byiah), = [ n)ap).
B
It is easy to show that
(13) [2(bg) @(9) = v (Zgy),
G
and similarly
(14) [ (bg)dn(g) = 5p ('3
a

In fact, let y5-1(c) denote the characteristic function of the set »~'%.

Then y(bg) = gp—1(g) and Zppy = b~ Zm,, (e = the identity element of
the .set B). Therefore

Gf 2(bg)dn(g fn—l Vv (9) = vy (6™ Zogey)

a8 the hbre containing ¢ is the subgroup &, and (o) is identical with »,
On the other hand the left translation by » is a bundle map and
Wp(,)(b Z)p(,) = lup(b)( ) which proves (13)
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TFrom (13) follows equality

1(bg) v (g)

= 1.
Vp(b) (Zp(b))

(15)

Multiplying the integrand in the second equality of (1
term of (15), we obtain

2) by the left

x(bg)d»(g)
MZ') = ——
@ f [G Yn(b) (Zp(b))

B

x’(b)] dA(b).

We change the order of integration:

: 2(bg) (8) ]
MZ") = S e dA(b) | dy
@) Gf [B T B0 |00

and introduce & new variable ¢ = bg, whence p(c) =

(ef. [3], §8)
200y (eg™!
A2
f [f Vat0) (Zne))

Changing the order of integration again, we obtain

x(0) [
MZ) = | — eg™!
) Bf *50) (Z(e) f *

We now apply (10) to the integral over @, introduce a new variable b = g
and then apply (14). We obtain

p(b). We now have

(g-l)ou(c)] in(g).

v )] a(e).

it alg™ivlo) = [ (a0
) (

(9) =[x
G
[ (eh)dv(h) = vy (Zpge),
(43

and, consequently,

MZ) = f Vpie) (Zpie)) -y (e)dA(e).

L Yrey (2,
5 200
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On account of (11) the xabio wpey(Zpe) Vo) (Zpe) =: % = const,
whence (%) = I%fx(c)dl(c) = kM%), q. e d.
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COMPACTNESS AND PRODUCT SPACES
BY

8. MROWEKA (WARSAW)

In this paper we are concerned with the preserving of different sorts
of compactness under the Cartesian multiplication. We shall use the
following terminology:

countably compact = each countable open covering contains a finite
subcovering;

compact = each open covering contains a finite subcovering;

Lindelsf space = each open covering contains a countable subco-
vering;

pseudo-compact = each real-valued continuous function is bounded
(see [2]).

I. M. Katétov has proved the following theorem (see [37]):

The Cartesian product of two countably compact spaces, one of which
is compact, 18 also countably compact.

In [6] C. Ryll-Nardzewski has proved a similar theorem.:

The Cartesian product of two countably compact spaces, one of which
satisfies the first awiom of countability, is also countably compact.

Using the theory of Moore-Smits nets (for the definition, properties,
notation and terminology see [4], p. 65) we may obtain, by a uniform
method, the following theorem:

(i) The Cartesian product of two countably compact spaces, X and ¥,
one of which is either compact or sequentially compact, i8 also couniably
compact.

We recall that & space is said to be sequentially compact if each se-
quence of elements of the space containsg a convergent subsequence. Of
course, each countably compact space satisfying the first axiom of coun-
tability is sequentially compact, but not conversely.
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