

by x^* the coset in \mathcal{U}/\mathcal{T} which contains x. For a set $\mathcal{S} \subset \mathcal{H}$ we define $\mathcal{S}^* = \{x^* \colon x \in \mathcal{S}\}$. In particular, we have $\mathcal{H}^* = \mathcal{H}/\mathcal{T}$. It is evident that x and x^* have parallel rotation axes (that of x^* passing through O) and equal rotation angles. Thus Φ^* and Ψ^* have the rotation angle φ and rotation axes perpendicular to each other. Such rotations are independent (cf. [2]). This means that if $\Gamma_1, \ldots, \Gamma_n \in \mathcal{H}^*$ satisfy $\Gamma_i^{*i} = \Phi^*$ or Ψ^* , where $\varepsilon_i = 1$ or -1 and $\Gamma_i \Gamma_{i+1} \neq e$ (e = 1 the unity of \mathcal{H}^*), then $\Gamma_1 \Gamma_2 \ldots \Gamma_n \neq e$.

From assumptions 1° and 2° it follows that the face common to T_{i+1} and T_i is not parallel to any face of T_{i-1} . Hence T_{i+1} cannot be obtained from T_{i-1} by a translation. Since $T_{i+1} = \theta_1 \dots \theta_{i-1} \theta_i \theta_{i+1} \theta_{i-1}^{-1} \dots \theta_1^{-1} (T_{i-1})$, it follows that $\theta_i \theta_{i+1} \notin \mathcal{T}$. Thus $\theta_i^* \theta_{i+1}^* \neq e$ and we infer by $(\theta_i^*)^{e_i} = \Phi^*$ or Ψ^* and by the independence of Φ^* and Ψ^* that $\theta_1^* \theta_2^* \dots \theta_n^* \neq e$.

Let us denote by \Im the group of rotations which transform T_0 into itself. Since \Im is finite, we have, by the independence of Φ and Ψ , $\Theta_1^*\Theta_2^*\ldots\widehat{\Theta}_n^*\notin \Im$. Consequently $\Theta_1\Theta_2\ldots\Theta_n$ is not a combination of a translation and a rotation belonging to \Im . Thus $T_n=\Theta_1\Theta_2\ldots\Theta_n(T_0)$ and T_0 are not congruent by translation.

REFERENCES

- [1] H. Steinhaus, P 175, Colloquium Mathematicum 4 (1957), p. 243.
- [2] S. Świerczkowski, On a free group of rotations of the Euclidean space, Indagationes Mathematicae 20 (1958), p. 376-378.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 12. 5. 1958

COLLOQUIUM MATHEMATICUM

VOL. VII

1959

FASC. 1

ON MEASURES IN FIBRE BUNDLES

 $\mathbf{B}\mathbf{Y}$

A. GOETZ (WROCŁAW)

In the present paper I introduce the notion of a product measure in a fibre bundle. For the theory of fibre bundles I use the terminology and notation of Steenrod [2], and for the measure theory the terminology and notation of Halmos [1].

1. Let $\mathfrak{B}(B,X,Y,G)$ be a fibre bundle with a locally compact base space X, a locally compact fibre Y, and thus a locally compact bundle space B. Consider Baire measures μ and ν given respectively in X and Y, and denote by $\mu \times \nu$ the product of those measures in the Cartesian product $X \times Y$.

A Baire measure λ in B is called the *product measure of* μ and ν in the fibre bundle \mathfrak{B} if for every representation of \mathfrak{B} as a coordinate bundle $\mathfrak{B}(B,X,Y,G,V_j,\varphi_j)$ and for each Baire set $Z \subset V_j \times Y$ the equality

(1)
$$\lambda(\varphi_{I}(Z)) = (\mu \times \nu)(Z)$$

holds.

2. THEORIEM 1. A product measure λ of μ and ν in a fibre bundle $\mathfrak{B}(B, X, Y, G)$ exists if and only if the measure ν in Y is invariant under transformations of the group G (1).

Proof. a) Let us suppose that there exists in \mathfrak{B} a product measure λ . Consider any representation of the fibre bundle as a coordinate bundle $\mathfrak{B}(B,X,Y,\mathcal{G},V_j,\varphi_j)$ and any fixed element g of G. The coordinate bundle $\mathfrak{B}'(B,X,Y,\mathcal{G},V_j',\varphi_j')$ with $V_j'=V_j,\ \varphi_j'(x,y)=\varphi_j(x,g^{-1}y)$ is strictly equivalent to \mathfrak{B} . In fact, the functions $\bar{g}_{jj}(x)=\varphi_{j,x}^{-1}\varphi_{j,x}=g,\ \bar{g}_{ji}(x)=gg_{ji}(x)$ are continuous.

Let A be a Baire subset of V_j of positive finite measure μ and E a measurable set in Y. We then have

(2)
$$\lambda(\varphi_{I}(A \times E)) = \mu(A)\nu(E).$$

⁽¹⁾ Evidently, the measure λ is completely determined by μ and ν .

On the other hand, $\varphi_i(A \times E) = \varphi'_i(A \times gE)$, and therefore

(3)
$$\lambda(\varphi_j(A \times E)) = \lambda(\varphi'_j(A \times gE)) = \mu(A)\nu(gE).$$

From (2) and (3) follows $\nu(gE) = \nu(E)$, i. e. the measure ν is invariant.

b) Now let r be G-invariant. We define a Baire measure r_x in every fibre $Y_x = p^{-1}(x)$ setting for $E_x \subset Y_x$ and for any fixed representation of \mathfrak{P}_x as a coordinate bundle

$$\nu_{\boldsymbol{x}}(E_{\boldsymbol{x}}) = \nu(\varphi_{j,\boldsymbol{x}}^{-1}(E_{\boldsymbol{x}})),$$

where $x \in V_4$.

It follows from the G-invariance of ν that this definition is independent of the choice of V_f containing x and of the choice of the representation of \mathfrak{B} as a coordinate bundle. In fact, for any two equivalent coordinate bundles \mathfrak{B} and \mathfrak{B}' and for $x \in V_f \cap V_i'$ we have $\varphi_{t,x}^{\prime-1}(E_x) = \bar{g}_{ij}(x) \varphi_{f,x}^{-1}(E_x)$, hence $\nu(\varphi_{t,x}^{\prime-1}(E_x)) = \nu(\varphi_{f,x}^{\prime-1}(E_x)) = \nu(\varphi_{f,x}^{\prime-1}(E_x))$.

c) Let Z be any Baire set in B, and let Z_x denote the common part of Z and Y_x , i. e. $Z_x = Z \cap p^{-1}(x)$. Z_x is a Baire set in the fibre Y_x . It is easy to prove that the function $r_x(Z_x)$ is μ -measurable in X. In fact, the Baire set Z being σ -finite, it is contained in a denumerable family of sets $p^{-1}(V_j)$ for a fixed representation of $\mathcal B$ as a coordinate bundle. Therefore it suffices to consider only sets Z which are contained in a single $p^{-1}(V_j)$, and in this case measurability follows from Fubini's theorem applied to $\varphi_j^{-1}(Z)$ in $V_j \times Y$.

The required product measure λ is now given by the formula

(5)
$$\lambda(Z) = \int_{Y} \nu_x(Z_x) d\mu(x).$$

From (4) and from Fubini's theorem it follows that this measure is in fact a product measure of μ and ν in the fibre bundle.

COROLLARY. For the product measure λ in a fibre bundle identity (5) holds.

Generally, the following "Fubini theorem" holds: If f is a real-valued λ -integrable function in $Z \subset B$, then f is v_x -integrable on almost all Z_x , the function $g(x) = \int_{Z_x} f dv_x$ is μ -integrable on p(Z) and

3. Consider two fibre bundles \mathfrak{B} and \mathfrak{B}' with the same locally compact fibre Y and group G and with locally compact base spaces X and X'

respectively. In X and X' are given respectively measures μ and μ' , in Y a G-invariant measure ν . The product measures in \mathfrak{B} and \mathfrak{B}' are denoted respectively by λ and λ' . Let h be a bundle map $\mathfrak{B} \to \mathfrak{B}'$, and \overline{h} the generated mapping $X \to X'$. From the definition of a bundle map immediately follows

(7)
$$\nu_{\boldsymbol{x}}(Z_{\boldsymbol{x}}) = \nu_{\bar{h}(\boldsymbol{x})}([h(Z)]_{\bar{h}(\boldsymbol{x})}).$$

Therefore we have for any Baire set $Z' \subset B'$

(8)
$$\lambda(h^{-1}(Z')) = \int_{X} v_x \{ [h^{-1}(Z')]_x d\mu(x) = \int_{X'} v_{x'}(Z'_{x'}) d\mu''(x') ,$$

where μ'' is a Baire measure in X' generated by \overline{h} from μ , i. e. $\mu''(A') = \mu(\overline{h}^{-1}(A'))$.

From (8) it follows that if \overline{h} transforms the measure μ into μ' , i. e. if $\mu'' = \mu'$, then $\lambda(h^{-1}(Z')) = \lambda'(Z')$, i. e. h transforms the product measure λ into λ' . In particular the following lemma holds:

LIEMMA. If h is a bundle map of a fibre bundle $\mathfrak B$ into itself and $\overline h$ preserves the measure μ , then h preserves the measure λ .

- 4. For a given Baire measure λ in the bundle space B and a given G-invariant measure ν in Y we consider the following condition:
- (C) For any two Baire sets Z and Z' contained in B if $v_x(Z_x) = kv_x(Z_x')$ (k is a real positive constant) for every $x \in X$, then $\lambda(Z) = k\lambda(Z')$.

THEOREM 2. If the measures \mathcal{X} and ν satisfy the condition (C), then there exists in X a Baire measure μ such that λ is the product measure of μ and ν (2).

Proof. It is sufficient to define the mesaure μ for sets contained in single V_{J^-} s of an arbitrary representation of the fibre bundle ${}^{\circ}\!\mathcal{B}$ as a coordinate bundle.

We fix arbitrarily a Baire set E in Y of finite positive measure $\nu(E)$, and set for $A \subset V_I$

(9)
$$\mu(A) = \frac{\lambda(\varphi_f(A \times E))}{r(E)}.$$

From condition (C) it follows that the above definition does not depend on the choice of the representation of \mathfrak{B} as coordinate bundle and on the choice of the set E.

Indeed, if $A \subset V_j \cap V_i'$ for two representations, then $v_x[\varphi_j(A \times E)] = v_x(\varphi_j'(A \times E))$ for every x, and consequently $\lambda(\varphi_j(A \times E)) = \lambda(\varphi_i'(A \times E))$.

⁽a) Evidently, condition (C) is also a necessary one.

If we take another set E' and write $k = \nu(E')/\nu(E)$, then we have

$$\nu_x([\varphi_j(A \times E')]_x) = \nu(E') = k\nu(E) = k\nu_x([\varphi_j(A \times E)]_x)$$

and hence

$$\lambda(\varphi_i(A\times E')) = k\lambda(\varphi_i(A\times E)).$$

Consequently

$$\frac{\lambda(\varphi_j(A\times E'))}{\nu(E')} = \frac{k\lambda(\varphi_j(A\times E))}{k\nu(E)} = \frac{\lambda(\varphi_j(A\times E))}{\nu(E)}.$$

It is clear that the product measure λ^* of μ and ν coincides with λ for sets of the form $\varphi_j(A \times E)$, where the A-s are Baire subsets of the V_j -s and the E-s are Baire sets in Y. Consequently λ^* coincides with λ for all Baire sets in B.

5. If the G-invariant measure ν in Y is unique up to a constant factor, condition (C) in theorem 2 may be replaced by a weaker one (the principle of Cavalieri):

(C') If
$$\nu_x(Z_x) = \nu_x(Z_x')$$
 for every x , then $\lambda(Z) = \lambda(Z')$.

(This is the case for instance if Y is a factor space G/H of the group G and its closed subgroup H).

From (C') follows the independence of the above definition of μ of the choice of the representation, but not of the choice of the set E.

Let μ_E be the measure in X defined for a fixed $E \subset Y$. Denote by λ^* the product measure of μ_E and ν . The measure λ^* then coincides with λ for sets of the form $\varphi_f(A \times E)$, $A \subset V_f$. Fixing the set $A \subset V_f \subset X$, we take under consideration two measures in $Y \colon \nu_1(E') = \lambda^* (\varphi_f(A \times E')) = \mu_E(A)\nu(E')$ and $\nu_2(E') = \lambda (\varphi_f(A \times E'))$.

The measure ν_1 is G-invariant, for it is proportional to ν . The G-invariance of ν_2 follows from the invariance of ν and from condition (C'). The measure ν_1 coincides with ν_2 for the fixed set E; consequently, it follows from the uniqueness of the G-invariant measure in Y that $\nu_1 = \nu_2$, and thus $\lambda^* = \lambda$, and the measure μ_E is independent of the choice of E.

However, the uniqueness of the G-invariant measure in Y is not necessary for the possibility of replacing condition (C) by (C') in the above theorem, as we see in the following example:

B is a Cartesian plane (with x-axis X and y-axis Y) regarded as a fibre bundle with trivial group G, consisting of the identical transformation of Y only. Every measure in Y is of course G-invariant. However, for arbitrary Baire measure λ in B and ν in Y condition (C') is a sufficient one for the existence of a measure μ in X such that $\lambda = \mu \times \nu$.

In the case of an atomic measure ν with unequal measures on the atoms condition (C) cannot be replaced by (C'). For example, let $Y = \{a,b\}$ be a two-point set and $X = \langle 0,1 \rangle$ a unit interval, $\nu(\{a\}) = 1/3$, $\nu(\{b\}) = 2/3$. Condition (C') is satisfied for every measure λ in $X \times Y$, because there exists no pair of different sets Z and Z' in $X \times Y$ with $\nu(Z_x) = \nu(Z_x')$ for every x. The measure λ may be taken in such a way that it would not be a product measure in $X \times Y$, e. g. $\lambda(Z) = \frac{1}{2}(|\{x: (x, a) \in Z\}| + |\{x: (x, b) \in Z\}|)$, where || denotes the Lebesgue measure in X.

6. Now let B be a locally compact topological group and G its closed subgroup admitting a local cross section. Then B may be regarded as a fibre bundle with the factor space X = B/G as a base space, with the fibre Y = G, and with group G acting on itself by left translations (cf. [2], § 7).

THEOREM 3. If there exists in X = B/G a B-invariant measure μ , then the product measure λ of μ and the left invariant Haar measure ν in Y = G is a left invariant Haar measure in B.

Conversely, if the Haar measure λ in B is the product measure of a certain Baire measure μ in X=B/G and the Haar measure ν in G, then μ is B-invariant.

Proof. The left translation of B by an element b being a bundle map h of B onto itself generating the b-translation \overline{h} in X, the first part of the theorem follows from lemma of section 3. The second part is a simple consequence of the fact that for $Z = \varphi_j(A \times E), \ A \subset V_j$, we have $\lambda(Z) = \mu(A)\nu(E)$ and $\lambda(gZ) = \int_{Y_B} ([gZ]_x) = \nu(E)\mu(gA)$, for p(gZ) = gA.

7. The well-known necessary and sufficient condition of the existence of an invariant measure in X=B/G (cf. [3], § 9)

(10)
$$\Delta(g) = \delta(g) \quad (g \in G),$$

where $\Delta(g) = \lambda(Zg)/\lambda(Z)$, $\delta(g) = \nu(Eg)/\nu(E)$ (λ denotes the left invariant Haar measure in B, ν the Haar measure in G, $Z \subset B$, $E \subset G$) has a very simple intuitive interpretation when the group is regarded as a fibre bundle.

a) A right translation of B by an element $g \in G$ is a homeomorphism $h_g \colon B \to B$ preserving fibres (i. e. $h_g(Y_x) = Y_x$), but in general not a bundle map. For any Baire subset Z_x of Y_x we have $v_x(Z_xg) = \delta(g)v_x(Z_x)$.

If there exists an invariant measure μ in X=B/G, then λ is the product measure of μ and ν and consequently

$$\lambda(Z) = \int_{X} v_{x}(Z_{x}) d\mu(x).$$

Hence

$$\begin{split} \lambda(Zg) &= \int_{X} v_x([Zg]_x) d\mu(x) = \int_{X} v_x(Z_x g) d\mu(x) \\ &= \delta(g) \int_{\overline{X}} v_x(Z_x) d\mu(x) = \delta(g) \lambda(Z). \end{split}$$

On the other hand, $\lambda(Zg) = \Delta(g)\lambda(Z)$, and thus $\Delta(g) = \delta(g)$.

b) Now suppose that (10) holds. In order to prove the existence of the invariant measure μ in B/G it suffices to show that λ and ν satisfy condition (C) (or (C') on account of the uniqueness of the Haar measure). We shall use an argument closely related to Weil's proof.

Let Z and Z' be two sets in B such that

(11)
$$\nu_{\boldsymbol{x}}(Z_{\boldsymbol{x}}') = k\nu_{\boldsymbol{x}}(Z_{\boldsymbol{x}}) \quad (k = \text{const})$$

for every x. Let $\chi(b)$ and $\chi'(b)$ denote the characteristic functions of Z and Z' respectively, i. e.

$$\chi(b) = \begin{cases} 0 & \text{if } b \notin Z, \\ 1 & \text{if } b \in Z, \end{cases} \quad \chi'(b) = \begin{cases} 0 & \text{if } b \notin Z', \\ 1 & \text{if } b \in Z'. \end{cases}$$

Then

(12)
$$\lambda(Z) = \int_{\mathcal{B}} \chi(b) d\lambda(b), \quad \lambda(Z') = \int_{\mathcal{B}} \chi'(b) d\lambda(b).$$

It is easy to show that

(13)
$$\int_{\alpha} \chi(bg) d\nu(g) = \nu_{p(b)}(Z_{p(b)}),$$

and similarly

In fact, let $\chi_{b^{-1}}(e)$ denote the characteristic function of the set $b^{-1}\mathbf{Z}$. Then $\chi(bg)=\chi_{b^{-1}}(g)$ and $Z_{p(b)}=b^{-1}Z_{p(e)}$ (e= the identity element of the set B). Therefore

$$\int\limits_{\mathcal{G}} \chi(bg) \, d\nu(g) = \int\limits_{\mathcal{G}} \chi_{b^{-1}}(g) \, d\nu(g) = \nu_{p(e)}([b^{-1}Z]_{p(e)}),$$

as the fibre containing e is the subgroup G, and $v_{p(e)}$ is identical with v. On the other hand the left translation by b is a bundle map and $v_{p(e)}(b^{-1}Z)_{p(e)} = v_{p(e)}(Z)$ which proves (13).

.

From (13) follows equality

(15)
$$\int\limits_{\widetilde{G}} \frac{\chi(bg) d\nu(g)}{\nu_{p(b)}(Z_{p(b)})} = 1.$$

Multiplying the integrand in the second equality of (12) by the left term of (15), we obtain

$$\lambda(Z') = \int\limits_{\mathcal{B}} \left[\int\limits_{\mathcal{Z}} \frac{\chi(bg) d\nu(g)}{\nu_{p(b)}(Z_{p(b)})} \, \chi'(b) \right] d\lambda(b).$$

We change the order of integration:

$$\lambda(Z') = \int\limits_{\mathcal{G}} \left[\int\limits_{\mathcal{B}} \frac{\chi(bg)\chi'(b)}{v_{p(b)}(Z_{p(b)})} \, d\lambda(b) \right] dv(g)$$

and introduce a new variable c=bg, whence p(c)=p(b). We now have (cf. [3], § 8)

$$\lambda(Z') = \int_{\mathcal{C}} \left[\int_{\mathcal{B}} \frac{\chi(c) \chi'(cg^{-1})}{\nu_{\mathcal{D}(c)}(Z_{\mathcal{D}(c)})} \Delta(g^{-1}) d\lambda(c) \right] d\nu(g).$$

Changing the order of integration again, we obtain

$$\lambda(Z') = \int\limits_{\mathcal{B}} \frac{\chi(c)}{\nu_{\boldsymbol{p}(c)}(Z_{\boldsymbol{p}(c)})} \left[\int\limits_{\mathcal{G}} \chi'(cg^{-1}) \, \varDelta(g^{-1}) \, d\nu(g) \right] d\lambda(c).$$

We now apply (10) to the integral over G, introduce a new variable $h=g^{-1}$, and then apply (14). We obtain

$$\begin{split} \int\limits_{\mathcal{C}} \chi'(cg^{-1}) \, \mathcal{A}(g^{-1}) \, d\nu(g) &= \int\limits_{\mathcal{C}} \chi'(cg^{-1}) \, \delta(g^{-1}) \, d\nu(g) \\ &= \int\limits_{\mathcal{C}} \chi'(ch) \, d\nu(h) \, = r_{\mathcal{P}(c)}(Z'_{\mathcal{P}(c)}), \end{split}$$

and, consequently,

$$\lambda(Z') = \int\limits_{B} \frac{v_{\boldsymbol{p}(\boldsymbol{c})}(Z'_{\boldsymbol{p}(\boldsymbol{c})})}{v_{\boldsymbol{p}(\boldsymbol{c})}(Z_{\boldsymbol{p}(\boldsymbol{c})})} \, \chi(\boldsymbol{c}) \, d\lambda(\boldsymbol{c}).$$

A. GOETZ

18

On account of (1.1) the ratio $\nu_{p(c)}(Z'_{p(c)})/\nu_{p(c)}(Z_{p(c)})=k=\mathrm{const}$, whence $\lambda(Z')=k\int \chi(c)\,d\lambda(c)=k\lambda(Z)$, q. e. d.

REFERENCES

- [1] P. R. Halmos, Measure theory, New York 1950.
- [2] N. Steenrod, The topology of fibre bundles, Princeton 1951.
- [3] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1940.

Reçu par la Rédaction le 5. 4. 1958

COLLOQUIUM MATHEMATICUM

VOL. VII

1959

FASC. 1

COMPACTNESS AND PRODUCT SPACES

RV

S. MRÓWKA (WARSAW)

In this paper we are concerned with the preserving of different sorts of compactness under the Cartesian multiplication. We shall use the following terminology:

countably compact = each countable open covering contains a finite
subcovering;

compact = each open covering contains a finite subcovering;

 $\it Lindel\"{o}f\ space = {\it each\ open\ covering}\ contains\ a\ countable\ subcovering:$

pseudo-compact = each real-valued continuous function is bounded (see [2]).

I. M. Katětov has proved the following theorem (see [3]):

The Cartesian product of two countably compact spaces, one of which is compact, is also countably compact.

In [6] C. Ryll-Nardzewski has proved a similar theorem:

The Cartesian product of two countably compact spaces, one of which satisfies the first axiom of countability, is also countably compact.

Using the theory of Moore-Smits nets (for the definition, properties, notation and terminology see [4], p. 65) we may obtain, by a uniform method, the following theorem:

(i) The Cartesian product of two countably compact spaces, X and Y, one of which is either compact or sequentially compact, is also countably compact.

We recall that a space is said to be sequentially compact if each sequence of elements of the space contains a convergent subsequence. Of course, each countably compact space satisfying the first axiom of countability is sequentially compact, but not conversely.