©
COLLOQUIUM MATHEMATICUM

VOL. VII 1959 FASC. 1

SOME REMARKS ON INACCESSIBLE ALEPHS
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S. SWIERCZEKOWSKI (WROCLAW)

If s is a sequence composed of zeros and ones and of the ordinal
type a, say s = {8g}pca, Where 8 = 0 or 1, then let us define

elsly = {0glecpe, fOr e<y <o

Thus 0fs|n (or simpler s|y) is a segment of type n of s. For a set 8
of sequences of type a we define ¢|8[n = {e|s|n:se8} and S|y = 0|8jy.

Let a be a limit number. A sequence of type o of subsets 4,, 4,, ...,
Apg, ... of a set M is called convergent to a set A C M if for each # <M there
exists a y < a such that m¢d—4, for y < f < a (44, denotes the set
of those yeM which belong to strictly one of the sets A, Ap).

A function m defined on all subsets of a set M and taking the values
0, 1 will be called additive with each power less than M = R, if m | J A, =

B<a
= Y md, for pairwise disjoint sets 4,C M and a < w,.
B<a

We call an infinite aleph 8, inaccessible if

(a) >'my < N, whenever a < w, and my < 8, for § < a;
B<a )

(b) n™ < &, for n, m < N,.

The definition of inaccessible cardinals given in [3] coincides with
the above definition when applied to alephs.

Consider the following statements:

(H,) If to each ordinal a < w, corresponds a non-empty family S,
of sequences which are composed of zeros and ones and are all of the type
a and S,jn = 8, whenever 5 < a, then there exists a sequence s of type
w,, composed of zeros and ones, such that sa 8, for each a < w,.

(H,) If M= N,, then every soquence of type w, of subsets of M
containg a convergent subsequence of type w,.


GUEST


28 8. SWIRRCZEKOWSKI

(Hs) There exists a zero-one valued measure m defined on all subsets

of M which is additive with each power less than M, and satisfies
mM = 1.

In this paper we shall prove the following theorem:

TurorEM. If M = R, s naccessible, then (H,) and (H,) are equi-
valent statements and they follow from (Hs,).

Under the assumption that M= 8, is inaccessible, (), (M) and
(H,) are unsolved hypotheses (ct. [1], [4], [F]). (H;) and (XL,) were put
forward by R. Sikorski; (H,) is the yet unsolved part of P 19 (see [2],
[4]) and (H,) i8 equivalent with Problem 23 in the “New Scottish Book”
(inseribed at 13. XII.1946).

Proof of the theorem. We shall prove the implications (Hg) —
(Ha) - (H,) — (H,). '

(H,) implies (H,). Denote by Ay, 4;, ..., A, ... a sequence of sub-
sets of M which is of the ordinal type w,. We may assume that M is the
set of all ordinals which are smaller than w,. Thus the characteristic
function of each set 4, is a sequence composed of zeros and ones and of
type w,. We denote this sequence by s®@.

Lemma. If BC M is of power X, and & << n << w,, then there is an
aeB such that

) els®ln = elsn
holds for , ordinals feB.

Indeed, let us write a~p for any ordinals a, B such that () lolds.
It is clear that ~ is a congruence relation on B. The number of classes
of congruent ordinals into which B is decomposed by ~ is evidently at
most 27. Sinee §, is inaccessible, we have 27 < 8,. This implies, again
by the inaccessibility of R, that at least one of these congruence classes
is of power &,. That means that there exists an aeB such that (+) holds
for R, ordinals feB.

It follows from our lemma (in the case ¢ = 0, B = M) that for each
7 < w, there exists a sequence s such that s®y = @y for 8, ordi-
nals f. We shall denote the family of all such sequences s@|z by &,

Let us verify that §,le = 8, whenever & < 5. Evidently §,eC#,.
To prove the inverse inclusion suppose that s@ee,. Let B be the set
of all ordinals § for which s®js = s@|z. It follows that B = &,

By our lemma (here we apply it with ¢ =% 0) there exists such an
aeB that (#) holds for ¥, ordinals 8. Thus by a, f<B we have s®|y = sf|y
for ®, ordinals f. This implies s?nesS,. Since s@s = s we obtain
89cel e,

icm®
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It follows from (H,) that there exists a 0-1 sequence s satisfying s[n €S,
for each 7. Let A be the set with the characteristic function s. For each
ordinal » < w, let us consider the ordinals « which satisty s|n = s@y €8,
Since there are ¥, such ordinals a, there is among them an ordinal ay > 1.
Thus we can define a sequence {a,,},,<,,,” such that sy = s@jy for each
7. These equalities imply

n&A;Aaﬁ for B>g
what proves that the sequence {Aan}”@” converges to 4. It follows from
ay > that {a,},,, is confinal with w,.

(H,) implies (H,). Let M be the set of all ordinals smaller than @,
Suppose that to each a < w, corresponds a family S, of 0-1 sequences
of type a and that 8,8 = 8, for f < a. Denote by 4,C M any set which
characteristic function is & 0-1 sequence s of type w, salistying s®|aes8,.
By (H,) there exists a subsequence {Auﬂ},,@ﬂ convergent to some set
ACM. Let s be the characteristic function of 4. Let us prove that
¢ satisfies the conclusion of (H;), i. e. that slye8, for each y. Establish
some y < w, For each f <y there exists an ordinal 6 < w,
such that

,BﬁA;A,,q for 5> 4.

Since R, is inaccessible, it follows that the sequence {ds},., cannot
be confinal with w, and thus there exists a number 8 < w, which is greater
than each d; with g < y. Consequently

ped =4, for every § <y and 5 > 4.

This proves that sy e8|y for n > 6 and thus s[yeS, by 8, = 8o, by
for a, > y.

(Hg) implies (H,). Suppose the families 8, do satisfy the assumptions
of (Hy). Consider the set § = {J §,. Clearly 8, < 2* < &, for each o and

a< w,
thus § = 8, (since S, are pairwise disjoint). Denote for f<w,andi =0
or 1 by T the set of all sequences in § which are of ordinal type greater
than § and the f-th term of which is 4. Thus we have the decompositions
8 =18 TP o T where T denotes the set of all sequences belong-
ing to & and of ordinal types not greater than p.

Let m be a 0-1 measure defined on all subsets of § which exists by
(Hy). 1t is mT® = 0 since T < x, by the inaccessibility of ®,. Thus
mS = 1 implies that for i, = 0 or 1 we have mZ¥ = 1 and mT¥),; = 0.
We define s = {iﬁ}k%. (H,) follows if we prove that s|aeS, for each
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tla = s|a what implies
a < ,. Suppose some te ﬂﬂa T{). Then tjae S, and t|a = sla what implies
s|ael,. Now it follows from

m I =1 —52 m (1% o 1)) =1
f<a <a

that ()} 7§ is not empty for o < w,.
p<a
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ON THE REPRESENTATION OF PIBLDS AS FINITE
UNIONS OF SUBFIELDS

BY

A. BIALYNICKI-BIRULA, J. BROWKIN axp A. SCHINZEL (WARSAW)

The purpose of this paper is to prove the following theorem:
THEOREM. An algebraic field cannot be represented as a umion (in
the sense of the theory of sets) of a finite number of proper subfields.
n

Leyma 1. If @, G4, Gy, ..., G, are groups, G = |J &,
i1

CJ G for

=j-L1

j-1
1) G+ UG v 1<j<n
iz1

n
and G is an infinite set, then () @, is infinite.
=1
Proof. We shall prove by induction that for each k < » there exists
such a sequence ;, 4y, ..., 4, of different natural numbers < n that

k
(2) () @ is infinite.
. =1
n
For k =1, (2) follows from the fact that (JG;is infinite. Suppose
i=1
that (2) holds for & < n and let {a,} be an infinite sequence of dift rent
23 i .
elements of the group ﬂGij. By (1) @ #UJ GS-,]. and so there exists
k F=1 F=1
Q I)GG—U G,;j.
j=1 Lk .
Consequently a,b¢(J @ and a,be |J @;. Hence there exists
j=1

iy, 1g,... 0

& NUMber fgy; 7 9y, by, ..., 4 Such that infinitely many elements of the

sequence {a,b} belong to Gipyy- Lot @ be@y | (n=1,2,...). Then a,m”a;::
k
= (tm, b) (@) 0) e @, and by the definition of {a,}: U, Oy € () G, Then
k+1 k41 j=1

i s € 6y, and (&, is an infinite set, which completes our induc-
=1 =1

tive proof.
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