

COLLOQUIUM MATHEMATICUM

VOL. VII 1959 FASC. 1

SOME REMARKS ON INACCESSIBLE ALEPHS

BY

S. SWIERCZKOWSKI (WROCŁAW)

If s is a sequence composed of zeros and ones and of the ordinal type α , say $s=\{\delta_{\beta}\}_{\beta<\alpha}$, where $\delta_{\beta}=0$ or 1, then let us define

$$\varepsilon |s| \eta = \{\delta_{\beta}\}_{\varepsilon \leqslant \beta < \eta} \quad \text{ for } \quad \varepsilon < \eta \leqslant \alpha.$$

Thus $0|s|\eta$ (or simpler $s|\eta$) is a segment of type η of s. For a set S of sequences of type α we define $\varepsilon|S|\eta = \{\varepsilon|s|\eta : s \in S\}$ and $S|\eta = 0|S|\eta$.

Let α be a limit number. A sequence of type α of subsets $A_0, A_1, \ldots, A_{\beta}, \ldots$ of a set M is called convergent to a set $A \subset M$ if for each $x \in M$ there exists a $\gamma < \alpha$ such that $x \notin A - A_{\beta}$ for $\gamma < \beta < \alpha$ $(A - A_{\beta}$ denotes the set of those $y \in M$ which belong to strictly one of the sets A, A_{β}).

A function m defined on all subsets of a set M and taking the values 0, 1 will be called additive with each power less than $\overline{M} = \aleph_{\mu}$ if $m \bigcup_{\beta < \alpha} A_{\beta} = \sum_{\beta < \alpha} m A_{\beta}$ for pairwise disjoint sets $A_{\beta} \subset M$ and $\alpha < \omega_{\mu}$.

We call an infinite aleph \aleph_{μ} inaccessible if

(a)
$$\sum_{\beta < a} \mathfrak{m}_{\beta} < \mathfrak{R}_{\mu}$$
 whenever $\alpha < \omega_{\mu}$ and $\mathfrak{m}_{\beta} < \mathfrak{R}_{\mu}$ for $\beta < \alpha$;

(b)
$$\mathfrak{n}^{\mathfrak{m}} < \aleph_{\mu}$$
 for $\mathfrak{n}, \mathfrak{m} < \aleph_{\mu}$.

The definition of inaccessible cardinals given in [3] coincides with the above definition when applied to alephs.

Consider the following statements:

 (\mathbf{H}_1) If to each ordinal $\alpha < \omega_{\mu}$ corresponds a non-empty family S_{α} of sequences which are composed of zeros and ones and are all of the type α and $S_{\alpha}|\eta = S_{\eta}$ whenever $\eta < \alpha$, then there exists a sequence s of type ω_{μ} , composed of zeros and ones, such that $s|\alpha \in S_{\alpha}$ for each $\alpha < \omega_{\mu}$.

 (\mathbf{H}_2) If $\overline{M}=\mathbf{N}_{\mu}$, then every sequence of type ω_{μ} of subsets of M contains a convergent subsequence of type ω_{μ} .

28

 $(\mathbf{H_s})$ There exists a zero-one valued measure m defined on all subsets of M which is additive with each power less than \overline{M} , and satisfies mM=1.

In this paper we shall prove the following theorem:

Theorem. If $\overline{M} = \aleph_{\mu}$ is inaccessible, then (H_1) and (H_2) are equivalent statements and they follow from (H_3) .

Under the assumption that $\overline{M} = \aleph_{\mu}$ is inaccessible, (\mathbf{H}_1) , (\mathbf{H}_2) and (\mathbf{H}_3) are unsolved hypotheses (ct. [1], [4], [5]). (\mathbf{H}_1) and (\mathbf{H}_2) were put forward by R. Sikorski; (\mathbf{H}_1) is the yet unsolved part of P 19 (see [2], [4]) and (\mathbf{H}_2) is equivalent with Problem 23 in the "New Scottish Book" (inscribed at 13. XII. 1946).

Proof of the theorem. We shall prove the implications $(\mathbf{H_3}) \rightarrow (\mathbf{H_1}) \rightarrow (\mathbf{H_2}) \rightarrow (\mathbf{H_1})$.

 (\mathbf{H}_1) implies (\mathbf{H}_2) . Denote by $A_0, A_1, \ldots, A_{\beta}, \ldots$ a sequence of subsets of M which is of the ordinal type ω_{μ} . We may assume that M is the set of all ordinals which are smaller than ω_{μ} . Thus the characteristic function of each set A_{β} is a sequence composed of zeros and ones and of type ω_{μ} . We denote this sequence by $s^{(\beta)}$.

LEMMA. If B C M is of power \mathbf{x}_{μ} and $\epsilon < \eta < \omega_{\mu}$, then there is an $a \, \epsilon \, B$ such that

$$\varepsilon |s^{(a)}| \eta = \varepsilon |s^{(\beta)}| \eta$$

holds for \aleph_n ordinals $\beta \in B$.

Indeed, let us write $\alpha \sim \beta$ for any ordinals α , $\beta \in B$ such that (*) holds. It is clear that \sim is a congruence relation on B. The number of classes of congruent ordinals into which B is decomposed by \sim is evidently at most $2^{\overline{\eta}}$. Since \aleph_{μ} is inaccessible, we have $2^{\overline{\eta}} < \aleph_{\mu}$. This implies, again by the inaccessibility of \aleph_{μ} , that at least one of these congruence classes is of power \aleph_{μ} . That means that there exists an $\alpha \in B$ such that (*) holds for \aleph_{μ} ordinals $\beta \in B$.

It follows from our lemma (in the case $\varepsilon = 0$, B = M) that for each $\eta < \omega_{\mu}$ there exists a sequence $s^{(a)}$ such that $s^{(a)}|\eta = s^{(\beta)}|\eta$ for \aleph_{μ} ordinals β . We shall denote the family of all such sequences $s^{(a)}|\eta$ by S_n .

Let us verify that $S_{\eta}|\varepsilon = S_{\varepsilon}$ whenever $\varepsilon < \eta$. Evidently $S_{\eta}|\varepsilon \subset S_{\varepsilon}$. To prove the inverse inclusion suppose that $s^{(0)}|\varepsilon \in S_{\varepsilon}$. Let B be the set of all ordinals β for which $s^{(\beta)}|\varepsilon = s^{(0)}|\varepsilon$. It follows that $\overline{B} = \aleph_{\mu}$.

By our lemma (here we apply it with $\varepsilon \neq 0$) there exists such an $a \in B$ that (*) holds for \aleph_{μ} ordinals β . Thus by $a, \beta \in B$ we have $s^{(\alpha)}|_{\eta} = s^{(\beta)}|_{\eta}$ for \aleph_{μ} ordinals β . This implies $s^{(\alpha)}|_{\eta} \in S_{\eta}$. Since $s^{(\alpha)}|_{\varepsilon} = s^{(\beta)}|_{\varepsilon}$ we obtain $s^{(\beta)}|_{\varepsilon} \in S$ $|_{\varepsilon}$.

It follows from (\mathbf{H}_1) that there exists a 0-1 sequence s satisfying $s|\eta \in S_\eta$ for each η . Let A be the set with the characteristic function s. For each ordinal $\eta < \omega_\mu$ let us consider the ordinals α which satisfy $s|\eta = s^{(\alpha)}|\eta \in S_\eta$. Since there are \mathbf{X}_μ such ordinals α , there is among them an ordinal $\alpha_\eta > \eta$. Thus we can define a sequence $\{\alpha_\eta\}_{\eta < \omega_\mu}$ such that $s|\eta = s^{(\alpha_\eta)}|\eta$ for each η . These equalities imply

$$\eta \notin A \stackrel{\cdot}{-} A_{a_{\beta}}$$
 for $\beta > \eta$

what proves that the sequence $\{A_{a_{\eta}}\}_{\eta<\omega_{\mu}}$ converges to A. It follows from $a_{\eta}>\eta$ that $\{a_{\eta}\}_{\eta<\omega_{\mu}}$ is confinal with ω_{μ} .

 (\mathbf{H}_2) implies $(\dot{\mathbf{H}}_1)$. Let M be the set of all ordinals smaller than ω_μ . Suppose that to each $\alpha < \omega_\mu$ corresponds a family S_α of 0-1 sequences of type α and that $S_\alpha|\beta = S_\beta$ for $\beta < \alpha$. Denote by $A_\alpha \subset M$ any set which characteristic function is a 0-1 sequence $s^{(a)}$ of type ω_μ satisfying $s^{(a)}|\alpha \in S_\alpha$. By (\mathbf{H}_2) there exists a subsequence $\{A_{\alpha_\eta}\}_{\eta < \omega_\mu}$ convergent to some set $A \subset M$. Let s be the characteristic function of A. Let us prove that s satisfies the conclusion of (\mathbf{H}_1) , i. e. that $s|\gamma \in S_\gamma$ for each γ . Establish some $\gamma < \omega_\mu$. For each $\beta < \gamma$ there exists an ordinal $\delta_\beta < \omega_\mu$ such that

$$\beta \notin A \stackrel{.}{-} A_{a_n}$$
 for $\eta > \delta_{\beta}$.

Since \aleph_{μ} is inaccessible, it follows that the sequence $\{\delta_{\beta}\}_{\beta<\gamma}$ cannot be confinal with ω_{μ} and thus there exists a number $\delta<\omega_{\mu}$ which is greater than each δ_{β} with $\beta<\gamma$. Consequently

$$\beta \in A - A_{a_n}$$
 for every $\beta < \gamma$ and $\eta > \delta$.

This proves that $s|\gamma\,\epsilon\, S_{a_\eta}|\gamma$ for $\eta>\delta$ and thus $s|\gamma\,\epsilon\, S_\gamma$ by $S_\gamma=S_{a_\eta}|\gamma$ for $a_\eta>\gamma$.

 $(\mathbf{H_a})$ implies $(\mathbf{H_1})$. Suppose the families S_a do satisfy the assumptions of $(\mathbf{H_1})$. Consider the set $S = \bigcup_{a < \omega_{\mu}} S_a$. Clearly $\overline{S}_a \leqslant 2^a < \aleph_{\mu}$ for each a and thus $\overline{S} = \aleph_{\mu}$ (since S_a are pairwise disjoint). Denote for $\beta < \omega_{\mu}$ and i = 0 or 1 by $T_i^{(\beta)}$ the set of all sequences in S which are of ordinal type greater than β and the β -th term of which is i. Thus we have the decompositions $S = T^{(\beta)} \cup T_0^{(\beta)} \cup T_1^{(\beta)}$ where $T^{(\beta)}$ denotes the set of all sequences belonging to S and of ordinal types not greater than β .

Let m be a 0-1 measure defined on all subsets of S which exists by (\mathbf{H}_3) . It is $mT^{(\beta)}=0$ since $\overline{T}^{(\beta)}<\mathbf{N}_\mu$ by the inaccessibility of \mathbf{N}_μ . Thus mS=1 implies that for $i_\beta=0$ or 1 we have $mT^{(\beta)}_{i_\beta}=1$ and $mT^{(\beta)}_{1-i_\beta}=0$. We define $s=\{i_\beta\}_{\beta<\omega_\mu}$. (\mathbf{H}_1) follows if we prove that $s|\alpha\in S_\alpha$ for each

30 S. ŚWIERCZKOWSKI

 $\alpha < \omega_{\mu}$. Suppose some $t \in \bigcap_{\beta < \alpha} T_{i\beta}^{(\beta)}$. Then $t | \alpha \in S_{\alpha}$ and $t | \alpha = s | \alpha$ what implies $s | \alpha \in S_{\alpha}$. Now it follows from

$$m \bigcap_{eta < a} T_{i_{eta}}^{(eta)} \geqslant 1 - \sum_{eta < a} m \left(T^{(eta)} \circ T_{1-i_{eta}}^{(eta)}
ight) \, = 1$$

that $\bigcap_{\beta < a} T_{i\beta}^{(\beta)}$ is not empty for $a < \omega_{\mu}$.

REFERENCES

 S. Banach, Über additive Maβļunktionen in abstrakten Mengen, Fundamenta Mathematicae 15 (1930), p. 97-101.

[2] H. Helson, On a problem of Sikorski, Colloquium Mathematicum 2 (1951),

p. 7-8.

[3] W. Sierpiński and A. Tarski, Sur une propriété caractéristique des nombres inaccessibles, Fundamenta Mathematicae 15 (1930), p. 292-300.

[4] R. Sikorski, P19, Colloquium Mathematicum 1 (1948), p. 35.

[5] S. Ulam, Zur Maβtheorie in der allgemeinen Mengenlehre, Fundamenta Mathematicae 16 (1930), p. 140-150.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 20. 5. 1958

COLLOQUIUM MATHEMATICUM

VOL. VII

1959

FASC, 1

ON THE REPRESENTATION OF FIELDS AS FINITE UNIONS OF SUBFIELDS

BY

A. BIAŁYNICKI-BIRULA, J. BROWKIN AND A. SCHINZEL (WARSAW)

The purpose of this paper is to prove the following theorem:

THEOREM. An algebraic field cannot be represented as a union (in the sense of the theory of sets) of a finite number of proper subfields.

LEMMA 1. If
$$G, G_1, G_2, ..., G_n$$
 are groups, $G = \bigcup_{i=1}^n G_i$,

(1)
$$G \neq \bigcup_{i=1}^{j-1} G_i \cup \bigcup_{i=j+1}^n G_i \quad \text{for} \quad 1 \leqslant j \leqslant n$$

and G is an infinite set, then $\bigcap_{i=1}^{n} G_i$ is infinite.

Proof. We shall prove by induction that for each $k \leq n$ there exists such a sequence i_1, i_2, \ldots, i_k of different natural numbers $\leq n$ that

(2)
$$\bigcap_{i=1}^{k} G_{i_{i}} \text{ is infinite.}$$

For k=1, (2) follows from the fact that $\bigcup_{i=1}^{n} G_{i}$ is infinite. Suppose that (2) holds for k < n and let $\{a_{n}\}$ be an infinite sequence of diff rent elements of the group $\bigcap_{j=1}^{k} G_{ij}$. By (1) $G \neq \bigcup_{j=1}^{k} G_{ij}$ and so there exists a $b \in G - \bigcup_{i=1}^{k} G_{ij}$.

a $b \epsilon G - \bigcup_{j=1}^{n} G_{i_{j}}$.

Consequently $a_{n}b \in \bigcup_{j=1}^{k} G_{i_{j}}$ and $a_{n}b \in \bigcup_{i \neq i_{1}, i_{2}, \dots, i_{k}} G_{i}$. Hence there exists a number $i_{k+1} \neq i_{1}, i_{2}, \dots, i_{k}$ such that infinitely many elements of the sequence $\{a_{n}b\}$ belong to $G_{i_{k+1}}$. Let $a_{m_{n}}b \in G_{i_{k+1}}(n=1,2,\ldots)$. Then $a_{m_{n}}a_{m_{1}}^{-1} = (a_{m_{n}}b)(a_{m_{1}}b)^{-1} \in G_{i_{k+1}}$ and by the definition of $\{a_{n}\}$: $a_{m_{n}}a_{m_{1}}^{-1} \in \bigcap_{j=1}^{k+1} G_{i_{j}}$. Then $a_{m_{n}}a_{m_{1}}^{-1} \in \bigcap_{j=1}^{k+1} G_{i_{j}}$, and $\bigcap_{j=1}^{k+1} G_{i_{j}}$ is an infinite set, which completes our inductive proof.