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SOME PROPERTIES OF THE SPACE (s)
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0. BESSAGA, A. PELCZYNSKI axp 8. ROLEWICZ (WARSAW)

In the present paper we consider some isomorphic properties (i. e.
the invariants of the linear homeomorphisms) of the space (s). It follows
from these considerations that the isomorphie structure of the space (s)
is very similar to that of the finitely dimensional spaces.

1. Notation and terminology. We denote by (s) the Bg,-space (1)
of all real sequences # = (a,) with the usual definition of the addition
of elements and multiplication by real numbers and with the pseudo-
norms |zl = supla; (» =1,2,...).

i<n

<

In the sequel the symbol X will be reserved for denoting an arbi-
trary By-space. We agsume that convergence in X is determined by the
system of homogeneous pseudonorms (|lzfl;) such that |l < |=lliys
(reX,4=1,2,...). The symbol |»| will always denote the norm (in ge-
neral non-homogeneous) which determines the topology of the space;
|#|, Jlz|| will denote homogeneous and continuous psendonorms in the
space X.

It is well known that ([5], 1.51):

() For every homogeneous and continuous pseudonorm |w| there ewists
a constant C and an indew i, such that for every x e X the inequality |o| < C|lally,
is satisfied.

The pseudonorm |z| determines the quotient space X(|.|) whose
elements are the sets

{2} ={yeX:jo—y| = 0},
where

{o} o} = {ot+u},  ta} = {2}, {2} = la].

(*) By a Bj-space we mean a linea.rly-métrie and locally convex space. For
the definition and basic properties see [5].
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The above definitions of the addition, mulfiplication by scalars
and the norm does not depend on the choice of elements from the clagses
{z} and {y}.

A space X is said to be relatively complete [4] if it is isomorphic to
the space X’ such that all the spaces X'(|| . ;) (¢ = 1,2, ...) are complete
(i. e. they are B-spaces).

A space X is called a Montel space [4] if in the space X for every
linearly bounded sequence there is a convergent subsequoence.

2. In the paper [2] the following results are obtained:
TEEOREM 1. The space X contains a subspace that is isomorphic to
) if and only if there exists mo homogeneous and continuous norm
in X.

TEEOREM 2. If all the spaces X(|.l) (1=1,2,...) are finilely
dimensional, then either X is isomorphic to (s) or it has a finite dimension.
Now we shall deduce some consequences from these theorems.

TEEOREM 3. The space (s) is the only infinitely dimensional space
that is relatively complete and Montel space.

Proof (%). It is easily seen that (s) is a relatively complete Montel
gpace.

Let X Dbe a relatively complete Montel space. We may obviously
agsume that all the spaces X(|.|[;) are B-spaces. The spaces X (| .
are Montel spaces as the linear images of the Montel space X (see [4]).
Since each Montel B-space must be finitely dimensional; to complete the
proof it iy enough to apply Theorem 2.

THEOREM 4. If the space X is a linear image of (s),
isomorphic o (s) or i is of a finite dimension.

Proof. Let U be a linear mapping of the space (s) onto X. Every
pseudonorm |l defined on X determines the pseudonorm |y| = ||U(¥)|
on the space (s). According to property (») and Theorem 2, the space
8(] . |) is finitely dimensional; hence so is the space X(|| . ||) Now it is
sufficient to apply once more Theorem 2.

Let us compare Theorem 4 with the following property of finitely
dimensional spaces: a linear image of a k-dimensional gpace X is either
isomorphic to the space X or has a dimension less than k.

The space (s) has also the following well-known property of the
finitely dimensional spaces:

THROREM 5. All the bases of the space (s) are equivalent.

then either X is

(*) This proof is ﬁude by W. Zawadowski.
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(T'wo bases (2, ( n) @0d (y,) are called equivalent if for every real sequence

(t,) the series 2‘1 tn, converges if and only if the series Z’t,,'y,L converges).
e

The proof of Theorem 5 ig given in [3]; see also [1], Ohap IIT, Theo-
rem 13.

An immediate consequence of Theorem 2 is the following result
of 8. Mazur and W. Orlicz ([6], 3.1):

THEOREM 6. Every infinitely dimensional subspace of the space (s)
s tsomorphic to (s).

‘We shall establish some generalizations of Theorems 5 and 6

THEOREM 7. In order that the space X with an infinite basis (e,)
be isomorphic fo the space (s) it is necessary and sufficient that

(«) every subbasis (e,) = (ey,) contain a subbasis (e;)) = (er,) that is
equivalent to the unit-vector-basis of the space (s) (%).

Proof. The necessity of condition (a) is obvious.

Suffieciency. Suppose that X iy not isomorphic to (s). Thus, ac-
cording to Theorem 1, there iy a continuous homogeneous pseudonorm
llz]| such that the space X (|| . [|) has an infinite dimengsion. We can choose 2
subsequence (eg) = (ey,) of the sequence (¢,) in such a way that || 540
(n =1,2,...). (This easily follows from the fact that there exists in X
an infinite set whose elements are linearly independent with respect to
the pseudonorm |z}|). Consider a subspace ¥ C X which is generated
by elements (ey). Every element y<Y can be represented in a unique

way in the form y = Zt ¢n; because the sequence (e))

n=1
Let

i3 & basis of Y.

iyl = sup | 3'tci].

It is easily verified that the functional |y| is & homogeneous and con-
tinuous norm. According to Theorem 1, no subspace of ¥ is isomorphic
to (s), which contradicts condition (a), q.e. d.

TuHEOREM 8. A space X is isomorphic to (s) if and only if

(B) every infinitely dimensional subspace Y of the space X contains
a subspace Y, which is isomorphic to (s).

Proof. According to Theorem 6, the necessity of condition (B) is
obvious. The proof of the sufficiency is based on the following non-tri-
vial lemma, which is proved in [3]:

(*) The unit-vector-basis is composed of elements e, = (0,0,...,
(where 1 is on the n-th place; n = 1,2, ...).

0,1,0,..)
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LmmMA. If the space X (||.||) has an infinite dimension, then there
ewists @ sequence (z,) with |lvy) %0 (n = 1,2, ...} which is a basis of a
subspace Y of the space X.

From this lemma we deduce in the same way as in the proof of Theo-
rem 7 that no subspace of Y is isomorphic to (8). This contracicts condi-
tion (B).

3. In this section we shall consider F-spaces (%) which contain sub-
spaces isomorphic to the space (s).

Theorem 1 can be generalized as follows:

THEOREM 9. Let B be an F-space with the norm |w). B contains o sub-
space which s isomorphic to the space (s) if and only if

(Y) for every &> 0 there is in B an clement @ # O such that for every
real t the imequality ltul < e holds.

The geometrical meaning of condition (y) is that there exist in the
space F ‘“arbitrarily short’’ straight lines.

Proof. The necessity of (y) is obvious. To prove the sufficiency
suppose that the space B satisties condition (y). We can choose a sequence
(en) such that 0 < 8, < 1, b, < 14, (n =1, 2,...), where &, = Sup ltey.

11

Let
i
Y= {m: Bz = Ztne,,}.
n=1
Y is a linear set; it has the following properties:

. o0
(a) For every sequence (f,) of real numbers the geries Dty e, con-
verges. n=l

q q 4
Indeed, |3 taen| < 3 ltnenl < 34177,
N=p . N=p =2
(b) If g, = Ytne, — 0, then Lm#& =0 (n =1, 2,...).
A=l P->00 ’

.Suppose that (b) is false. Then there is a sequence of indices (py),
an index 7, and » > 0 such that

(1) Hmfk =0  for n < n,,
Je—>00
W@ > (b =1,2,..).

According to the definition of 8, it is possible to find a number 7

. (*) By an F-space we mean a linearly-metric and complete space. For the de-
tinition and basic properties see [1].
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such that for ¢ > =# the inequality [te,;| > £J,,. holds. Hence, in parti-
cular,

[tk e, > 36, (k=1,2,..).

Now we consider the sequence (vy,,). It follows from (1) that there
exists an index %, such that for every k >k,

ny—1

j N tﬁken[ < oy
fi=1

Thus for every k >k, we have

np—1 ©
ul
() < [tB el — | 3 Bren| —| > tBeen|
N=1 =91
o0 oo
—_ 1
= %6750_%67140— Z ’511, = (%*24 7) = 6_6110
Nn="ng+2 j=1

which eontradicts the condition zy, — 0.

[==]
(¢) Tf lim #£ =0 (n = 1,2, ...), then y, = Y'ihe, > 0.
P—>0 n=1

Let ¢ > 0. We choose an index #, such that > 6, < ¢/2. Now we choose
n=ng
ng—1

an index P such that for p > P the inequality | D then] < €/2 holds.
n=1
For p > P we have

0 (=]
ol <| Dhe] +| Y Bea| <o
n=1 n="ng+1

Conditions (a), (b) and (¢) imply that the correspondence U (t,)
= Y'{,6, is an isomorphic mapping of the space (s) onto X, d.e.d.
n=1

COROLLARY. B contains ¢ subspace that is isomorphic to (s) if and only

if there is in B a sequence (%) such that for every real sequence (1,) the series
oo

Dy, cOnVErges.
=1

THEEOREM Sa. Let H be an F-space with a basis (e,). If every subspace
of the space B contains a subspace isomorphic to (s), then E is isomorphic to
the space (s).

Proof. Suppose that F is not isomorphic to (s). Hence the basis (e,) i8
not equivalent to the unit-vector-basis of (s) (see [3], Wniosek 2), therefore
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! o0
there is a real sequence (t,) such that the series >'t,e, is not convergent.
]

We may suppose (Theorem 4 of [7]) that the norm of the space 7 satisfies
the condition

—
%l

a
Ztne,, for p<gqg.
1

Tomm

»
(2) | 3 tuen
=]

d
Since the series J %,¢, does not converge, there exist an s> 0 and

n=1
P11
a subspace (k,) of indices such that | 3 tef > &
it 1
Write "
1
by = Zt'tez (n=1,2,..)
Tt

Let B’ be a subspace generated by the elements e;, ¢;, ... According
to (2) and Theorem 5 of [7], the sequence (e;) i a bagis of the
space H'.

e
Let y =,.217“6" be an arbitrary element of E'. We denote by wu, the

first index such that =, # 0. Let A =1/7,. We have |iz,en|> e
Hence, by (2), e < [Z-r,,oe{,ol < ly|. According to Theorem 9, no subspace
of B ig isomorphic to the space (s), g.e.d.

We do not know whether Theorem 8 holds true for arbitrary F-spaces,
1. e. whether for an arbitrary F-space E condition (8) (without any addi-
tional agsumption) implie§ that & is isomorphic to the space (s).

Let us note that Theorem 7 is false in the case of F-spaces. This
is a consequence of the following

Example. Let H be the set of all real sequences for which

o0

L
) R N L
2w e <

If we define the addition of elements and multiplication by scalars,
then H ig an F-spaces under norm (3). It is easy to gee that the sequence
of unit vectors (x,) is & bagis of H. Since the basis (,) is not equivalent
tio the unit-vector-bagis of the space (s), using Theorem 5 we see that H
is not isomorphic to (s).
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Let (2,) be an arbitrary subsequence of the basis (2,). Let us choose
an inereasing sequence of indices (r,) in such a way that

o 1
S < 400

Ty,

n=1 n

The subbasis (23, ) is equivalent to the unit-vector-basis of (s).
n
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