On the isomorphism of Haar measures

by
K. Urbanik (Wroclaw)

I. Preliminary definitions. Let & be a group (not necessarily
commutative). A Hausdorff topology § for G will be called compact
topology for G if G is a compact topological group with respect to the
topology IJ. If 7 is a compaet topology for @, then by By we sball de-
note the o-field of all Baire subsets of @, i. e. the smallest o-field that
includes all compact @, sets (with respect to the topology ¢J). Further,
by pug we shall denote the Haar measure defined on By and normalized
by supposing He(@) = 1.

Let 95 be the o-ideal of all sets B € By with pg(E) = 0. Consider
the Boolean o¢-algebra By = %9/99. The element (the coset) of By
determined by a set ¥ ¢ By will be denoted by [E]. The Haar measure
g determines the measure ﬁ‘g on By:

Bg([B]) = po(B) (B ey .

Let A and B be two Boolean ¢-algebras with measures u and »
respectively. An isomorphism % of A into B is said to be Measure-pre-
serving if v(h(A)) = u(4) for each 4 ¢ A. If there is a measure-preserving
isomorphism of A inte B, the measures x and ¥ are said to be wsomorphic.

The Haar measures Hg, and ug are sald to be almost isomorphic
if the measures “’;@1 and /'2’92 determined by Hg, and ug respectively are
isomorphic.

Let 9B be a o-field with a measure u and let 93, be a o-subfield
of 3. The measure u restricted to sets A e Bo will be denoted by u|WB,..
Further two o-subfields 93, and 93, (%8, C 93, “B. CW) are said to be
independent if u(d; ~ 4,) = p(4;) ~ u(4,) for each Ay B, and 4, €B,.

For every element 4, of a Boolean o-algebra A, the symbol Ay~ A
will denote the relativized Boolean o-algebra formed of all 4 C 4,, A ¢ A.

For any Boolean o-algebra A, let v(A) denote the leagt cardinal
that is the power of a set S C A such that the least ¢-subalgebra con-
taining S is A itself. o

A Boolean o-algebra A is said to be of the type a 2 0if v(4A ~ A) = &,
for every 4eA, 4 0.
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For a fixed ordinal « >0, let

by

Kn =E(P" IE ( = Sa)
be the Cartesian product of x, sets I each of which contains only two
elements 0 and 1. Let K% be the set of all points p e K, whose &th co-
ordinate is 0, and let 9, be the least o-field generated by the sets bl
(€ e £). In each I, we define the measure A putting 1(0) = A(1) = 3. These
measures on I, indnce the product measure m, o0 K,. Let 9, be the
o-ideal of all sets 4 e X, with mg(4) = 0. The measure m, determine
the measure 7%, on the Boolean o-algebra KefTe = Kae

A measure g on a Boolean ¢-algebra A is said to be strictly positive
normed if p(4)>0 for AecA, 4 # 0 and x(0’)=1. For example, .Tig
and #%, ave strictly positive normed measures on By and K, respectively.

D. Maharam ([4]) has proved the following fundamental theorem:

(M) If  Boolean o-algebra with a strictly positive normed measure p
is of the type a0, then y is isomorphic to My

IL. Problems. In connection with the study of the foundations of
the theory of probability J. %i0f has raised the following problem:

Let G be an infinite group and let G, and G, be compact topologies
for G. Does there exist a common invariant extension of pg and '”91? In
other words, does there emist an invariont measure defined on the least
o-field containing the o-fields By and By, such that

wBg, = kg,
HiBg, = g,

S. Hartman has proved that for g, s J, there exists’ no extension
of B, and pg, defined on a Baire o-field induced by a compact topology
for G

S. Hartman has formulated the following problem, which is a mo-
dification of Log’s problem:

Let G be an infinite group and let G, and G, be compact topologies
for G. Does there exist a compact topology I for G such that DBy contains
two independent o-subfields B, and B, for which ug|B; wnd pg, (=1, 2)
are almost isomorphic? ‘ .

At the same time S. Hartman has proved that the answer to this
problem is affirmative for divisible Abelian groups. In the present note
we shall give, using Maharam’s theorem, the general solution of Hart-
man’s problem. Moreover, we shall examine isomorphism types of Boolean
g-algebras Bg.
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III. Theorems. In the present note we use Zermelo’s axiom of
choice. Consequently, powers of sets are alephs.

THEOREM 1. Let G be an infinite group and let G, and Gy be compact
topologies for G. There ewists then a compact topology 9 for @ such that By
contains two independent o-subfields 98, and W, for which pg|B; and pg.
(j =1,2) are almost isomorphic. ’

By (%) we shall denote the following implication:

(%) If 28a= 2% ihen 8, = %p.
Tt is well known that the generalized continuum hypothesis (8.4, = 2%)
implies ().

TaroreM 2. The implication (%) is equivalent to the following one:

Let G be a group ond let G = 28%. Then for every compact topology G
for @ the Boolean c-algebra By ts of the type a.

A. Hulanicki has shown that the power of every infinite compact
topological group is of the form 2% ([2]). Hence, according to Maharam’s
theorem, we immediately obtain the following

COROLLARY. Léet G be an infinite group. Under the assumption (x) for
all compact topologies J for G the Haar measures ug are almost isomorphic.

1V. Proofs. In the sequel we shall denote by G an infinite group.
LevmA 1. Let G be a compact topology for G. Then for every A € By,

A £ 0, the equality
7{Bg) = 1(4 ~Bg)
holds. » Bg 7

Proof. Let Ee 5739 and [E] # 0. It is well known that there exists
a sequence @, &y, ... (#; € @) satisfying the equality

# G\ 0y B) = 0
3=
(ef. 1], § 60, exercise 4). Consequently,
(6] = H[%E] .
Hence we obtain the following inequality:
©o
[#; 8] ~ By) <7(By) < Y v([#; ] A By) .

i=1

Since z([B] A By) = 7([a¥] ~ By) for each z <@, we have, according to
the last inequality, % ’ ’ ¢

(1) 7(LE] ~ By) < ©(Bg) < 8¢7(LE) ~ By)
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The Haar measure on an infinite compaet group is non-atomic. Therefore
T([E] ~nBg) 2 %,. Consequently, in view of (1), z([E]~ By) = T(Bg)-
The Lemma is thus proved.

Proof of Theorem 1. Let §, and g, be compact topologies for @
and 1:(B91) = Mg, r(Bgl) = K,. We may suppose that the inequality
a; > o, holds. In virtue of Lemma 1 and Maharam’s theorem (M) the
measures ﬁg:" My (j=1,2) are isomorphic. Let 5= 51Uk, 5 A5, =0,
5 =1, 5 =R, and 5, =, Then

K, =5?Is>< PI.

€81 &es;

Let Kf}l) be the least o-subalgebra of K, containing all elements of the
form [E], where BeX,, E=AX PI;, AC PI, and let K? be
. ’

€Eg &exy
the least o-subalgebra of K, containing all elements of the form [H)],
where Be¥,, B=P I;x4, ACP I.. It is easy to verify that

fesy tezp
the measures i, |KY and ity (j=1,2) are isomorphic. Moreover, for

any 4, €K}, 4,eKD the equality #,(4; ~As) = i, (A, (4,) is
true. We denote by h a measure-preserving isomorphism of B91 into K,
Let ;e a o-field of all sets B (K « By,) for which A([B]) eK? (j =1, 2),
Obviously, for any K, €95, and B, ¢ B,

1By~ By) = i ([B]  [Ea)) = i (h(LBL) ~ B([H])

= i, (B ) i (B ERD)) = g (L iy ([ B5)) = oo (By) o ()
Thus %, and 9B, are independent o-subfields OE %71. Moreover, from
the equality %;/9; = h(KJ) it follows that the measures tg,[B; and
‘)?iﬂllKg) (j=1,2) are isomorphic. Since ﬁal]Kf,? » Moz, fig, are isomor-

- i

phie, the measures ;7911%; and ,79, (=1,2) are also isomorphic. In
other words the measures ;191]%’, and K, (=1, 2) are almost isomor-

phic. Putting 9 =9, we obtain the assertion of Theorem 1.
Lamma 2. For every compact topology J for @ the inequality

. ﬁ < 21(39)
28 true.

Proof. The Boolean o-algebra By will be considered as a metric
space with the distance

o(4y, 4,) = ﬁg(Axn\Az) +}79(A2\\A1) (4y, 4, € Bg) .

Moreover, every element 2 ¢ @ will be considered as a distance-preserving
transformation of By into itself: g ([E]) = [2E] (B e%g)‘ It is easy to
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verify that for every pair x, y ¢ G, x 7 y there exists a neighbourhood V
sueh that 21 ~ yV = 0. Hence, taking into account the inequality yg(V) >0
we obtain [#V] st [yV], which implies @, # @,. Consequently,

2) F= aoco -

According to Lemma 1, By is of the type B, where 7(By) = ;. Conse-
quently, the least cardinal of a set dense in By is z(By) (ef. [5], Lernma (iii)).
Tt is clear that the transformation ¢, is determined by its values on a dense
subset of By. Hence .
{a;}mca < ]—%17(39) ?

which implies, according to (2), the inequality
G<By-

Further, from the definition of the cardinal r(Bg) it follows that 1139
< 7(Bg)*. Consequently,

& < v(By)®P = (By)*P = 2779
q. e. d.

Levma 3. Let 9 be a compact topology for G. If ©(3F) s the least
cardinal that s the power of a basis for all open subsets of @, then the in-
equality

*(Bg) < 6(9)
holds.

Proof. Let B be a basis for all open subsets of @ and B = 0(9).
It is well known that a compact Hausdorff space is normal. Therefore,
by Drysohn’s Lemma, for every pair of neighbourhoods U,V e®B, U~V
= 0, there exists a continuous real-valued function fyy on & such thab
forp=1on U and fyr =0 on V. Let F be the smallest class of con-
tinuous real valued functions on @, containing all linear combinations
pfoy +qfry with rational coefficients, that is closed under the opera-
tions max(f, g) and min(f, g). Obviously,

(3) F=06(3).

Let f be a continuous real-valued function on . Then for every
pair z, ¥ € @ and for every ¢ > 0 there exist rational numbers p, ¢ such that

(4) f@)~pl<e, Jfy)—gql<e.
If © +#y, there are neighbourhoods U,V B such that
UAV=0.

well, yeV,
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Hence, according to (4), we obtain the inequalities ’ Since 7(B,) is the least cardinal of a set dense in By, we have, ac-

@) —pfor @ —do@] <e, @) —blor) —dro@)] <. cording to (5), the inequality

Consequently, every continuous real-valued function on G can be ap-
proximated at every pair of points by a function of . Therefore, by
a version of Stone’s theorem, the uniform elosure of & contains every
continuous real-valued function on G (cf. [3], § 4).

Let us denote by ,B(/,ag) the space of all real-valued functions o

The lemma is thus proved.
Proof of theorem 2. Sufficiency of (). Let us suppose that (%)
is true. By a theorem of Hulanicki ([2])

integrable on @, with the norm (1) G =99,
I =f If (w)],ug(tlw). where ©(3J) denotes the least cardinal that is the power of a basis for
¢ all open subsets of ¢. Hence, in virtue of (), ©(9) does not depend on
It is well known that the set of all continuous functions is dense in .2(u,) a compact topology 9: O(J)=x,. Hence and from (7), in virtue of
(¢f. [1], § 55, exercise 2). Consequently, the set F is also densein.@(,ug). Put Temmas 2 and 3, we obtain the inequalities
(5) By=f{w: 0e, f2) >4} (feF). . (8) a2, v (By) < K-

Since f are continuous funetions, we infer that 2, are Baire sets (cf. [1],
§ 50, theorem 3). Now we shall prove that the family of cosets {Bs e
is dense in the space

Let E ¢ ‘)39 and let yz denote the characteristic function of F, i. e.

From the last inequality it follows that

215(39) < ¥ _

2z=1on E and yz= 0 on G\ E. Since yx € L(ug), there exists a sequence Thus, in virtue of (8), the equality
f1s fas .. of functions belonging to F such that
21(39) = 9N
(6) im [yg—fa] = 0. '
e holds. Hence, applying (x), we have the equality 7(Bg)= 8. for every
In virtue of definition (5), we obtain the following inequalities: compact topology 3. Consequently, by Lemma 1, for every compact
) topology & for @, the Boolean o-algebra By is of the type a. The suf-
f ]xE(w)—f,.(m)[pg(dw)z f |1—fn(m)],u9(dw) 2%@(}9\1;,")’ ficiency of (%) is thus proved. B
NEpy By, Necessity of (). Let us suppose that if G = 2%, then for every
: > g lean c¢-algebra By iy of the type a.
1 5(5) — Ful)| po(dis) = X > | compact topology § for G the Boo g o
E,';{‘EI “ ol )IMJ (dz) E/{E 1 (fv)],ug(dw) %#Q(E’" &) Let us assume that the equality
Hence we have the inequality (9) e o gty
o(LE], [E’n])=“Q(E\E!»H‘/‘Q(Ef;\m <2|xm—tal 5 holds. Let ¢ = P G (E = &,,) be the product, with the Tychonov to-
. 114 )
which, in view of (), implies the convergence pology o, of 8, groups G each of which contains only two elements 0
) : and } and the group-addition is mod1. Obviously, & is a compact topol-
”h_ﬂ‘? (2], [By,))=0. ogical group and G = e, Consequently, taking into account equality (9),

- ) ) the Boolean o-algebra By is of the type a; (j =1, 2). This implies the
us {[E/J}se is dense in By. equality @, = a,. Hence N, =&,. The implication (x) is thus proved.
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Deformation and mapping theorems *
by
D. G. Bourgin (Illinois)

A class of theorems, (Q), may be characterized in a general way
as asserting that in the deformation of a manifold, A, a point set, P,
satisfying a certain property, contains an element for which a prescribed
real valued continuous function f takes on an assigned value. This would
follow as a corollary if (T): P contains a continuum jeining points with

= 0 and those with { = 1. The demonstration of (T), in particular cases,
depends on the fact that otherwise P would admit a separation by a car-
rier, €, of a cycle homologous to the base eycle of the manifold though
in the cases treated in this paper, contrary to its definition, ¢ must con-
tain points of P.

This method, (T), would seem to have inherent interest, and is
applied to some deformations of cireles, etc. For instance, ¢f a circle of
radius 2 is deformed in a plane into one of radius %, then o fized circle of
radius 1 intersects some intermediate curve of the deformation in a pair of
points which are maps of antipodal points or which (under weak regu-
larity conditions) bisect the length of the intermediate curve, ete. When
the t segment is replaced by a circle, applications to doubly periodic func-
tions may be derived. However, a theorem in the class (Q) may be valid
without (T). For instance, if circles are replaced by # spheres above,
then without establishing (T), we show there are » 1 orthogonal points
of intersection, for some t, of the fized unit sphere with the deformed sphere
corresponding to this t value. In connection with the = sphere, we de-
monstrate a general criterion for the existence of a common image point
for the map of orthogonal % tuples of 8™ to F', yielding the first general
breakthrough on a problem of Knaster’s and as a gpecial case, for n
a prime, the generalized Kakutani theorem.

We use S, S(g), # and E(+) for the circle, the circle of radius p
about the origin, the real axis and the positive real axis, respectively.
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