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Concerning the classification of topological spaces from
the stand-point of the theory of retracts

by
K. Borsuk (Warszawa)

We consider in topology two spaces ag different if they are not
homeomorphic and we identify all homeomorphic spaces. It is clear,
from the intuitive point of view, that difference between two not homeo-
morphic spaces may be more or less essential. But the notions which
allow us to state precisely how far one space differs topologically from
another are not numerous. To such notions belong the notion of homoia
(type of dimension) due to Fréchet [2], the notion of type of homotopy
due to Hurewicz [3], the notion of domination due to J. H. C. White-
head [8] and also the notion of R-type [1].

In this note I introduce some notions intimately related to the no-
tion of the R-type. Those notions allow us in some cases to formulate
precisely the sense of the statement that one space is topologically more
complicated than another, and also to formulate precisely in some cases
the degree of diversity between two topological spaces. Moreover, I give
some examples, determine the number of all R-types among the AR-sets
and pose some problems.

1. Basic definitions. By an R-mapping of a space X onto a space ¥
we understand here a function ¢ satisfying the following three conditions:

1° X is the set of arguments and Y the set of values for ¢.

2° ¢ is continuous.

3° There exists a continuous mapping u for which ¥ is the set of
arguments and the values belong to X and for which we have gp(y) =y
for every ye Y. .

In particular é,‘}ery retraction, i. e. every continuous mapping of X
onto a subset ¥ of X, identical on ¥, is an R-mapping. It is easy to
show [1] that the R-mappings are the same as the mappings of the
form hr, where r is a retraction and h a homeomorphism.

Two spaces X and Y are said to be R-equal, symbolically

(1) X=X,
R
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provided that there exist an R-mapping of X onto ¥ and also an R.
mapping of ¥ onto X. Evidently the relation “?;” is an equivalence re.
lation. Hence every class X of spaces can be split up into a family of
subclasses, ealled R-types, two spaces X, ¥ e X ‘belonging to the same
R-type it and only if X =7.

If there exists an R-mapping of X onto ¥, but an R-mapping of ¥
onto X does not exist, then X will be said to be R-larger than Y, or
Y to be R-smaller than X, symbolically

(2) X>Y o Y<X.
® ®

Manifestly the relation < (hence also the inverse relation >) i

b n
transitive, not reflexive and not symmetric. Every class X of spaces
is partially ordered by this relation.

X< Y means that X< Y or X=Y, and X > Y means that X>Y
R ® ® %

R
or X=1Y.
R
"It between two spaces X and ¥ none of the relations X<Y or
®
X > Y holds, then the spaces X and Y are said to be R - uncomparable.

R
In particular the empty space and every non-empty space are always
R-uncomparable.

2. Elementary properties and examples. Recalling the known
properties of retraction (see, for instance {1]) we have:

(3) If X > Y then Y is homeomorphic with a closed subset' of X,
R

It follows in particular that:
4) If X> ¥ then dimX > dim Y.
% .

6y If x % Y then the number of points of order >=m (in the sense of Menger

and Urysohn [5], [71) is for the space X not smaller than the corre-

sponding number for the space Y.

It follows, for instance, that if X and ¥V are two dendrites and if
there exist two integers m and » such that the number of points of or-
der >m is for X larger than the corresponding number for ¥ and the
number of points of order ># is for X smaller than the corresponding
number for ¥, then X and ¥ are R -uncomparable. This remark allows
us to construct a family of R-uncomparable dendrites (even polytopes)
containing an arbitrarily given finite number of elements. The problem
of constructing an infinite family of R-uncomparable dendrites is notably
more difficult (comp. the following paper by K. Sieklucki [6])
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(6) If X > Y then every group of homology H,(¥,N) (where n denotes
R

the dimension and U the group of coefficients) s isomorphic with
some divect summand of the group H,(X , A).

It follows in particular that:
(7)Y If X > Y then every Betti-number of X is mot smaller than the cor-
R
responding Betti-number of Y.

The properties (4), (5), and (7) constitute singular cases of the fol- -
lowing statement:

(8)Y If X-= Y then every property of the space X invariant under all R-
m .
mappings holds also for the space Y.

.To the invariants of all R-mappings belong in particular the fol-
lowing properties: normality, séparability, metrizability, connectedness,
compactness, local compactness, local connectedness, arcwise connected-
ness, local connectedness in the dimension 7, contractibility, local con-
tractibility, property ANR, property AR, the existence of a fixed point
for continuons mappings into itself.

3. R-minorant and R-majorant. The space X, is 5aid to be an
R-minorant (respectively, an R-majorant) for a class X of spaces pro-
vided X, < X for every X ¢ X (respectively, X,> X for every X eX).

R R

Let us observe that

(9) For every class X of non-empty spaces there exist am R-minorant and

an R-majorant.

For, every space containing only one point is an R-minorant for 9.
On the other hand, the Cartesian product of all spaces belonging to the
class X is evidently an %-majorant for 5.

If the class °X is countable or finite and if its elements are metrizable
and separable spaces, then the Cartesian product of all those spaces is
also metrizable and separable. Hence

(10) For a countable or finite class of Ron-empty, metrizable and separable
spaces there exist a metrizable and separable R-minoront and @ met-
rizable and separable R-majorant.

If all spaces of the family O\ are compact, then their Cartesian prod-
uet is also compact. Hence

(11) Por a class of not empty, compact spaces there exist @ compact R-mi-
norant and a compact R-majorant.

Let ns observe the following:
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(12) Let X denote the class of all subsets of a metric, separable (mz.(l‘com-
plete space M of power ¢. Then a met'rizablle and separable R - majorant
for X does not exist.

In fact, in M there exists a family of 2° subsets of which no two
are homeomorphic. On the other hand in every metric separable space
there exist only ¢ elosed subsets and, by (3) every space ¥ <§ X i3 homeo-
morphic with a closed subset of X.

4. R-closed classes of spaces. A class X' of spaces is said to
be R-closed on the left (respectively on the right) provided it containg
an R-minorant (respectively an R-majorant) of X\

Henceforth we shall always understand by a space a separable,
metric space. Since every such space is homeomorphic to a subset of
the Hilbert space E,, we can always assume that the considered spaces
are subsets of E,. Thus we can speak about the class of all separable
metric spaces and about various subclasses of it. For instance, we can
speak about the class of all (compact) AR-sets or about the class of all
{compact) ANR-sets. Let us observe that

(13) The class of all compact O-dimensional spaces is R-closed on the left
and on the right.
For the set containing only one point constitutes an R -minorant of
this class and the Cantor discontinnum constitutes its R-majorant.
However

(14) For m > 0 the class of all compact n-dimensional spaces is not R - closed
on the left.

For an n-dimensional compactum X which is an R-minorant in the
clags of all compact n-dimensional spaces would be homeomorphic to
a subset of the n-dimensional Bueclidean cube @,. It follows, by dim X = n,
that X contains @, topologically. Hence every «-dimensional compactum
would contain the n-dimensional cube Q,, which is manifestly not true.
By the same reasoning we find also that:

(15) For n > 0 the class of all n-dimensional AR -sets (respectively ANR -
sets) is not R-closed on the left.
However

(16) The class of all AR-sets is R-closed on the left and on the right.

For the set containing only a single point constitutes its R-minor-
ant and the Hilbert cube @, constitutes its R - majorant.
Moreover

(17) The class of all non-empty ANR-sets is R-closed on the left, but not
R-closed on the right.
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For the set containing only a single point constitutes its R-mino-
rant. However if a set X is an R-majorant for the class of all non-empty
ANR-sets, then, by (7), the 0-dimensional Betti number of X is infinite.
Hence X i3 not an ANR-set. By the same reasoning we find also that:
(18) For every m= 0,1,2, ... the class of all ANR-sets of dimension n

is not M-closed on the right.

The following problems remain open:

1. Is the class of all non-empty metric compact spaces R-closed on
the right?

2. Let n be an integer >0. Is the class of all n-dimensional metric
compact spaces R-closed on the right?

5. An R-decreasing sequence of polytopes, Let us consider
in the 3-dimensional Huclidean space X, an orthogonal system of co-
ordinates (xz, v, 2). Let us set .

Po= B lo=0,9°+2<1], Pi= F [o=1 pra2<1],

(@,,2) (2,72
2%k —1\2 1
(w = 1 g=0,[x—-" 2
e (xg,'z)[ ’(T on ) Y \4%2]
for n=1,2,.. and k=1, 2, ...,%. It is clear that the set

n
4, = ]S:JlQn,k v Pyu P
has the following properties:

1° 4, is a 2-dimengional curvilinear polytope which is an AR-set.
2° For every point of Ay, different from the points (0,0,0)
and (1,0, 0), there exists a neighbourhood in 4, homeomorphic with
a plane set.
3° None of the neighbourhoods of the points (0,0,0) and (1,0, 0)
in A, is homeomorphic with a plane set.
4° The set A4, contains exactly »—1 points decomposing it between
the points (0, 0, 0) and (1, 0, 0), namely the points (1/n, 0,0),(2/n,0,0), ...
((n—1)/m, 0, 0).
3° For m < n the set 4, is an image by an %-mapping of the set 4,,.
6° Tor m < n the set 4,, is not homeomorphic with any subset of A,.
For suppose that A is a homeomorphism mapping 4,, onto a set
7(Am)C 4y. By 2° and 3° h maps the points (0, 0, 0) and (1, 0, 0) onto
the same points. It follows, by 4°, that the set h(4,,) contains n—1 points
decomposing it between the points %(0, 0, 0) and (1,0, 0). Hence the
set 4,, containg #n—1 > m —1 points decomposing 4,, between (0, 0, 0)
“and (1, 0,0), which contradicts statement 4°,

29+
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It follows by 6° and (3) that
7° If m < n then A, is not ?\:A,,.

But by 5° we have for m < n the relation 4, < s A,,. Consequently
(19) If m < n then Ay iAm'
Hence we can say that the sequence {A,} is R-decreasing.

6. A sequence of R-uncomparable polytopes. Now let us
construet o sequence of 2-dimensional polytopes, which are R-uncom-
parable AR-sets. Let H,;, denote the (n 4+ 3)-dimensional Euelidean
space with the points (@, Zs, ..oy Tar1, ¥, 2). Setting for k=1,2,..,2+1

e,y 2)= (@1 @y, -~-7mn+17'y773) with  #=0 for i k and x=z,

we obtain a homeomorphism ¢; mapping E; into Ey 5. It is readily seen
that the set

n+1

BJI = U (Plc(Aﬂ)
k=1

is a 2-dimensional polytope which is an AR-set. It may also be defined
as the space obtained from 5+ 1 copies of the polytope A, by the iden-
tification of the corresponding points belonging to the discs P,. For the
sake of arithmetic simplicity, we have constructed the polytope B, in
the space HB,.;. But it is readily seen that B, is homeomorphic with
a subset of the space Fj.
Let us observe that

(20) For n # m neither of the seis By, By 18 homeomorphic with a subset
of the other.

To prove it, let us assume that there exists a homeomorphism 7
mapping B,, into B,,. It is easily seen that then %(0, 0, ..., 0) = (0,0, ..., 0)
and that for every index i=1,2,..,m+1 there exists an index
j(t) < n+1 such that

(21) hipi(4n)]1C %(ﬂ(An)

Moreover it is clear that for different indices 7 the indices (1) are
different. It follows m+1 << n+1, whence m < . On the other hand,
we infer by (21) and (19) that m > n. Consequently m = u, i.e. state-
ment (20) is proved.

7. The number of R-types. It is known (see for instance [4],.

D. 333) that in every separable and complete space Z of the power ¢
there exists a family of 2° subsets none of which is a continuous image
of another. It follows that under subsets of Z there exists 2° of different
(even uncomparable) R-types. On the other hand, it is evident thab
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the number of R-types under compact (metric) spaces cannot be larger
than ¢, because the number of all compact subsets of the Hilbert space
is equal to c¢. Let us prove that already the number of different R-types
under 2-dimensional compacta is ¢. More exactly, let us prove the fol-
lowing statement:
(22) There exists n the space By o family of ¢ two-dimensional R-un-
comparable AR -sets.
Let us denote by W, the 3-dimensional ball defined in E; by the
inequality

Let L denote the segment with endpoints (0,0, 0) and (1,0, 0).
It is clear that there exists a homeomorphism k, mapping the set By,
(defined in Nr. 6) onto a subset of W, ,, satisfying the condition

o 1
L~ hy(Bony) = (97, 1,0,0).

Let » = {k,} be an arbitrary sequence of natural numbers. For
every n=1, 2, ... let us denote by ¢, a homeomorphic mapping of the
set By, onto a subseb of W, satisfying the condition

1
Lo gulBa) = (55, 0,0).
It is easily seen that the set
(23) Oy = U [hafBon—1) © gu(Bar,)] v L

is an AR-set. Since there exist ¢ different sequences of natural numbers,
it remains to prove that for every two sequences x = {k,} and »' = {k;}
the relation C, < €, implies » = »'. By (3) it suffices to show that
bl
(24) If there exists a homeomorphism h mapping C, into Cyu then x = x'.
Let the set (', be given by the formula
32 oo |
(23 U = U [ Ban—1) © .!/41( By)lo L,
n=
where k), ¢5, are homeomorphisms of By, into Wa,_; and of B,kf into
Was such that

’ ) l !
L~ i Ban_y) = (;‘%’:I’O’O)’ L~ gBuy) = (,)n 0 o)
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It is clear that each of the sets hy(Bon—1), g,,(ngn) is maximal with re-
spect to the property of being a subecontinuum of €, which is 2-dimen-
sional at each of its points. Analogously each of the sets h,’z(an_l), gnl ng;)
is maximal with respect to the property of being a subcontinuum of ¢,
which is 2-dimensional at each of its points. It follows that the homeo-
morphism % maps each of the sets 7,(Bay-;) and Gu({Bax,) onto a subset
of one of the sets hp(Bgm—) and gme(Baxs,)- By (20) we infer that

hhn(Ben—1)] C b Ban1) -

It follows that h sends the points of the segment L lying between the
points (1/(2n—1),0,0) and (1/(2n+1),0,0) onto points lying also be-
tween the same poinfs. We infer that % sends the set gn{Bax,) iInto the
set gn(Bw/). Again applying (20), we conclude that k,= %, for every
n=1,2,.., i. e. the sequences » and »' are identical. Thus (24), and
consequently also (22) is proved. ’

Let us observe that

(25) The number of different R-types between all polytopes is countable.

In fact, every n-dimensional polytope is homeomorphic with a poly-
tope lying in the Euclidean space By,yy, and every polytope lying in
Eonia 18 evidently homeomorphic with a polytope for which there exists
a triangulation all vertices of which have all coordinates rational.

It follows that among the R-types of ANR-sets the R-types con-
taining polytopes are rather exceptional. It seems interesting to study
the topological properties of ANR-sets belonging to those R-types,
i.e. the ANR-sets R-equal to the polytopes. '

8. R-neighbours.. Suppose that X, ¥ are two spaces such that
X<y,
R
but a space Z satisfying the condition
X<Z<Y
R R

does not exist. Then the sets X and ¥ are said to be R-neighbours. More

exactly, X is said to be an R-neighbour of ¥ on the left and Y an R-neigh-
bour of X on the right.

Exampres: 1. It is easy to see that for the segment there exists
on?y one R-neighbour on the left, namely the set containing only one
pomt,. but many R-neighbours on the right, for instance the circle, the
dendrite which is the sum of three segments with one common endpoint,
the set composed of the segment and of one isolated point, the ray, the
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closure of the diagram of the function y = sin(1/w), with 0 <2 <1
and s0 on.

2. The disc is the R-neighbour on the left for the sphere and also
for the projective plane.

3. The set which is the sum of a circle and one of its rays has two
R-neighbours on the left: the circle and the sum of three segments having
one endpoint in common.

The notion of the R-neighbour leads in a natural way to the notion
of the index of R-prowimity I(X,Y) of two spaces X and Y, which we
define as follows:

A finite sequence X = X, X,..., X,, X,,;, =Y of spaces is said
to be a transition from X to Y of index =, if for every i=0,1,...,%
the spaces X; and X, are R-neighbours. If there exists a transition
from X to Y, then we define I(X, ¥) as the minimum of indices of all
transitions from X to Y. If, however, a transition from X to ¥ does
not exist, then we set I(X, ¥)= co. For instance, the index of R-prox-
imity for two R-neighbours is equal to 0. If X is the 2-dimensional
sphere and Y is the projective plane, then, by 2, we have I(X, ¥)=1.
But we are able to calculate the index of R-proximity only in very spe-
cial cases. Already in the case where X is the 2-dimensional sphere
and Y is the surface of the torus, we do not know whether I(X, ¥) is
finite or infinite.

9. Problems concerning families of spaces ordered by the
relation R. In Nr. 5 we have constructed a sequence of 2-dimensional
polytopes {4,} such that

Ao < App1 < Adp<4; for =n=2,3,..,
" % %

where de = Pyu Py u L (we use here the notation of Nr. 5 and 7). It is

easily seen that 4,.; is an R-neighbour (on the left) of A4,, i. e. there

exists no space between A, and 4,,, (in the sense of the relation <).
R

On the other hand, it is easy to define a space lying between A, and
all sets A4;, 4,,... To obtain such a space, let us denote by @5 the disc
defined in the space H; by the conditions

( 2n 41 1 —

T 2 .
@ 2%(%—(—1)) TS T I
It suffices to set

A=) Q50 Au,
) n=1
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to obtain & 2-dimensional AR-get satisfying the relation

Ao <A, <4, forevery n=1,2,..
R R

It is easy to formulate numerous problems concerning the families
of spaces ordered by the relation <. Let us mention some of them:
%

1° Does there exist an uncountable family of spaces ordered by

the relation <%
®

2° Does there exist a family of spaces ordered by the relation ?

in a dense manner (i. e. such that for every two spaces X ?: Y of this

family there exists in it a space Z satisfying the relation X ; Z ? Y)?

3° Does there exist a family of spaces ordered by the relation <«
92

similarly to the set of all real numbers?

All those problems concern quite arbitrary si)a.ces, but each of them '

may also be formulated for a special clags of spaces, for instance for
AR-sets or ANR-gets. For the class of polytopes, problems 1° and 3°
have manifestly negative answers, but problem 2° remains open.
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On a family of power ¢ consisting of R-uncomparable
dendrites

by
K. Sieklucki (Warszawa)

K. Borsuk has introduced the notion of R-type ((1], p. 322) and
proved that the set of different ®-types among 2-dimensional compacta
has power c. It is a consequence of the theorem, proved in that paper
([1], p. 327), on the existence of the family of power ¢ consisting of R-un-
comparable. 2-dimensional AR-sets. The purpose of the present paper
is to prove that even among 1-dimensional AR-gets (i. e. among den-
drites (1)) there exist ¢ different R-types. More strictly we shall prove that

On the plame E* there ewists o family of power ¢ consisting of R-un-

comparable dendrites.

It is easy to construct such a family having power n, where n is
a matural number. (See [1], p. 822.) Beginning the construction of the
family of power ¢ we shall prove first that there exists an

1. R-decreasing sequence of dendrites. Let dy be a closed
segment on the plane F? with the endpoints (0, 0), (0, 1) and let T(dy)
denote ‘the dendrite (Fig. 1) consisting of the points of d, and those
points (z, y) ¢ B® for which

-1 .

- : ; oi=1, ; y
C= = U<y whee i=1,2,..,27Y j=1,2,.
-

while IU(d,) denotes the dendrite (Fig., 2) consisting of the points of d,
and those points (x,y) e B2 for which

1 . ! -1, .
=S 0y i where  §=1,2, .A.,S.Zf Li=1,2,..

It ¢C B2 is a closed segment parallel either to the axis of abscissae or
to the axis of ordinates and ¢ denotes the affine mapping preserving

() A dendrite iy a locally conected continuum containing no simple closed curve.
See for example [2], p. 224.
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