Some consequences of the axiom of constructibility *
by
J. W. Addison** (Ann Arbor)

Godel, in his celebrated paper [8] of 1938, announced a proof of
the consistency (with the axioms of set theory) of the following four
famous undecided propositions of abstract and descriptive set theory:

(1) the axiom of choice;

(2) the generalized continuum hypothesis;
(8) there exist linear nonmeasurable B, sels;
(

1) there exwist linear CA sets of the power of the continuum containing no
nonempty perfect subsets.

Indeed he announced the consistency of a proposition which he asserted

implies (1)-(4), namely the proposition '

(A) every set is constructible,

which has come to he called the axiom of constructibility ().

A full proof of the consistency of (A), together with a proof that (A)
implies (1) and (2), appeared in 1940 in G&del’s monograph [9]. For the
proof that (A) implies (3) and (4), however, a closer analysis of the con-
struction was required, and as it was inconvenient to include these de-
tails in the monograph, no mention of (3) or (4) was made there.

* The main theorem and some of the applications of this paper were presented
to the Seminar on the Toundations of Mathematics of the Mathematical Institute of
the Polish Academy of Sciences in Warszawa on 27 March and 3 April 1957. The writer
is indebted to the director of the seminar, Prof. Andrzej Mostowski, for his valuable
adviee and suggestions on an early draft of the proof of the main theorem.

Much of the material of this paper was also presented on 26 and 29 July 1857
to the Summer Institute of Symbolic Logic at Cornell University. Cf. [4].

** The major part of this work was done while the author was a U. 8. National
Seience Foundation Postdoctoral Fellow.

(") In using this name, which seems to have been at least implicitly first sugge-
sted by Godel himself (cf. the first sentence on p. 557 of [8]), it is not our intention
to subscribe to any particular philosophic outlook.

We should perhaps note here that from his present-day absolutistic position
Godel sees proposition (A) as false.



Artur


338 J. W. Addison

In 1939 Kuratowski recognised that Gdodel’s result pertaining to (3)
and (4) could be proved if one were able to show that (A) implies the
proposition
(B) there exists a PCA well-ordering of the real numbers.

A proof of this implication was carried out by Mostowski, whose
manuscript was destroyed by fire by the Nazis in the Warszawa insur-
rection of 1944.

Kuratowski prepared also in 1940 a manuscript presenting some
interesting propositions that are implied by the proposition

(6) there exisis a projective well-ordering of the real numbers.

This manuseript (also destroyed in 1944) was redeveloped and pu-
blished in 1948 (ef. [17]). The Mostowski manuseript was never re-
written, however, and so a full proof of the consistency of (3)-(5) and of
the consistency of the further propositions of [17] had never appeared.

Recognizing this need, Godel added in 1951, in the second print-
ing [10] of his monograph [9], a note (cf. Note 1, p. 67) calling attention
to [17] and giving a brief outline of a proof that (A) implies (6), or actually,
that (A) implies the stronger proposition (5).

Meanwhile at about the same time as the appearance of [10], P. S. No-
vikov published a long paper [20] in which he proved that (A) implies (3)
and (4). He apparently did not consider (3) or (6), and the relationship
of his paper to them is not clear (2).

In this same paper Novikov announced (with the statement that
the proof would appear in a later paper) the consistency of the following
proposition:

(7) there exists & natural number p such that at the p-th and higher levels
of the projective hierarchy the separation prineiples behave as they do
al the 2-nd level.

In view of the large number of interesting consequences (e. g. the
propositions of [17]) of the theorem that (A) implies (5), it has seemed
desirable to have a full proof of it in print. We present such a proof here,
following closely the ideas given by Gdédel in [10] Note 1.

Actually we prove that (A) implies a proposition (C!) which iy a little
bit stronger, in three directions, than (5) (3). One of these directions, that
the “PCA” of (5) can be replaced by “By", is trivial, and was omitted

] F'rom the comparative weakness of the results of Sodnomov [21] one gathers
that Novikov was not aware of the consistency of (5).

(*) Actually we state 0131* ref:ults and proofs, as is quite customary in descriptive
set theory,'fohr the spa}ce of irrationals (and more general spaces), rather than for the
reals. But it is a routine matter to pass from our results to the results for the reals.
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from Note 1 by Godel only by an oversight when writing it up. Never-
theless this strengthened version already yields an immediate proof,
which is somewhat simpler than that of Novikov (), of the consistency
of (3). It also leads by a short argnment to a proof (cf. [3]) of the con-
sistency of a strengthened version of (7) (in which p = 3).

The second strengthening consists in going from the classical to the
effective projective hierarchy, and results in strengthened versions of
many of the known consequences of (A). We do not enumerate these
new versions here, but simply refer the reader to [17], [21], etc. to make
the obvious improvements for himself. The idea of attempting such
a strengthening was suggested by the study of the analogies between
classical and effective descriptive set theory (cf. [1], [2], and [3]).

The third strengthening is a generalization which has proved useful
for the solution, under the assumption of (A), of a number of open prob-
lems of recursive function theory and descriptive set theory.

The principal applications of (C') involve an effective choice oper-
ator and we have summarized the information obtained in this direction
in a table in Section 4. Some specific applications of this table are given
in the following section, and the final section Zontains a result obtained
by arguments similar to those in the main part of the paper.

1. The proposition (C'). We assume familiarity with [9]. We shall
adopt, with minor changes, the notation of [9], p. 63-64, [3], and [12],
p. B38.

We denote by “N' the set of natural numbers 0,1, ..., by “NV»
the set of functions from N into N, by “N¥n the set of functions from
N¥ into N, ete. As in [9] IV is identified with the ordinal number o, but
we continue to use “N’* to avoid an ambiguity in “we”.

We use lower case Greek letters (other than ¢, “A¥, ", «u")

with superscripts 0,1, 2, ... a8 variables over N, NV, NNN, ..., regpecti-
vely. The superscript ‘1’ is usunally omitted and lower case Roman letters
are usually used as variables over N in place of lower case Greek letters
with superscript ““0”. As a variable over £, we use “»”. Capital Roman
letters are used for arbitrary classes and predicates.

We denote by “)™ the Cartesian product of v(0) copies of ¥, z(1)
copies of NV, ..., where v has a finite positive number of values different

(*) This is true because any predicate well-ordering the reals is nonmeasurable
(ef. [17], p. 131). And actually this fact and (5) directly imply (3) if one observes (as
Kuratowski did at the Princeton Bicentennial Conference in 1946) that if a predicate
well-ordering the reals belongs to a certain class of one of the hierarchies then so also
does its negation. ' )

This paper thus fills the need expressed by Mostowski in [19] for a simpler proof
of this result.
Fundamenta Mathematicae, T. XLVI. ' 23
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from 0. Lower case German letters with superscript “z” are used as varia-
bles over 97°. The superscripts are omitted if arbitrary or clear from context,
As indicated in [3] the categories of the C-arithmetical hierarchies

are denoted by “ZR[C]?, “IIR[C]", the categories of the C-analytical -

hierarchies by “Xi[0]", “II;[C]”, and the categories of the hierarchies
based on quantification of higher finite types (cf. [15]) by “Z([0]?,
“IIELCT? (2> 1). As an abbreviation ‘“[@]" is omitted (5). Sets are classi-
fied according to their representing predicates and funetions according
to their graphs.

The reader chiefly interested in classical descriptive set theory can
assume ¢ is NV, Then {Zi[N™], Hi[ NV is just the projective hier-
archy on the irrationals. He should keep in mind, of course, that
SEHNYIC 2L and L[NNI CITE. -

We consider the proposition
(CY) there emists an £, well-ordering << of NV such that for any subset ¢

of NV and amy predicate R recursive in functions in ( the set

8B(EB)pi<s(B) (@) R(a, By, @, @) ds in Z3[C] ~ IBLO).
Our principal result is the following:

TEEOREM 1. (A) —~(CY).

Proof. There is & natural well-ordering of the eonstructible elements
of ¥%, namely Aaf Od‘c < Od°f. We could use this. for <, but it will
be a little more convenient to use instead ief Or‘a < Or°p, where Or‘a
is defined as the least ordinal » such that wXx w-F = « Since for
every constructible ¢, Od‘a < £;, and since Or‘e << Od‘e, this gives
a well-ordering of the constructible functions of type <£,. We hereafter
denote Aaf Or‘a < Or'f by “<”, and proceed to show that it has the
properties required of it by the theorem. (A) clearly implies that < is an 2,
well-ordering of ¥”. Now let ¢ be any subset of N~ and R be any predicate
recursive in functions in-€. We shall prove that &/f(Eﬂl)ﬁlq(Ea)(w) R(a,p,,a,2)
is in Z3[0] ~ IT3[C). For this purpose we introduce the following defi-
nitions (5):

(1.0) W(p) = Xj @(4,5) =0 well orders N,

(*) We take this opportunity to note that by changing slightly the definition
of the C-arithmetical, O-analytical, ... hierarchies in [8] by letting the matrices
be recursive in functions (instead of some one function) in ¢ the notion of linked subset
and the restrictions on certain theorems that involved it (cf. [3]) can be discarded.
This change was introduced in [4] and we follow it hereafter.

We also note that the second option of Footnote 9 of [3] shouwld be followed for 0
that are not “linked” in the obvious infinite sense.

() In working with partially defined functions and predicates in this paper we
understand the propositional connectives in the sense of their strong truth tables
(ef. [12], Bection 64).
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(1.1) p; = the ordinal number corresponding to ¢ in the well-ordering
Mj (i, ) =0,
(1.2) M(p, ) =W(p) & [a(i,]) =0 =Fp;e Fpy].
Then we have
(1.3) (BB)p<p(Ba)(x)R(a, fy, a, ) ‘
= (B,)[(B9) (Be) [ M (9, €) & (Bi)[w X0 Fgyy = ]
& (F)oX o-Fo=F81] & (Ba)R(a, By, e, 2)]
= (@) ()M (g, &) & (Bi)[oX 0Py = f]
(BB # B & (Bi) o X 0 F'py=f]
& (Ba)R(a, By, a, 2)]].
The theorem now follows straightforwardly by the techniques of [13]
from (1.3) and the following two lemmas: -
LEMMA A. There exists o Z1A I predicate A such that

Mip, e)>loXw Fo=p5=Ad(p, ¢ f,0]1(0).

LeMMA B. M 7).

The next two sections are devoted to the proof of these lemmas.
It is important to note for Section 6 that neither of these lemmas de-
pends on (A).

2. Proof of Lemma A. Assume M (g, ¢). Then
(A.0) ox o0 Fpi=f = (k)DIF) =k = k) ¢ F'py],
1

= |k} (k1)) <
= (Em)[F pp, = {{k}{kl}} & e(m, 1) = 0],

2

(A1) CHI> e Py

(A.2) Fpm = {{k}{KI}} = (n)[e(n,m) =0 = Fp, = {k} v Fipn = {kl}],

8

(A3) Fop={k})  =(p)[e(p,n)=0=Fp=Fl,

]

(A4) Fog, = {kl) =(p)ep,n)=0=Fg=kvFp=101,
. 5 5

(A.B) Feg, =1k

= (B (Bm)[l = g & FT =k & Fp, = Fp,.],
T 8

LI

(") Inasmuch as the basic definitions and results of [13] were stated only for
completely defined predicates and functions, we use the phraseology of this lemma,
and thereby avoid having to introduce here the elementary theory of the classification
of partial predicates and functions.

23*
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= (Bs) [ ()1 = m & (@)aca [ ((8)ar (8)asa) = O]
& () (b, m) = 0—(Ba)ac(s)a = b]]
is recursive,
= (q)[e(g, p) = 0 = e(g, m) = 0].

To prove the forward implication of (A.1) and the backward im-
plication of (A.2), (A.3), (A.4), and (A.8), one needs to unse [9], 9.52,
which states that every element of a constructible set is construetible
and of lower order than the set. To prove the forward implication of
(A.5) one needs to use the result that every natural number is a con-
structible set of finite order. This is easily proved by induetion by ap-
plying the idea of the proof of [9], 9.66 to definition [9], 7.4. Tt is clear
that AIF7 is effectively calculable and hence that Alk Tl = k is effectively
decidable. We therefore omit the straightforward proof of (A.T).

Now by following the outline of (A.0)-(A.8) the completely defined
predicate A required by the lemma is easily defined. And that A « 21 ~ IT}
will follow straightforwardly from (A.0)-(A.8) by the techniques of [13].

(A6) 1= gm

(AT AEF1I=F
(A.8) Fpp=Fpy

3. Proof of Lemma B. To prove that M ¢ IT; we first observe that
(B) Mg, ¢)
=W(p) &e(i, ) = 0 =Fp; e Fg;)
=), )=0=1#]&p(j,9) #0]&
OO (R p(t, ) =0& (i, k)= 0—>¢(i, k) = 01&
(By) () [plp(i+1), p(5) = 0] &
(@0 ) [s € W) > [e(3, 1) = 0 = Fp; e W(F )] &
[‘P;EQB(
[rp,-eQB( 2)>e(t, ) =0 =F'p; e B- FK" <p1]] &
[pi € W(Tg) = [e(d, ) =0 = Fp; e F K, p;—F Ky'pj]| &
@5 € W(I ) >[(i ,7)—0—]3‘ ‘i e P K g FKy'ps]] &
o1 € WI) > Te(i, ) = 0 = F'ps e FKy'g;- D (FKy'gy)]] &
[ e W) =60, §) = 0 = P e PRy (FEypy) ] &
{ (@
( (i

)=[e(l, ) =0 =Fp e (F K 'p;F Ky} )| &

—>.
- @,

[zpieim I =[e(i, ) = 0 = Fp e F R gy - Croy(F Ky 'py) ]] &

(@7 € WTg)>[e(i,§) = 0 = Fp; e 'K, g, - Cnog(F Ky p;) ]]]

The proof of the lemma is now completed by showing that certain
parts of the right member of equivalence (B) can be changed in such
& way that it will follow by straightforward techniques of [13] from the
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resulting equivalence that M e /T3,
certified by Lemmas C0-C8, D0-D8.

Lemma Ch (0 < h < 8). There ewists a X1 ~ Il predicate Cy, such that
W(p)—>[p; e W(Jn) = Culp, 1.

Proof. The predicate Cj is defined by (A.6) and the following equiv-
alences: ~
(C.0) Le%(a, b, 0, d)
(C.1) Max®(a, b, c)

That these changes can be made is

=opb,d)=0V[b=d&¢p(a,c)=0],

=[pla,e)=0va=c]&[pb,c)=0Vb=c¢]
&la=cvb=c],

= (Be)(Ef)| Maa®(a, b, e) & Maa®(c, d, f) &
[ple; /) =0V [e=f&Le™a, b, ¢, d)]]],
=(EN[I <9&1=gn],
N?(m) & N*(n) & [B%(a, b, ¢, )
Vie=c&b=d&gp(m,n) —0]],

= (v)(En)(Ec)(Bd)[N¥(n) & a(n, ¢, d) = v]

& (n) (e} (D) (p) (&) () [8%(ns ¢, 4y pse, f) —

‘P(a(”: ¢, d), a(p,e, f)) = 0] ’

(Ba)[Tr%(a) & a(m, a, b) = u]

(a)[Tr"(a) > a(m, a, b) =u],

(C.7)y J¥a, b, u) = (B)[l = on&J¥L, a, b, w)],

(C.8) Oulp, 1) = (Ba)(Eb)J%(a, b, j) .

It follows straightforwardly by the techniques of [13] that the pred-
icate O defined by (A.6), (C.0)-(C.8) is in X} ~ IT]. From a comparison

of the definition of ipj @; € W(J3) in [9] and the definition of Cj by (A.6),
(C.0)-(C.8) it should be clear that they coincide if W(p).

LzvMa Dh (0 < h < 8). There ewists a X1 ~ I} predicate D such
that the extension of M is not changed if the expression Ay in (B) 8 replaced
by “Dy(p, &,%, 1), where

4y s
is
Ay, I8
Ay s

(C.2) B¥a, b, ¢, d)

(C.3) N%m)
(C4) 8*m,a,b,n,c,d) =

(C.5) Tr%(a)

(C.6) J*(m, a, b, u)

T e W g5)

Flppe (P Ko T Koy}
FpieB-FKp;,

o e F K p;—F Ky,

P e B K oM F Ky gy

Fp e F K gy D(FKyg;),

P e FEp (FKyg) ™,
Fp; e R gy Crng(F Ky'py)
P e FE '@y Onoy(F Ky py) .
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For the proof of these lemmas we need two mom predicates, de-
fined as follows:

(D.0) K¢, a) = (Bm)(Eb)[N®m) &J%m, a, b, ¢)],
D.1) K¢, b) = (Em)(Ba)[N°(m) &I%(m, a, b, c)].
Now if W{g), then 4bé Mas®(a,b,¢), 64K%(c,a), and 66K, b) are graphs

of functions, which we denote by “maa®’, “x{”, and “»}’, respectively.

For greater clarity we assume W(p) in the discussions of Lemmas
D0-D8 and hence freely use the functions mas®, »f, and »f. It ghould
be clear that these can be eliminated in obtaining the Dj (which are to

be everywhere defined) by use of the following:

(D2) Pit()) = (Bu)EL,w) & Pu)],
D3) Pet) = (Bu)[KS, w) & P(w)],
(D.4) P(maa®(a, b)) = (Bu)[Maa®(a, b, u) & P(u)],

which hold for any predicate P if W{(g). And of course the values of D,
do not matter if W(p).
The functions »f, »§ have the properties

(D.5) ‘p,‘f(c) =K ¢,
(DG) (P“g?(c) = K;‘Pc;

which we use frequently in the proofs. We also use without further cita-
tion the following

(D7) @5 ¢ W(To)=>o>(5), ) = 0,
(D.8) ;¢ QB(JQ“}'P("');(?'), 7) =0,

which follow from [9], 9.25. We shall also use [9], 9.52, mentioned in
Section 2, many times in the proofs without further citation.

We give the proof of each of the Lemmas D0-D8 by a series of equiv-
alences, which are understood to hold under the assumptions that are
guaranteed for the purposes of the lemma by the form of (B). Thus in
the proof of Lemma DO, for example, W (p) & ¢; € W(J,) is assumed.

Whenever a constituent of one of the formulas is replaced by an
expression of the form “e(s, b) = 0, it is pecessary to verify that in
some fixed well-ordering <?® of N¥ relatwe to ¢ (a,b)<” (3, 4). This is
necessary, of course, because Aij (4,7) = 0 is being defined by trans-
finite induction and if (¢,j) <(a,b) we would be defining £(%,4§)=0
in terms of itself or values coming later in the induction. The well-or-
dering <® we use for this purpose is defined as follows:

(D.9) (a, ) <* (i, j) = B%b, a, j, i)
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As a convenience to the printer we abbreviate “o(a, b) = 0" to
tig <P m the following proofs. Further we omit throughout all super-
seripts “‘p”: the reader should imagine that they are there. (Since “<»
is never uqed in its ordinary meaning in these proofs, no confusion should
result.)

Proof of Lemma DO.

(D0.0) Fep; e W(F'ps) = Flp; e D(F} py) 7Y
= (BEX){XF'p> e (Flg)™
= (BX)<Fp: X> e Flgy
=(BX)F g X>eF- (VX ;)
= (EX)[(F'p:; Xy ¢ F & P9 X5 e Vi ]
= (EX)[(F g X> e F &T ;e V&X ep;]
= (Bk)uei{F s> e F

= (Bk)p<s F° 9% Fo;.

:

(D0.1) For = F'p; = (Dicmaz,ml2(l, k) =0 =¢(l, 7}) =0]. N

. o
(DO.ax) (L, &) < (3, 4). 1< man(i, k) < maz(i, §) and
b <j < max(i,§), so men(l, k) < man(s, j).
(DO.B) (I,4) < (4,4). Case I. i>=k: Then < man(i, k)= i < max (i, )
so max(l, i) < max(i,j) and 1 < 4.
Case IL ¢ <k: I < man(i, k) < max(i,§) and
<k <j<mazx(t,q), so max(l, i)
< max(t, §).

?

Proof of Lemma DI.

(D1.0) Frg; e (T Ky 'p; F Kyp;} = Foi=FEK'p; vV Fo;=F Ky
l =F0u0n =Foi V@ =Fp. -
1 2

(DL1) Ty = Fip;. Since x(f) <4, this is just like (D0.1).
(D1.2) Py = Fp. Since n(j) <j, this is just like (D0.1),
Proof of Lemma D2,

(D2.0) F'pie B-FK'p; =F'p e B&Fp; e FK "y
=T qaieE&e('b,xl(y))—O.
1 nc

(D2.1) F'ps e B = (BX)(BY)[X ¢ ¥ &Fp = (X V)
= (Bk) (Bl 1<k, Z) =0&TF'p; = <F ol op].
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(D2.2) Fpy = FpFory =T g = {{F i} {(F 0 F w1}
= (Em)m<:[F° (Pm {F“or} &s(m, i) = 0]

& (Bm)m<i[F* le {F lPkF(qu} &e(m, z) = 0]
&7( )m<1[5(m 7’) = 0 B ‘Pm {F lpk}
V Ry = {F <PkF ‘el

(D2.3) Fpp= Fopt=e(b,m)=0& (fn,),Km[s(n, m) =0=Fg, =Fo].
5

B
(D2.4) Fp, = F'pFq} = e(k, m)—O&Ie(l m)—O

& ('”')n<m[5('n m) = 0 =T" ‘Pn =F'p

VF¢n~F¢l]

s

(D2.5) Fion = Fg = (Plp<maztn,my[6(p, ) = 0 = ¢(p, k) = 0].
B 8

(D2.0) (i, (i) < (G, ). mawfi, %(7) <mao(s, i), i =4, and (i) <j.

(D2.8) (k, 1) < (4, 7). man(k,l) <i <max(i, j), so maz(k,l) <max(i,j).

(D2.y) (m, 1) < (i, ]). max(m, i) =1 < maz(i,]) and m <i.
Proof of Lemma D3.
(D3.0) Fp; e F'Ey'p; —FKy'p; = Fg; « F Ky & Fop ¢ F Ry
=1, %(j)) = O&.s(i, %)) #0.

(D2.ax} (D2.0)

Proof of Lemma D4.

(D4.0) F'g; e F' Ko FKy'p; =F'g; e F K ;- (VX FEy )
= ofi, () = 0 & Fps e Vx FEyo; .
(D2.2) 1
(BX)EBY)[Fp;=<KXY), &Y T K]
(TE) (Bl 1<s[F s = <B i, Ty
(D22)
& e(l, wylj j)) = 0].

-3

(Do) (1 %)) < (3, 9). mawl, g 1) < maw(i,j) and 1 <1i.

(D4.1) F'gye VX FK, gy

im

Proof of Lemma D5,

(D5.0) F'p;e P, gy DEEyps) = s(i, ,(f)) = 0 &F tpiei)(F Ky'p;) .

(D2.0)
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(D5.1) P e D(FKy'py) = (BX)[KXF @) e F Ky ;)
(Ek)k\nz(f)<r ‘PkI‘ P> eF° Kar(pf

= (B8) (B 1<stsy [F 'y = <F <F ‘e Xy
&e(l xz( )) =0].

irww

(D5.2) P = <FpuF ey =T gr = {{Fpi} {Fgn Fpi}}
= (Em)mar[F g = {F g} & & (m, l) = 0]

& (Bm)ma[F 97m {F ‘i) & &(m, Z) = 0]

& (m)male(m, l) = 0 = F o, = {I‘V(Pk}

v B 4 Pm = {F (ka ‘P’L}]

(D5.3) Figm = {Fo} = ek, m) = 0 & (W)nem[e(n, m) = 0 = F'pn = F'gy].

13 B
(D5.4) Ty, = {F o F @5} = (&, m) =0& (i, m)=0& (n)yeml[e(n, m) =0
(D2.0)
=F (pn—I‘ ‘o V Fp, =F .
(e} %)
(D5.5) Fipn = F'op = (Plp<masimule{p, n) =0 = e(p, k) = 0].
o ' "

(D5.a) (I, %) < (%, §). mas(l, %(f) = w(f) < j < maw(i,]).
Proof of Lemma D6.

(D6.0) Fp;e F K gy (F Ry o)™ z 5 %y j))) =0&Fpe (I‘ Ky' tp7) .
—(Ffu)

(BX)(BY)[(XT> = Fp; & CYX) ¢ F'Kygy)

(Ek) (El)kl<z,s¢s (7) [F P = <F ‘PkF (Pl/

(D2.2)

& FoF o) e FKygy]
2

(D6.1) Frgye (FKyp) ™"

([

(D6.2) <FuF o)y e FRpy = (BM)menm [e(m, () = 0
D5
&P = (F'oF )] -

~(D5.2)
Proof of Lemma DT.
(D7.0) Fp; e F K g Cnoo(FKy'py) = (i, m(f)) = 0

(D2.2)
& Fr(m € (ST[Dz(F ’K;(p,v) .
1
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(D7.1) Fip; ¢ Cnoy(FKy'p;) = (EX)(BY)(BZ)[F g = <X Y7
&(YZX> e FK, )
= (BE) (BN Em)iameipmin [T 0= g g B,
2

& F'pF onF g e FKypyl.
B

(D7.2) Fgi = FuF oF pn> =F g = (F'olF pFpmd)
=Fgi = [{Fo} {FouTpF g}
= (En)n<i[Fon = {F'op} & 2(m, 1) = 0]

(D2.8) Dz.v)
& (Bn)n<ilE'pn = {(F'pulF @i F ‘g }
4
& e(n, 1) 0]
Tz
& (Mhn<ile(n, i) = 0 = I'py = {1"py}
Dzy) (D2.8)

V Fpp = {Fou® oiF ‘om}]
4

(D7.3) F B puF g1 € FEy'p; = (BD)pcan[F9p = F 0T G F >
: 5
&e(p, xlf) = 01.

5.2
(D7.4) Fon = FuF 0F gy} = s, n) = 0 & (F g F > € F “Pn
(D2.8) 6
& (Qgenle(g, n) = 0 =F'p, = F'y
. (D2.p) (D2.5)
VE g =T oF gm)] -
_ z2)
(D7.5) gy, = B QF pnFpa = (Br)pep [y = Wi & er, p) = 0]
(D5.9) (D5.)

& (Br)r<p[Fgr = {F“paCF o F i) }

7
& e(r, p) = 0]
{D5.x)
& (1)p<ple(r,p) =0 = Fpp = {Fp1}
5. 05.8)
V Fp = {FoFonF pid}] -
7

(D7.6) F'iF g ¢ F gy = (Bs)yenle(s, n) = 0 & T gy = B T gmd] -

. (D2.8) (D2.2)
(D7.7) F"pr = {Fr(P](FE(PmF'(pk>} = g(l’ rN=0& <Fe¢m1‘"¢k> eFeq)r
D5.%) (D6.2)
& (Mharle(ty 1) = 0 =Fp =P
(D5.0) (D5.5)

VEo = (FonFpp].
(D5.2)
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Proof of Lemma DS.
(D8.0) ¥y e F Ky p;- Cring(FKy'gp;) = e(i, xl(]')) =0&F p e Crng(FKyp;).
(D2.a) 1
(D8.1) Fp; « Cruwy(F Ky'py) = (BX) (BY)(BE)[F'g; = <X Y75
&(XZY> e F Ky ]
= (BR)E)(Em s me i [P o= (F g F o1 g,

(D17.2)
&<EF o F pnF gy e F Ky
. (D7.8)

4. The least function operator. Probably the most fundamental
tool of hierarchy theory is the choice- operator. More than anything else
it is the nature of the choice operators available that sets the pattern
into which the theorems of hierarchy theory fall. Insofar as the selection
of an object from & set containing exactly one object is concerned, there
is great uniformity among the hierarchies based on quantification of
variables of different types. The cause of this is given in the following
two fundamental equivalences which hold for the unique object oper-
ator 1, when it is defined, for all types t.

(U1) 1P (a, of) = ¢* = P(a, ¢),

(Ua) wfiP(a, a1)(y!) = gt = (Bp+)[Pa, gh1) & g +1(yt) = 1]

= (¢ [P(a, gH1) »pt+i(y!) = 4f].

These equivalences characterize the graphs of rmalP(a, of) and its val-
ues, showing that xa t!P(a, af) is of the same category as P while its
values are X} ~II! in P. An example of the uniformity of structure in-
duced by these equivalences is given by the analogous normal forms,
MmU°(iyT%e, n,y)) and Mv,Ul(na(y)Tl(e,n,E(y))) with (particular or ge-
neral) primitive recursive U, T for 3 ~ I7° (recursive) and X} ~ ITr
(hyperarithmetical) functions, respectively (cf. [11]).

But of even greater importance than a unique object operator is
an operator that will select an object from a set containing an arbitrary
number (>0) of objects. Such an operator is characteristically obtained
by well-ordering the universe of objects by a predicate <. A least (re-
lative to <) object operator ¢ is thus induced, for which the following
fundamental equivalences hold:

(Ly) pa'P(a, o) = ¢ = P(a, o) & (Ba)y g P(ay o),

(La) patiP(a, at1) () = ot = (Bot+)[P(a, gh+l) & (Bot+1) g P(a, abt1)
& gt (yh) = 4t '
= (P[P (a, ¢"") & (Ba?) 4y, s P(a, at+1)
— () = o],
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These equivalences characterize the graphs of rapalP(a, of) and its val-
ues. But here, unlike the case with ., the complexity of the new factor
(B et L (@, o)y or its negation, must be evaluated. To a great extent
this can be done by establishing the category of < and using the fol-
lowing fundamental quantifier interchange devices (8):

(D) (Byr)y,<u(®) P(a, 31, @) = (@) (Ef‘/l)111<1/P(‘1; Y1y (‘I’)ul) ’
(DY) (Epp<p(a)Play fyy a) = (a)(Eﬂx)p1<p(7:)P(ﬂ; Brs )\'”"‘(p?)) ’
(D*2) (BB) s pesal ™) Pa, B, o)

9 1(, L
= (") (BB ) i@ ) P, 4172, 09 200 D)

for any type ¢, predicate P, and Q; well-ordering < of the range of , §, g,
respectively. (For notation cf. [12], p. 538.)

When ¢t =0 the category of < iy established by the following triv-
jality:

(W°) There exists an Q, (i. e, an w) Z{ ~ II} well-ordering < of N.

Thus when ¢ = 0 applications of (D°) and (W?) (together with straight-
forward techniques) permit one to make the best possible evaluation of
(Bd') 4 4P(a, o) for Pin Zfy AIIS sy 52,1, oF ITZ,s.

Now if we let € be &, a be ¢, and R(g, 8,, a, z) be @(2) = By(x) in (OY)
we ohtain

(W) (A special case of (CY). There exists an Q, Z3 ~ I} well-ordering
< of NV,

Hence, by our main theorem, we have the following
COROLLARY. (A)—>(WH),

which establishes the category of <, under the assumption of (A),
when ¢=1.

Thus when ¢ = 1 applications of (D) and (W1) (together with straight-
forward techniques) permit one to make the best possible evaluations of
(Eal)utqu(ﬂ: a’) for P in 212+s f\H72+s; 2§+2, or H12+s-

But just as (D% and (W°) do not alone permit the Dbest evaluation
of (Ba'\acpP(a, o) for P in Z% A IT° or I}, so also (D) and (WY do
not alone permit the best-evaluation of (Ba')ucuP(a, o) for P in 5 ~ IT )
Zi, I, Z3 A 113, or IT3. For both of these situations something further
is needed.

(®) A similar device (cf. [6], (2)) played a principal role in [61.

icm
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When ¢ = 0 this “something further” is provided by the following
well-known theorem: :

(0% There ewists an Qo (i.e. an o) well-ordering < of N such that for
N g
any subset C of N° and any predicate P primitive recursive in fune-
tions in O the set &F (By,)y,<, Pla,y,) is in Z[0] ~II[0].

When =1 this “something further” is provided, under the as-
sumption of (A), by the analog of (C9), viz. (C).

Whether or not (C') is an actual improvement over (W) we do not
know: that is, whether or not (W) implies (C') is an open problem.

Now using (DY) and (C') (together with straightforward techniques
of [13]) the following table can be computed. It shows the effect of
the bounded (relative to <) existential (or, by duality, universal) funetion
quantifier and of the least (relative to <) funetion operator of the classes
of the analytical hierarchy.

- Y- A P(IP, )
P af(BB), 4P (0, Br) Yup
VEy<h ' wpP ()
I AT Iy~ I14 2y~ T}
zt 2t I ZinIT}
m i~ I} PPN/
Zi ~ T} I}~ IT} Zp~ I}
=z E>2 3 i~ Iy,
e e Zhy IO,

Because Theorem 1 was given in relative form and (D*) relativizes,
the table relativizes to any C.

Using only the categories I, IT; 5 ~ I} as entries it can be shown
that the table, columned as above, cannot be improved. Thus, unlike
the uniformity through all types of the tables for t, the tables for u show
a fundamental and far-reaching divergence already between types 0 and 1.
It is this divergence which has been responsible for many of the “strange’
results which have been collecting for many years in descriptive set
theory, both in the classical, and in the more recent effective, branches.,
The most celebrated example is, of course, the flop-over of the separa-
tion pripeiples (cf. [3]). What part this phenomenon has to play in the
failure of the analog of Post’s representation theorem (cf. [6]) is under
investigation.

Any one of many results could be used to show that there cannot
be much better 2, well-orderings of NV. Perhaps the easiest is this:
any £, well-ordering predicate for N must be nonmeasurable (ef. [17]),
whereas all Zi o II; (indeed all I[NV} w ITI[NY]) predicates are meas-
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urable. As a matter of fact all of the rather extiensive subeclasses of
SN ~ IL[N™] which have been studied (ef. [6], [18]) contain only
measurable sets.

Preliminary and as yet incomplete investigations now underway on
hierarchies based on quantification of higher type indicate that( the
p.-tables for types ¢ > 1 are, under the assumption of (A), like the u-table
for ¢ = 0. Thus it appears that one has access to a choice operator al-
ready at the first level at higher types, and so that of all the finite types
the second (¢ = 1) stands out as peculiar. This would mean, for exa.n‘lp'le
that under the assumption of the axiom of constructibility the h‘epa,rg,_,
tion results (cf. [3]) are uniform according to the kind of the outermost
quantifier for all types ¢ (£ > 0) and levels & (k > 1) except for the lone
case when i =1, k=1,

Three of the most important hierarchies still missing today are
hierarchies of X} ~IT}, 23~ 1T, and 2%~ II7 functions from N into N,
On the other hand nice hierarchies for X ~ I} functions (Suslin-Kleene
theorem) and Zj ~ IIJ functions (unpublished work of the author) are
known. A great amount of effort has been put into finding a 2! ~ I1°
hierarchy (cf. the promising work of Axt [7]), and a I3 ~ IT2 hierarchy
(cf. the more or less related work of Grzegorezyk, Kantorovié, Kleene
Kolmogorev, Kondd, Kreider, Livenson, Lorenzen, Lugzin, Lya,punov,
Mostowski, Myhill, Rogers, Selivanowskii, Spector, Wang, the author’
and others), but as yet there is no published work in the direction oti
a .““.?fnﬂfz hyperanalytical” theorem. We note that all three of-these
nissing hierarchies are for “u-classes”, i. 0. the classes at which the
choice Qperator first appears in the respective type.

Ip is .important to note, both in this econnection and independently
that in view of the w-tables the analogy which has been so much re-’
fer;.‘e{i to betiween the 2] ~ I3 (recursive) and It ~ I72 (hyperarithmetical)
I;?z 111}10:5;1:11(; d;ge:t;;;s become overshadowed by a firmer analogy between

'The. extent to which the assumption of (A) can be relaxed in the
appheiatlons of Theorem 1, preliminary indications of which were given
and d.lsc.l_lssed in [4], is to be the subject of a forthecoming paper.

o 5. Aplicationg. 8.1, Our first application of the preceding results
is .to @ow, a8 promised in [3], that the same treatment of the separation
p?melple's that worked at the third and higher levels of the ¢ -analytical
hierarchies works also at the second level. . i

o cizuf.\;vﬁlf the 1(iuthma of [3], we wish to show that the argument
of S W applies when k = 2. We arc given two sets X, Yin £5[0]
and we are to find two sets X,, ¥, in Zi[(] such that X,Cx, Y,.CY,

icm

X, w¥ =X0uY, and X, n ¥, = @ By hypothesis, for some R, 8 re-
cursive in functions in C,

X
Y
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(By) (8)(Bx)R(a,y, B, 7),
(By)(B)(Bx)S(a, v, B, 2) .

i
=2 2

Just as before we seb

X, = a(Ey)[(p)(Bx)R(a, v, B,z)& (—E—'}jl-)yﬁy(ﬂ)(Em)S(a: v1; B, 2)],

with ¥, being defined analogously. Now it follows from the relativized

table that the second factor of the matrix for X, is in Z}[0] A ILLOY,

50 X, € Z3[(C], as required. The rest of the proof is the same as before.

This proof depends of course on (A), and a proof not depending

on (A) is known (cf. [3] Case ITI). Nevertheless we find it of considerable

interest to see that the same proof that works for % > 3 also works for

= 2. ‘(Note, however, that for k¥ >3 (W) sufficed, whereas for k= 2
the full force of (Cl) appears to be used.) :

5.2, Our second application of the main theorem is in the theory

of bases. A subelass B of NV is a basis for a category C of predicates
on NV it and only if ’

(P) [P € Q—+[(Ea)P(a)—>(Ea)[a eB& P(a)]]] .

Kleene has shown (cf. [14], XXVI) that the class of X1 ~ I} functions
is not a basis for Iy (= I7; cf. [13], 3.5). On the other hand, by the me-
thod of [13], 5.5, the class of functions whose graphs are the difference
of two Z] sets (and, a fortiori, the class of X3 ~ IT; functions) is a basis
for II;. The questions naturally arise then what classes are bases for IT;
when % > 0. We answer these questions here, under the assumption
of (A), with the following:

THEOREM 2. (A)—[the class of Ziy: AT}, functions is a basis for
I if & > 0.

Proof. Immediate from the table for p.

In the following theorem, which does not depend on (A), we refine
the study of bases by a consideration of the collection of all bases for
a category of predicates on NV.

THEOREM 3. For any k: for any p in Ziy ~ Mgy every basis for IT} .
containg @ fumetion in which y is primitive recursive; the intersection of all
bases for IT} is contained in the olass of Zipy~ iy functions.

Proof. For the first part of the theorem simply consider ¢p =y
as a Zh., set, i. e. as the projection of a IT set of ordered pairs of each
of which ¢ is the first element.
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The second part of the theorem is an easy eonseqn;znae of (Uy).
As far as bases for the categories of 2% and Zj A IT; predicates are

concerned we have the following results:

THEOREM 4. The intersection of all bases for A I (or for 2},) 18
the empty class, but this class is not a basis; any de'n,se‘ class of. fu%ctio-?z.s
(e. g. the class of functions with values O from some point on ) is a basis.
" The intersection of all bases for i ~IT; (or for X3) is the class of
I} A IT} fumetions, but this class is not a basis; the class of functions ve-
cursive wn O (and, o fortiori, the class of 2y ~IT3 functions) is a basis.

The intersection of all bases for T ~ ITi (or for Zi) (k = 2) is the class
of Zi ~II} functions, and, under the assumption of (A), this intersection
is itself a basis.

Proof. Straightforward from the results of [13] and [14], the me-
thod of proof of Theorem 3, and the table for p.

5.3. A third application of our main theorem is the solution, under
the assumption of (A), of a problem of Tarski (ef. [24]). A separate dis-
cussion of this is to appear with related material in [5].

5.4. A fourth application of our main theorem is in the study of
comparability. Kleene and Post demonstrated (cf. [16]) the existence of
incomparable degrees (Zj ~ /I;-degrees). That is, they constructed two
functions neither of which was Xi ~ IT; (i. e. recursive) in the other.
More recently Spector [23] has demonsfrated the existence of incom-
parable hyperdegrees (Z] ~ II;-degrees), and also the existence of in-
comparable equivalence classes relative to still more general operations.
‘We now show that his results cannot be extended, within Go&del set
theory, to 23 ~ IT;-degrees.

THEOREM 5. (A)—[all Z3 ~ II3-degrees are comparable] (°).
Proof. Let a, f# be any elements of NV, Assume (A). Then a,f eI,

and Or'a <Or'f < or Orfa<<Orf<Q. Assume Or‘a < Or<f < Q.
Then for some %

a(a)=b = (bay> eFyy,
where = (up[ (W), (p)) & (Bi)[wX @ F(g)g, = A1]),-

By an application of Lemmas A and B to the scope of wp, followed by
an application of the relativized table for u, followed by an application

(*) Prof. Myhill, in a letter received 17 June 1958, called our attention to the
following conjecture of Godel: all X} ~ IT}-degrees represented by constructible sets
are comparable, Our theorem, the proof of which follows in part a suggestion of Prof.
Myhill’s letiter, gives the consistency of a stronger proposition. We present & proof of
the conjecture itself in the paper mentioned at the end of Section 4.
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of the proof of Lemma A (cf. (A.1)), we have that the graph of a, and
hence that a, is Z}~ I73 in §.

5.5. As a fifth application of our main theorem we now inquire as
to the complexity of a set composed of exactly one “represenfation”
for each ordinal number less than some fixed ordinal number. By a re-
presentation of an ordinal number v we mean a function « such that
2j a(t, j)=0 is a well-ordering of N of type ».

TFirst, without using (A), we have the following (10):

TeEOREM 6. There evists a I, set WY composed of exactly one rep-
resentation for each ordinal number <o,. :

Proof.
e = | Wlo) &g 28 106 090 @19, ) &6 (B (0 B () =
S (lptiy ) =0 =w(x(i), 209) = o],

where @ is the well-ordering of recursive functions induced by their least
Gddel numbers. Since W e 177 (cf. (B)), it follows by the techniques of [13]
that W e II7. The proof is completed, if the original generative defini-
tion of o, is intended, by the Markwald-Spector result (cf. e. g. [227)
that the generative and relational concepts of constructive ordinal co-
incide.

Similarly we have the following:

THEOREM 7. (A)—>[there ewists a 23 ~ II; set W, composed of exactly
one representation for each ordinal number < ..

Proof. Wi is defined like W, except that “pe 27 ~ II)” is drop-
ped and “Q(y, ¢)” replaced by “y < ¢”. The proof then follows easily
using the bounded quantifier table. (Note that although our table was
developed for 1-place functions, by the use of recursive pairing opera-
tors it applies also to 2-place funetions.)

5.6. Further applications of our main theorem are to appear in [23]
and [11].

6. The classification of L-N%, From Lemmas A and B we can
also deduce the following result, which does not, depend on (A):

TurorEM 8. L- NV ¢ 33, 4. e. the class of constructible functions from N
into N is a Z% class.

(*) The analogous problem, for ordinal notations in place of ordinal representa-
tions, was considered by Spector in [22], p. 159.

Fundamenta Mathematicae, T. XLVI. 24
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Proof. By Godel’s results that a e L—0d%a < £, (similar to [9] 12.2),
wox wels (9] 10.11, 11.42, 9.88, 9.64), X, YeL->X-Yeli ([9] 9.61),

it follows that
(6.0) L. = ﬁ(E(p)(Es)[JlI((p, e) & (Bi)[w X - F'p; = a]] .

The theorem then follows by Lemmas A and B.

No hierarchic lower bound on the complexity of L- NV can be proved
to exist, at least within Godel set theory, because (A), which is consis-
tent, implies that LNV = NV e IY A IT°. On the other hand we con-
jecture that L.NY ¢ IT} is not provable in Gddel set theory.
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