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Remark on spaces dominated by manifolds

by
1. Berstein and T. Ganea (Bucuresti)

1. Introduction and results. Let X, Y be arbitrary topological
spaces and f : X Y a continuous map. A map ¢g: ¥—X is called a left
(right} homotopy inverse of f it gf~1x (fg~ 1y), where ~~1p means homo-
topic to the identity map of E. The map f is called a homotopy equiv-
alence if there exists a map g: ¥—>X which is both a left and a right
homotopy inverse of f; if / only has a left homotopy inverse, then Y is
said to dominate X ([9], p. 214).

By a manifold we mean a connected locally Euclidean Hausdorff
space; no triangulability assumptions are made. As usual, H"(X; Z)
stands for the mth singular eohomology group of X with integer coef-
ficients. Our result is expressed by

TarorEM 1. Let f: X—Y be a continuous map of an arbitrary topo-
Togical space X into a compact n-dimensional manifold ¥. If HMX;Z)+0
and if § has a left homotopy inverse, then | is a homotopy equivalence.

Remark 1. If f iz a homotopy equivalence, every left homotopy
inverse of 7 also is a right homotopy inverse of f.

Remark 2. Denote by {X} the homotopy type of the space X and
write {X}-2{¥} if ¥ dominates X. This is a quasi-order ([4], D. 212)
in the class of “all” homotopy types. Let C™ denote the subclass of all
homotopy types of integral cohomological dimension zn. Our result
then implies the

COROLLARY. The homotopy types of compact n-dimensional manifolds
are minimal elements in C™.

2. Preliminaries. Since the manifold ¥ in Theorem 1 is arcwise
connected and dominates X, the latter also is arcwise connected.

Let now P(X) denote the singular polytope of X; this is a con-
nected simplicial CW-complex and there is a map @: P(X)—»X which
induees isomorphisms of homotopy groups in all dimensions ([8], Theo-
rem VI). Since the compaet manifold ¥ is dominated by a CW-com-
plex, the same also holds for X and, by [9], Theorem 1, ¢ is & homotopy
equivalence. As a consequence
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Remark 3. It is enough to prove Theorem 1 in the case where ¥
is a connected CW-complex.

This enables us to consider connected covering spaces of X, gen-
erally denoted by (B, p) where p: B—X is the projection; in partie.
nlar, X has a simply connected covering space. The cardinal number
of the set p~(#) is the same for all points x ¢ X and is called the number
of sheets of (B, p). The group of all homeomorphisms & of B onfo itself
satistying p&=p is called the Deckbewegungsgruppe of (B, p) and is
denoted by II(B,p). If &, nell(B,p) and £(b)= 7(b) for some b« B,
then &= 2. The covering space (B, p) is called regular if, for any two
points by, by ¢ B satisfying p(b;) = p(b,), there exists & eII(B,p) such
that &(b) =b,.

Similar considerations also apply to the covering spaces of the {not
necessarily triangulable) manifold Y.

Let (P, p) and (@, g) be regular covering spaces of X and Y re-
spectively; suppose that the diagram of spaces and maps

P5g

pi, ‘Lq

XY
1

is commutative. Then, to every & e II(P, p) there corresponds a unique
element # € I7(Q, q) such that ef = ne; this defines a homomorphism

12 (P, p)—~11(Q,4q),

referred to as the homomorphism induced by e.
‘We shall frequently use the well-known

MonoproMY PRINCIPLE. Let X, Y be arcwise conmected, locally arcwise
conmected, locally simply connected spaces. Let (B, p) be a connected
covering space of Y. If fi: m(X, xe) > (Y, y,) 4s the homomorphism
induced by a map f: (X, 2)~(Y, y,) and if fim (X, ;) C pym(B, by) with
P(bo) = Yo, then there ewists @ map ¢: (X, m,)—(B, by) such that pp = .

A singular simplex in a space F is a map T: A-—FE where 4 is the
standard Euclidean simplex; the support |7| of T is the subset 7(4)C B.
For any Abelian group &, H.(E; @) and H'(E; @) stand for the ordinary
singular homology and cohomology groups of B with coefficients in &
(141, chapter VII); Z and Z, respectively denote the group of integers
and of integers mod 2.

Some of the arguments that follow could have been equally well
presented within the framework of homology with local coefficients in
the sense of Steenrod.
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8. Homology in covering spaces. We ghall prove here

ProposITION 1. Let (P, p) and (Q,q) be regular covering spaces of
the connected CW-complex X and of the compact n-dimensional mani-
fold ¥. Suppose that the diagram of spaces and maps

e
P—>@Q
1) LU
X>Y
i
is commutative. Let G stand for Z or Z, and assume that

(2) the homomorphism e: II(P, p)~>II(Q, ¢) induced by e is an iso-
morphism,

(8) Ho(Y; 8) + 0,

(4) fo: Ho(X; @)—Hy(Y; @) is an epimorphism.

Then, e,: H(P; G)~>H(Q; G) is an epimorphism for oll v = 0.

Proof. Let @, denote the family of all eompact subsets of the
(possibly non-compact) manifold @. We shall use

(I) Homology groups 9,(Q; &) based on (possibly infinite) singular
chains ¢ such that each set belonging to @p meets the supports of at
most finitely many singular simplexes occuring in ¢ with non-vanishing
coefficient;

(IT) Cohomology groups %YQ; &) based on ordinary singular co-
chains ¢ with the additional property that, for some C= C(y) ¢ &y, any
singular simplex T' satisfying |T{~ (=@ yields y(T)=0.

Let further @p denote the family of all closed subsets F of P such
that e(F) iy contained in a set belonging to @,. Accordingly, introduce
as above the auxiliary groups %(P; @) and ¥(P; Q).

Notice that the groups 9(Q; @) and 9(Q; @) coincide with the
groups of second kind described in [1], 5-06.

By the choice of the families $; and Pp, the map e: P—@ sends
chains of type (I) into chains of type (I) and cochaing of type (II) into
cochains of type (II), therefore induecing homomorphisms

et U P; G)—=UQ; &),
& HYQ; A —>H(P; G).

Sinece ¢ is a ring, the cap-product of an s-cochain of type (II) and
of an (r+s)-chain of type (I) may be defined in the usual manner (see
for instance [3], 28.2, p. 436) and yields an ordinary finite »-chain. There
results a pairing )
At A @ Uis—H,
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with ~(a® a) denoted by an~ a, satisfying

(5) eu((e*7) n 6) = ¥~ (840)
for all y e W(Q; @), ¢eWprslP; @), see for instance [3], 27.2, p. 435 or
(8], p. 119.

Since @ is locally compact, the groups 9(;(Q; @) coincide with the
groups f(Q, @), as defined for instance in [8], p. 118, where & is the
family of all closed subsets of ¢. Moreover, on a manifold, the singular
groups %Q; @) coincide with the groups H@(Q, ) and may replace
them in the duahty theorem (see [1], 8-06 and [2], "0 -01; @ denotes the
family of all compact subsets of @). .

Therefore, to every 2,e¢H/ (Q; &) there corresponds a dual class
£ = D(z,) e U(Q; G) with »+s=n, and

(6)

where v e ¥,(Q; &) is the fundamental class of the manifold @ ({8], p. 120).
As follows from Lemma 1 helow, there exists u e 90 (P; G) such that
e (u) = and, by (5) and (6), we obtain

Csm?)=z,.

Csf“\v‘:zr

e{(e*C%) ) =L A () =
with (s*¢°) Au e H(P; G). Thus, Proposition 1 is proved provided we
establish

LeMma 1. Under the assumptions of Proposition 1, the homomorphism
8,1 Un(P; G)>y(Q; @) is onto.

Proof. Since 4 is simply connected, the monodromy principle yields
for every singular simplex T: 4-+X a singular simplex T': A-»P satis-
fying pT’ = T; moreover, the regularity of (P, p) implies that any other
T": A—P satistying pT"= T is of the form 7" = &I with &< II(P,p),

¢ .
where £T' stands for the composition 4->P—P. We may therefore in-
troduce the (possibly infinite) chain

;

o(T)=Z{&T" | £ I(P, D)},

which does not depend on any particular choice of 77,
A quite similar procedure associates with every singular simplex
T: A—Y the (possibly infinite) chain
o{T)=

Z{T"| nell(Q, )}
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with g7" = T; as above, T": 4—Q exists and r(7) depends only on 7.
It is easy to check that

(7) ©(T) 48 a chain of type (1).

Furthermore, for any T: 4—+X and 7°: AP satisfying pT' = T,
the commutativity of (1) implies geT’ == f7T'; therefore, (2) implies

(8) 60 () = Z{etT" | & <II(P, p)}
= X{nel" | 5 ell(Q, @)} = tf(T)

and, recalling the definitions of @p and @, (7) now implies that also
(9) o{T) is a chain of type (I).

Since the singular simplexes in X and Y form a free @-base of the
ordinary chain-groups, we may extend ¢ and ¢ to all finite chains. As
readily seen, o and v commute with the corresponding boundary oper-
ators, therefore inducing homomorphisms o, and <, for which, by (8),
the diagram

WdP; @) >U(Q; &)

Ou T Tr.
H{X; G)?Ha(Y 3 @)

(10)

is commutative. By (4), f, is an epimorphism for 7 = % and Lemma 1
is an obvious consequence of

Lemma 2. Under the assumptions of Proposition 1, t, is an iso-
morphism for i =mn.

Proof. Select subsets M and N of ¥ such that the pair (M, N)
be homeomorphic to the pair

({z] el <2}, ] Jo] <1})

in Huclidean n-space. Let B denote an arbitrary component of ¢ YN)
and let A denote the component of ¢—3(M) which contains B. Since M
is homeomorphic to a closed %-cell, ¢ maps 4 homeomorphically onto M
and

(11) NA)nd=9

for all n < I1(Q, ¢) with % £ 1. )

Since ¢~(¥-N)CQ-—B, 7 sends ordinary chains of Y—N into
chaing of type (I) in @ —B and there results a homomorphism 7, a8 in-
dicated in the following diagram with coefficients in @:

Fundamenta Mathematicae, T. XLVII, L 4
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HYQ) 5 HU(B)
+ D, 1 .
(@) B3 lQ, @ —B) < H@, Q—B) <~ Hol A, 4—B)
1.?‘ L T-t‘ E do T
Ho V)= B ¥, T—N) ¢ Hy(, M)
| ]
B9(T) > ()
2.

Here o is an isomorphism which results upon notficing that every

i i i = , Where ¢, is an ordinary
chain ¢ of type (I) in @ is of the form ¢ = ¢, 46, W L I8
finite chain in @ and e, is of type (I) in ¢ —B. All other horlzontalixpa)ps
are induced by inclusions. Notice further that k, and I, are excisions,
hence isomorphisms; moreover, ¢ and #§ also are isomorphisms since

B, Y, N are all connected. . .
¢ ,Sinc’e ¢ maps the pair (4, A—B) homeomorphically onto the pair
(M, M—X), the map

d=gq1: (M, M—N)—>(A, A—B)

is defined and d, is an isomorphism. Notice now that for any singular
simplex T in M, the chain z(T) is of the form

o(T) = d(T)+e¢

where ¢ is a chain of type (I) in @ —B; for, (11) implies that any » € 1(¢, ¢)
with 75 5% 1o sends d(7) into a singular gimplex of @ —4 C ¢ —B. As a re-
sult, commutativity holds in square E. ’ o
The definitions of 7, and <, obviously imply commutativity in
Sqﬂal‘ﬁe Z——— Z, (3) implies that ¥, hence also its covering Fr%anifold Q,
are orientable; if @ = Z,, we are not concerned with orientability. The.re-
fore, the duality theorem ([2], 20-04) applies yielding: the con_lmutamve
squares D; and D, in which the vertical arrows are isomorphisms.
Square E yields that

(12) 7, is an isomorphism;
the squares D, and D, respectively imply that
(13) py ond m, are isomorphisms.

Commutativity in square I finally implies by (12) and (13) that
7, i an isomorphism and Lemma 2 is proved.
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4. The fundamental group. The first result of this section and
its proof are related to previous arguments of Hopf ([6], p. 585).

PROPOSITION 2. Let f: XY be a continuous map of a connected
CW-complex X into a compact n-dimensional orieniable manifold Y. If
Ho(X;Z) % 0 and if f has a left homotopy inverse, then the homomorphism
i m(X)—m(Y) induced by § is an isomorphism.

Proof. Select base-points x, ¢ X and Yo = f{w,) ¢ ¥. Starting with
an arbitrary left homotopy inverse ¢’ of f, the homotopy extension theo-

rem readily yields a map g~g" such that 9(Yo) = &,. Since gf~1y, the
composition

i A
ay( X, @) »>m (X, y,) —my( X, @)

is an inner automorphism of (X, a,) and, therefore, f, is a monomor-
phism. It only remains to show that f, is onto.

Let then (B, p) denote a covering space of ¥ such thst D1 B, by)
= fim(X, @,) for a suitable base-point by e B with p(by) = y,. The mono-
dromy principle next yields a map ¢ such that

(B, by)
[P lp
(X, évo)—;f(Y, %)

is a commutative diagram; moreover,
(14) g (X, my) = (B, by) .

Passing to homology in dimension # with Z as coefficients, we obtain
fo= D9y Since gf~~1x, 7, maps the non-vanishing group H,(X; Z)
isomorphically onto a direct summand of H,(Y; Z); since ¥ is orientable,
the latter is isomorphic to Z and, therefore, f, is an isomorphism. As
& consequence, p, is an epimorphism; therefore, Hy(B; Z)# 0 (i.e. B is
a compact %-dimensional manifold) and |degree p| = 1. Since

|degree p| = number of sheets of (B, p),

we obtain B=¥, ¢ = f, and Proposition 2 follows now from (14).

ProrosiTioN 3. Let f: XY be a continuous map of a connected
CW -complex X into a compact n- dimensional non-orientable manifold Y; let
(@, @) denote the 2-sheeted orientable covering space of ¥. If H,(X; Z,) == 0
and if f has a left homotopy inverse, then there exists a map ¢, a 2-sheeted
covering space (P,p) of X and two maps e, k such that

4%
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(13) commutativity holds in the diagram

e k
P—-Q—=2P
lr e 7
XY X
) 4
(16) gf = 1x,
(A7) 62 (P, p)~1{(Q, @) i8 an isomorphism,
(18) ke ~1p.

Proof. Select base-points @, ¢ X and y, = [{@a) ¢ ¥. Starting with
an arbitrary left homotopy imverse g’ of f, the homotopy extension theo-
rem readily yields a map g~z¢’ such that g(Yo) = %o -

Tet © be the normal subgroup of orientation-preserving elements
of m(Y,y,). Introduce further the normal subgroups

(19) and

"where
fo2 (X, o) (X, Yo)

are the homomorphisms induced by f and g. We have
(20) Q- fim(X, m9) = (Y, Yo) -

= fi{2) Can( X, @) A= g (T Cm( X, 9o)

and  gp: m( T, yo) =X, @)

For, since m{Y,y,)/2~ Z,, the contrary case implies f,m (X, m},) cQ
and the monodromy prineiple yields then a map ¢ such that the triangle

Q

? N l(q

XY

1
is commutative; passing to homology in dimension % with Z, as coeffi-
cients we obtain f, = g,¢, and this is absurd since g, is known to be
trivial whereas gfe1x and Hn(X; Z,) % 0 imply f, # 0.
As a consequence of (20), we single out

(21) (X, @)/ T'rs i X5 %)/ Q2 (X, o) e Q- (X, %)/ R~ Z, .

Since gfe<lg, ¢;f is an inner antomorphism of =,(X, ®,); therefore,
¢, is an epimorphism and (21) imples
(22) al ¥, yo) Am 7 X, m0)[ I mv Zy;
since I' is & normal subgroup, g,f,(I") = I" whence, by (19),

(23) Wryc4a.
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By (21) and (22), the covering spaces (P, p) and (8,s) of X and ¥
which satisfy p,7(P)= I' and ;7,(8) = A are 2-sheeted; moreover, by

(23) and (19), the monodromy principle yields maps e, k¥ such that the
diagram

¢ k
P8P
oyl
XY X

i g
is commutative and

10t (P, p)=>II(8, )

is an isomorphism. Finally, replacing if necessary the initial map % by £k

with suitable £eII(P, p), the covering homotopy theorem enables us
to assert that kem<1p.

It only remains to prove that
(24) (8;8)=(¢, 0.
Since the orientable 2-sheeted covering space of a non-orientable
manifold Y is uniquely determined, it is enough to prove that 8 is orient-
able. We shall assume that § is non-orientable and obtain a contradiction.
To this end, consider the covering space (T, t) of ¥ which satisfies ¢, 7= (T)

= AAQ Bince 8,m(8)= 4D A~ L, the monodromy principle yields
a map 7 such that the diagram

® T
.‘;Zzl/}
P>S8>5Y
2N
X

is commutative. As easily seen, (7', 7) is a covering space of 8. By (23)
and (19) we have

s16m(P) = f1pym(P) = HINC AnQ;
since s; is a monomorphism and

snm(l)=tm(l)= An 8,
we obtain

e (P) C rym(T)

and the monodromy principle yields a map vy satisfying p = e. Passing
to homology in dimension n with Z, as coefficients, we obtain

(25) Oy == Ty Yy -
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Sinee #,m,(T)C R, T is orientable and the assumed non-orientability

of § now implies
(26)

T, =0.
Oun the other. hand, ¢gf ~1x and H,(X; Z,) = 0 imply that f,:
H(X; Z,)-+H,(Y; Z,) is an epimorphism; by Proposition 1 with ¢ = Z,
it follows that
(27) ey: Hu(P; Z,)+Hu(8; Z,) is an epimorphism.

Since (8,s) is 2-sheeted, S is compact and H,(S; Z,) 7= 0. Therefore,
{26) and (27) contradict (25); thus, (24) is entirely proved.

5. Proof of Theorem 1. According to Remark 3 we may assume
that X i a connected CW -complex.
Sinece f: XY has a left homotopy inverse g,

(28) 1., respectively g*, maps the groups H(X; G), respectively H'(X; @),
isomorphically onio direct summands of the corresponding groups of ¥
for any coefficient group G and all r > 0.

Suppose first that
(29) Y 18 orientable.

Then, H, 1(Y¥; Z) is torsion-free, hence free, and (28) implies that
H, (X; Z) also is free. As a resulf, the second summand in the right
side of the universal coefficient formula ([4], p. 161)

H™Y(X; Z) ~ Hom (Hi X; Z), Z)+Bxt (Ha—s(X; 2), Z)

vanishes. Since by assumption the group on the left is non-vanishing,
we obtain H,(X; Z) + 0; moreover, (29) yields H,(Y; Z)~ Z and, by (28),
we now obtain that

(30) fo: Hou(X; Z)>H(T; Z) is an isomorphism.
As a consequence, Proposition 2 implies that also
(81) fy: my(X)—>my(Y) 8 an isomorphism. 4

Let now (P,p) and (@, q) denote the simply connected covering
spaces of X and Y; the monodromy principle yields a map e¢: P—@ sat-
isfying ge = fp. Identifying fundamental groups and Deckbewegungs-
gruppen of the simply connected covering spaces, (31) implies that

1 II{P, p) ~II(Q, q) is an isomorphism.
By Proposition 1, this and (30) imply that
(32) ¢,: HAP; Z)~HJ/Q; Z) are epimorphisms for all r > 0.
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Sinee @ is simply connected, the monodromy principle yields a map
k: QP satisfying pk = gg; replacing if necessary this %k by Zk with
a suitable £eII{P,p), the covering homotopy theorem implies next
that ke~~1p. Therefore

(33) e,: HP; Z)—~HJQ; Z) are monomorphisms for all r = 0.

Tinally, according to a theorem by J. H. C. Whitehead ([9], Theo-
rem 3), (31), (32) and (33) imply that f: X —Y actually is a homotopy
equivalence.

Suppose now that

(34) Y is non-orieniable.

This implies H(Y; Z) s Z,. Since HYX; Z) # 0, (28) implies H"(X; Z)
~ Z, and the universal coefficient formula ([7], p. 257)

HYX; Z,)~ B X; Z) ® B, +Tor (HVY(X; Z), Zy)
implies H™(X; Z,) # 0; since Z, is a field, also
Hy(X;Z,)# 0.

We may now apply Proposition 3 to obtain (P, p), (@,9), g, ¢ k.
Since (34) yields H,(Y; Z,)~ Z,, (28) and (35) imply that

To: Hu(X; Zy)Hu(Y; Zs) i8 an isomorphism,
and Proposition 1, with ¢ = Z,, now yields that
6y Hu(P; Z,)—>H,(Q; Z,) is an epimorphism.

As a eonsequence

(36) Ho(P; Z,) #0.

Since @ is orientable, H, ,(Q; Z) is torsion-free and, since kes<1p,
the same holds for H,_;(P; Z). Therefore, the second summand on the
right in the universal coefficient formula ([4], p. 161)

Hy(P; Zy) ~ Ho(P; Z) ® Zy+Tor (Hu o P; Z); Z)

vanishes and (36) implies

(37) H(P; Z) #0.

This is the only homological assumption needed in the orientable
case in order to obfain that

(38) ¢: P—Q is a homotopy equivalence.
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As a consequence of (38), ¢ induces isomorphisms of homotopy
groups in all dimensions; since (P,p) and (@, ¢) are covering spaces
of X and Y, it follows that

(89) f: XY dinduces isomorphisms of homotopy groups in all dimen-
sions =2,

Since ¢, and ,¢ are isomorphisms, commutativity and exactness in
the diagram

1—m(P) ii)nl(X) - [I{P,p) >1
\le \fo ¢13
1-m(Q) »m(Y) >11(Q,q) -1

4

imply that also
(40) fi: m(X)—>my(Y) 45 an isomorphism.

Finally, according to a theorem by J. H. C. Whitehead ([9], Theo-
rem 1), (40) and (39) imply that f: X—¥ actually is & homotopy equiv-
alence, .
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The first order properties of products of algebraic
systems

by
S. Feferman and R. L. Vaught (USA)

Introduction

In modern algebra and set theory, a variety of ways of forming
sums or products of finitely or infinitely many algebraic systems have
been considered. Examples are cardinal and ordinal sums, ordinary and
weak direct products, and ordinal products. ITn this paper we shall in-
troduce a notion of gemeralized product, which comprehends (in a sense)
all of these examples, and a number of other products. By means of its
use, we shall investigate the relation between the elementary (i. e., first
order) properties possessed by the product algebraic system and those
possessed by its factors.

The method applied here has its origin in the work of Mostowski
in [13] on finite or infinite, ordinary or weak, direct powers of algebraie
systems. The first work on “products” other than direct was the study
made by Beth [1] of the ordinal sum of finitely many ordered systems.
Our own work has occurred in a series of steps over several years. Some
of these were reported in abstracts [4], [5], and [28]. Recently, a summary
of our results in nearly their present state was given in [6] and [7] (}).

In many cases the definition of a product operation, which is to be
applied in the general situation to an indexed family of systems <A¥ eI,
takes into account some sort of ‘“structure” on the index set I in the
form of another system (I, Ry, R,, ...). (For example, when dealing with
ordinal sums or products, it is necessary to congider systems <I, B>
where R is a binary relation ordering the set I.) However, it has turned

(1) Many of the results described in the present paper were obtained while both
authors were students of Professor Alfred Tarski. We are indebted to him for many
stimulating remarks and suggestions. The work summarized in [28] formed a chapter
of the second author’s doctoral disseration at the University of California, Berkeley,
1954.

Part of the work of the first anthor on this paper was supported by a grant from
the National Science Foundation.


Artur




