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The first order properties of products of algebraic
systems
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S. Feferman and R. L. Vaught (USA)

Introduction

In modern algebra and set theory, a variety of ways of forming
sums or products of finitely or infinitely many algebraic systems have
been considered. Examples are cardinal and ordinal sums, ordinary and
weak direct products, and ordinal products. ITn this paper we shall in-
troduce a notion of gemeralized product, which comprehends (in a sense)
all of these examples, and a number of other products. By means of its
use, we shall investigate the relation between the elementary (i. e., first
order) properties possessed by the product algebraic system and those
possessed by its factors.

The method applied here has its origin in the work of Mostowski
in [13] on finite or infinite, ordinary or weak, direct powers of algebraie
systems. The first work on “products” other than direct was the study
made by Beth [1] of the ordinal sum of finitely many ordered systems.
Our own work has occurred in a series of steps over several years. Some
of these were reported in abstracts [4], [5], and [28]. Recently, a summary
of our results in nearly their present state was given in [6] and [7] (}).

In many cases the definition of a product operation, which is to be
applied in the general situation to an indexed family of systems <A¥ eI,
takes into account some sort of ‘“structure” on the index set I in the
form of another system (I, Ry, R,, ...). (For example, when dealing with
ordinal sums or products, it is necessary to congider systems <I, B>
where R is a binary relation ordering the set I.) However, it has turned

(1) Many of the results described in the present paper were obtained while both
authors were students of Professor Alfred Tarski. We are indebted to him for many
stimulating remarks and suggestions. The work summarized in [28] formed a chapter
of the second author’s doctoral disseration at the University of California, Berkeley,
1954.

Part of the work of the first anthor on this paper was supported by a grant from
the National Science Foundation.
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out to be somewhat more natural in the metamathematical investigations
of products to provide a definition of generalized product which is re-
ferred to the (more ecomprehensive) systems of the form

(1) S(1), C, My, My, o0

where 8(I) is the family of all subsets of I, and My, M, ... are certain
relations among these subsets — whose nature depends on the particular
type of product being considered.

In §3 and §9 we obtain two basic theorems on the elimination of
quantifiers in the theory of the generalized product or power. The re-
sulb of these theorems is to provide a eomplete analysis of the elementary
properties of such 2 product or power in terms of the elementary prop-
erties of the factors, on the one hand, and of an algebra of subsets of
the form (1), on the other. These theorems and their proofs generalize
the results of Mostowski ([13], theorems 5.12 and 5.22). Even if con-
sidered only for the cases of ordinary or weak direct powers, which were
dealt with by Mostowski, the analysis described above provides a vantage
point from which his method can be viewed in somewhat clearer form.
In these cases, the algebras of subsets involved are just the simplest,
namely {S8(I), C5, and {8(I), C, Fin), where Fin is the set of all finite
subsets of I.

The basic theorem of § 3 has a number of interesting consequences,
which are given in § 5. One is that the decision problem for the theory
of a system which is & finite product (of any of the types comprehended
in the generalized product) reduces to the decision problems for the
factor systems. Another consequence is that the first order theory of
any generalized product system is completely determined by the theories
of the factors involved, in other words, that the generalized product
preserves elementary equivalence of systems.

A third consequence of the basic theorem is that the decision prob-
lem for the theory of a generalized power (finite or infinite) reduces
to the decision problem for the theory of the factor and to that for the
theory of the system (1). At the conclusion of § 5 we obtain, in addition,
a reduction procedure for the theory of the class of all generalized prod-
ucts of systems of a given kind.

The second basic theorem (of § 9) shows that for weak generalized
powers, (1) may be replaced by an algebra of finite subsets of 7.

To obtain further results one must examine the theories of algebras
of subsets such as (1). In §§ 6, 7, and 8, we examine the cases where (1)
is of the forms (S(I), C>, <8(I), C, Find or <S(I), C, ~>. (Here ~ is
the relation of set-theoretical equivalence.) A decision method for the
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theory of a system of the first type is known (cf. [17]), and we shall
obtain decision methods for theories of the second and third types.

Applying these results in conjunction with the basie theorem of
§ 3, we obtain the results of Mostowski on the decision problem for the
theory of ordinary or weak powers; we also obtain a number of new
results or new proofs concerning decision problems and the theory of
models. In particular, we answer affirmatively a question raised by X.of:
It & (first order) sentence is true in each of the (ordinary) direct prod-
uets AY, AP xqY, L, A”x .. x AM, ..., then is it true in the product
A Lo AP .2

The further study of the nature of the first order theories of various
systems of the form (1) appears to present an interesting class of prob-
lems. Many of these theories correspond, in a natural way, to certain
special kinds of second order theories.

§ 1. Preliminaries

We use the ordinary notations e, {i | ...}, {8g; ) @y}, ~, C, 4, U,
~y 5, and ("), respectively, for membership, the set of 4 such that ...,
the set consisting of ay, ..., 4,1, set-theoretical equivalence, inclusion,
the empty set, union, intersection, difference, arbitrary umion and ar-
bitrary intersection. The set of all subsets of a set I will be denoted
by S{I).

The notions of ordinal and cardinal are taken to be defined in such
a way that each ordinal is the set of all smaller ordinals, and a cardinal
is an ordinal not set-theoretically equivalent to any smaller ordinal.
We denote by ¢(X) the cardinal number of a set X. The finite ordinals
are identified with the natural numbers, so that 0= A, 1 ={4}, etc.,
and the set of natural numbers is denoted by w.

We denote by P(A® |4 eI) the set of all functions ¢ with domain I
such that, for each i eI, g(i) e A, In particular, B is the set of all
functions on I to B. Elements z of B", where n ¢ o, are referred to as
ordered n-tuples, and we write % = <@y, ..., Zy-1). For ordinary infinite
sequences # e B®, we sometimes write z = {(&;, ..., Ty, ...), and we call z
an o-tuple. By an indexed family (#®]{eIp we shall mean simply
a function », with domain I, whose 4th term is #®, for each e I.

Two special notations we shall need are these: f v ¢ B®, ke w, b ¢ B,
we put

B(E[b) = Doy oy Tro1y by Tpray ooy Bry o)«
I D=P(AP |ieI), f= (foy oy fny > € D® and iel, we write
fle] = <folt)s «ovy Fald)y -> -


Artur


60 S. Feferman and R. L. Vaught

It i3 easy to see that if fe D% géD and 7, kew then
flél(k/g (@) = 7 (k[g)[e] -

By an w-ary relation (ne o) among the elements of a set B, we
mean a subset of B A 1-ary relation R will usually be identified with
the set of z such that <z) e R. By an n-ary operation on B is meant
a member of BZ". A 0-ary operation, assigning the value b to the 0-tuple
A, will usually be identified with the element b, itself ().

Suppose a < o and m < », and suppose g is an a-tuple of natural
numbers, and » is an m-tuple of natural numbers. It is also convenient
to assume further that in case a = w, the funection u is recursive. A system

(1) 1Ri7 >

is said to be an algebraic system of similarity type = {», u, provided
B is a non-empty set, 0; is a v;-ary operation on B (j=0,1,..,m—1),
and, for each j < «, R; is a u;-ary relation among the elements of B.
Two systems of a given type are called similar, and all systems of a given
type constitute a similarity class.

With any given similarity type 7, we associate a first order (with
identity) formalized language L., within which systems of this type
could be discussed. I, has the following symbols: a list vg, ..., Vuy ... Of
{distinet) individual variables; the logical symbols | (neither-nor), \/ (there
exists) and =; the (distinct) »;-ary operation symbols O; (j = 0,...,m—1);
and a list Ry, .., Ry, ... (j <a) of (distinet) predicates, R; having u;
places (§ < a) (3). )

The notion of a term, or an atomic formula, or a formula, and the
notion of a variable being free in a formula are understood in the usual
way. A formula with no free variables is called a sentence. The connectives
~, Ay V, —>, >, the repeated conjunction [] and the repeated dis-
junction Y, (over appropriate indices), and the universal guantifier A,
will also oceur in our discussion; they are to be interpreted as certain
operations on expressions — for example, ~0 ig 06.

It a formula 6 has at most the free variables vy, ..., Va1, add
Vas ey Vn—1 Gre terms, we write @(yq, ..., yn—) for the result of per-
forming the proper simultaneous substitution of y; for v; (= 0,1, ...,
n—1) (%).

B = (B, Oy ey Oz By - (i<a)

(%) A O.ary relation is either {4} or 4.
(*) Note that particular symbols of I, are denoted by non-italicized letters. This
convention is followed throughout the paper.

(4} ,Proper” means that the bound variables are to be changed, if necessary, in
order to avoid collisions, by some prearranged, effective method.
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To clarify discussions of decision problems, we assume further that
L, is constructed in such a way that its set of expressions (non-empty
finite concatenations of symbols) coincides with the set of natural num-
bers, and the operation of concatenating two expressions, the function v
listing the variables, and (in case a = w) the function R listing the pre-
dicates are all recursive {ef. [23], p. 13).

Suppose B is an algebraic system as in (1), 6 is a formula of L,
and @ = {Tgs errs Tn, --> € B°. We shall write —g0{a] to mean that the
sequence x satisfies 6 in % (5). (It is to be understood that to a free
variable v, of 8, #, is to be assigned.) In case the free variables of 6 are
at mOSt Vg, ...y Vn_1, We may write, instead, g B[ <Xgy vey Tnea ], OFy
where no ambiguity will arise, simply —g0[zy; ..., o). In case 0 is
a sentence, we write —igf to mean that 6 is trne in B.

In the sequel we shall frequently make use, without explicit men-
tion, of the basic properties of satisfaction, such as the fact that:

—s(0 A 0[] if and only if —ip0{#] and —AxbT].

We shall employ the following notions, introduced by Tarski ([22],
[27]). Suppose B = (B, ...) and B' = <B’, ...> are algebraic systems of
the same type 7. B and B’ are called elementary equivalent if, for every
sentence 6 of L., ‘
g0 if and only if —w 0.

B is said to be an elementary extension of B’ if
(i) BPCB

and
(ii) for any formula 6 of L, and any xe (B

g 0[] if and only i w 8[x](%).

For any class 9 of algebraic systems of type 7, the set of all sen-
tences of L, true in every member of 7K is called the theory of K, and
is denoted by Th(). In case 9 consists of a single system B, we put
Th(B) = Th(°K), and speak of the theory of B. ‘We say that the theory
of K is decidable if it is recursive.

(*) For a definition of this notion, see [20]. To settle any question as to how 0-ary
relation symbols are to be interpreted, we agree that it R; is O-ary and z ¢B” then
~gB;[x] if and only if R; is not empty (cf. footnote (*))-

(¢) Condition (i) replaces the stronger requirement given in [27] that B be a sub-
system (in the usual sense) of B. It is eagily seen, using (ii), that the two formulations
are equivalent. '
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As is well known, for most purposes there is no real gain in gene-
rality in considering algebraic systems rather than simply relational
systems

(2) 3 Bogy ond

We shall, therefore, only consider systems with operations in a few spe-
cial contexts, where this will greatly simplify the notation. If the re-
lational system (2) is of type (0, u>, we shall say simply that it is of

type u.

B= (B, Ry, - 1<a).

§ 2. The generalized product

In the sequel we shall deal with a fixed, but arbitrary, similarity
class of of relational systems of the type u. These systems are to be
used as the factors of the generalized product; i. e., we want te define
a notion of generalized product of an indexed family A= oSl |iely
of such systems. If this product is to include the notion of ordinal prod-
uet, for example, as well as the direct product, then it would seem
natural to consider that, together with the index set I, we are given
some relations among the elements of 7. However, as already suggested
by Mostowski’s work [13], it turns out to be more advantageous (as
well as, of course, more general) to suppose given, instead, some rela-
tions among subsets of I, i e., among the elements of S(I).

We suppose given, therefore, a type u’ of relational systems, where
u is an o' -tuple and w'(0) = 2. Moreover, we suppose given an arbitrary,
fixed sub-class o of the class of all algebraic systems

G =<8, A1‘U7 ~y _ga My ey Miy )
guch that
(i) I is any non-empty set,
(i) & is of type {0,2,2,13, u> =0,

(i) 4, w, ~, ", and C are the usnal set theoretic operations or
relations restrieted to S(I) (%).

System like & will be called algebras of subsets.

As deseribed in § 1, L, is the langunage in which we may discuss
systems of ¢f, while L, is another langnage, similarly associated with
the algebraic systems of type o. We denote the list of variables of L,
by Vos ..oy Vny ..., while, for the sake of readability, we denote the list

1<j<da)

(?) Strictly speaking we should write, for example, v ; instead of simply v, but
the simpler notation should cause no confusion. In general, if we speak of an algebraic
system <4, 0, ..., B, ...> and the operations or relations O, ..., R, ... are too large, we
have in mind the system obtained by restricting O, ..., R, ... to 4.
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of variables of L, by X, ..., Xn, ... The list of predicates of L, is Ro, ...,
Rjy oo (§ < a). L, has the operation symbols 4,uU,n, ™, and the list
of predicates C,M;, ..., Mj,... (j <«'). We will use letters 0, 6, v, ...
for formulas of L, and &, ', ¥, ... for formulas of L,.

For future reference, some further terminology relating to the lang-
uage L, will be introduced now. This has to do with the need to express
in I, the notion that a sequence of sets X,, ..., X,, forms a partition
of the set I (by which we understand that | J X;= I and that X;~ X; =4

i<m
for each 7 < § << m (8)). First, if s is any finite set of natural numbers,
and for each jes, y; is a term of L,, we define (by induction):
{J y; to be the term 4, if s is empty,
jeca
and to be the term
(U v e
j€g
if s has a largest member % and s’ = s—{k}. Then for each m we can

introduce the desired formula Part,, with the m+1 free variables
Xy vy Xomy by means of the definition:

Part,, = | U X,-=A—/\_117< (XinX;=4)].

jem+1

Before describing the generalized product in 2.4, some preliminary
notions are needed:

DEFINITION 2.1. Suppose that = AP |ieI>, where I A, is an
indeved family of velational systems U = AP s of type p, and
D=P(AP |iecl). Let f= {foyorsfng > eD® and let 0 be a formula
of L,. Then we put

Ey(f={iliecl and —yet [113]]} -
In particular, if 8 is o sentence, EKy[f] does not depend on J, and we

write
Ey =Eif)={i|iel and ~Agw 0} -

From 2.1, one derives at once the following lemma.

LevmA 2.2, Let A, I, D, and f be as in 2.1, and suppose that 0, 6’
are formulas of L, and kew. Then

(1) EL(f)=I-Ef),

(-2) Eganlf) = Ko () ~ Eo(f),

(-3) E§oll) = Ea(h v E3(f),

(%) It is not excluded that some of the sets X; may be empty.
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(4) E¥f) = UK (f(k9)) |9 D),

(.8) If ' € D° and f; = f; for every j such that v; is free in 0, then
E3(f) = K5 (f') -

(.6) If the variables of 0' are al moSt Vo, ..o; Va1, and if m e o,

0 = 8'(Vmys +es Ving_y)s 1" eD® and f;= fm, for every j <m, then

Ky = E(f)-

DERNITION 2.3. (1) A sequence (= <D, 0p, ..., Ond is called an
acceptable sequence if @ is a formula of L, with at most the free variable
Koy ooy Xy and 8o, <oy O are formulas of Ly.

(.2) By a free variable of I we mean a variable Vi free in at least
one of Byy ey Oy

(.3) ¢ is called o standard acceptable sequence if, in addition to (.1),
the free variables of { are ematly Vo, ...; Vay for some n € .

(.4) & 4s called o partitioning sequence provided the formula

X

j<m
and each of the formulas
~(05 A B7)
are (truth-table) tautologous.

The generalized product will be a system with infinitely many’ re-
lations, one corresponding to each standard acceptable sequence. To
conform with the requirement of §1 that the relations be numbered,
we arrange all standard acceptable sequences into a (non-repeating)
infinite sequence (3, ...,&n,..> (in such a way that the sequence of
Godel numbers <G(£3), ..., G{ta), ...> forms a recursive function (%)).

DeFINTroN 2.4. Let U, I, and D be as in 2.1, and let G = (8(I),...> ¢ .

(.1) For each standard acceptable sequence { = (D, Oy, ..., O with
p free variables, we pul

Q¥ = oy s fpord | f € D° and —ABLIG(S)s s Ko (1]} -

(j<§" <m)

(.2) By the generalized product (U, S) of the systems AP iel

relative to the algebra & of subsets of I, we mean the system

m”—t(D,QZ‘g’Ga"-aQu’e >

c; g e

(%) The parenthetical remark is needed only to make precise later discussions of
the decision problem. For the Gddel number G (Z) of § = <®, 0, ..., Om) Wwe might take,
for example, the number p@utl-ploti. -pP™L where py, p,, ... are the primes in order.
(Recall that the formulas of I, and Ly are, themselves, numbers.)

icm

Products of algebraic systems 65

(.8) If all the systems AP, for iel, are identical with a single sys-
tem B, then (A, S) is called the generalized power of B relative o G,
writien B°.

Let =(j) be the number of free variables of Z3, for § e w. Clearly = is
a recursive function. Thus =z is a similarity type of relational systems,
and, clearly, every generalized product (U, &), where U is an indexed
family of systems of of and & e <, Is of type =. We denote the list of
variables in I, (our third language) by f,, ..., 4, ... We denote by Q;
the predicate of L, corresponding to the relation @;, so that the list of
predicates in L, is @, .., Qg0y ..

In the next section, § 3, we shall establish a basic theorem con-
cerning the generalized product. In §4, we shall show how various fa-
miliar products and sums may be interpreted as special cases of gener-
alized products. The reader is advised to read § 4.1, in which the direct
product is interpreted by means of the generalized product, before read-
ing § 3, in order to gain some idea at this point of the relation between
the generalized product and familiar produet notions.

§ 3. The basic theorem for generalized products

TEEOREM 3.1. (1) There is an effective procedure whereby o each
formula T’ of L, ean be correlated a sequence { = P, o, ..., B> n such
a way that

(i) ¢ is an acceptable sequence, and ¢ and I' have corresponding free
variables, i. e., a variable T, is free in I' if and only if vy i free in s

(i) Given any non-empty indeved family A= <UD |ie I, of systems
PO = 4D, > of type p, and any dgebra &= <8(I),..> ed with
product P(U, &) =D = <D, ...), and given any e D®, we have:

—a I'f]
if and only if
"{G @[Kzln(f)y sy Kglm(f)] .
(.2) In particular, if I' is a sentence, so are By, ..., O, and —pI" if
and only if . .
—Is di[ng, vy Kg‘m] .

(.3) If desired, ¢ may always be taken to be a partitioning sequence (2.

(19 It would be difficult to try trace the growth of ideas which led to the notion
of the generalized product and to the statement and proof of the basic theorem 3.1
(from which practically all the results in this paper flow). Some of the background to
this has already been indicated in the Introduction; further information, relating to

Fundamenta Mathematicae, T. XLVIL ) 5
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Proof. 3.1.1 will be established by the “method of eliminating
guantifiers”, or, in other words, by induction on I

Part (1). Suppose I' is an atomic formula of the form Qufy .. 1%, _,
where ' = (D, 8}, ..., 8> is a standard acceptable sequence (with free
variables Vg, ..., Vay). Assume the hypothesis of (ii), and let /' be any
member of D such that f; = f, for each 7 < n. Then the condition

—»I17]
is, by 2.4.1, equivalent to

O TEy(f), s Ky (1]
while, by 2.2.6, the latter is equivalent to

A PTEE(), oy KL, (1),

where 8; = 6}(Vg,, -y Vi,_,) for each j<m' Hence 3.1.1 holds if we -

take @ = @', and, for each j < m = m’, §; as just explained. (Condition (i)
iy obviously satisfied.)

If I' is an atomic formula of the form f; = f;, then we see at once
{by Definitions 2.1 and 2.4) that we may take [ = (@, 6> where § is
the formula vi=v, and @ is the formula X, = 4.

Part (2). Suppose that I' is of the form IY|I™, and that
E =D, By ey Oy and = (D", 0y, ..., Opy> arve correlated with I
and I'", respectively, in such a way that (i) and (ii) hold in each case.
Let

§=<D, b, ..

’ 1r rr
1 em’) 90 3 eees 61n”>;

where

O =0 |0 (Kpyyry o
Clearly condition (i) holds, and it is elementary to verify that (ii) holds
as well.

Part (3). Before taking up, in part (4), the quantifier case, we shall
show that:

’ Xm’+m”+1) .

specific consequences of 3.1, will be given at the appropriate moments. However,
something concerning the order of discoveries can at least be mentioned now,

The notion of the generalized power (2.4.3) and a statement and proof of the
basic elimination theorem 3.1, restricted to such powers, were obtained by the first
author in 1953 (and communicated to the second author at that time). Most of the
results of § 5, § 6 and § 7, when rephrased so as to apply just to powers, were algo obtained
by him then. In 1956, the second author realized that the statement and proof given
for powers extended to generalized products, thus arriving at 3.1 substantially as it
is given here, and he obtained a number of the consequences given, in their general
form, in §5, §6 and §7.

icm

Products of algebraic systems 67
With each accepiable sequence ' = (P, 04, ...y B> e may { effectively )

correlate an acceptable partitioning sequence { = <D, By, ..., O, with the

same jree variables, in such a way thai, under the hypothesis of (i),

1) ~ePTE(f), -y Kgr (1]
if and only if
2) e BLEG(T); s K] -

We can describe é.: <¢7 607 weey em.) as follows: Let m = 2m’+1 and
1ot 74 -ory T De @ list of all the subsets of m' +1={0,..,m'}. For each
kE<m, lot
3) o=[10;n JI ~06;.

jerg jelm’+1)—rp
Put
{4) = {klk<mand ler} (I<m');
and let
(5)

& =o' U Xz -y U Xp)-
kes, kesy

Clearly { is an acceptable sequence having the same free variables
as ¢, From (3) and Definition 2.3.4, one sees that { is a partitioning
sequexice. Assuming, now, the hypothesis of (ii), we see from (5) that (2)
is equivalent to the condition

(6) AT U En(f)s oy U Ea(i)]-
kea,, kesm:
Now, by (3) and 2.2.1, 2.2.2,

M UEMH=U{NEKgh~ N
keg kesy jerp 7 je

{m'+ 1)1y

U-EghD  a<m).

From (4) and elementary set algebra it follows that the right member
of equation (7) is simply Kf;, (f), so that
8) U Ko(f) = Eg(f)  (<m).
kesy
From (8) we see that (6) is equivalent to (1). Thus (2) and (1) are equi-
valent, as was to be shown. )

Part (4). Returning to the proof of 3.1.1, suppose now that I is f)f
the form V/£.I", and that { = <D, g, ..., 8..> is correlated with I in
such a way that ¢’ and I” fulfill conditions (i) and (ii); suppose, moreover,
that ' is a partitioning sequence.
Let m = m’, and { = <D, O, ..., 0>, Where

b=V vib; (i <m)

(9)

5%
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and

(10) @:VYO,...,va{Pa.rtm(Yo,...,Ym)AjH(Y,gX,)MD'(YO,..,,Ym)}_
<m

(Here Y, ..., Y,y are any m unused variables, say Xpi1, ooy Xomar.)

Clearly, condition (i) holds. Now, assume the hypothesis of (ii).

Obviously, the statement

(11) 7] N
is equivalent to the statement:
(12) for some geD,  —I"Tf(k/g)],

and so, in turn, to the statement
(13) DI (k) s ey
On the other hand, the condition

A PIEG(), ooy Ko ()]s

which we wish to prove equivalent to (11), is by (10) and (9), equivalent
to the following:

for some geD,

I, (F(k]9)] -

(14)

there exist sets Yq, ..., ¥, such that
(a) Yoy ooy Yo are a partition of I,
(b) ¥;C EVvgf), for each
() and —ecD[¥qy ooy Ypl-
Thus it remai i i
that (13 gloallcis tI(J)efrove the equivalence of (13) and (15). Suppose, first,
(16)

j<m,

(15) I

Y, = K} (f(kig)

Since { is a partitioning sequence, we obtain at once, by (16) an -
_2.2.3, that (15) (a) holds. (15) (b) follows from (16) anil 25.’2‘(4 )al?dd(lzf)')zé)
is merely a restatement of (13). Thus (15) follows from (lid).

Oq the other hand, assume that (15), (a), (b), (¢) hold. We define
a function g € D as follows. Let ¢ ¢ I. Then, by 15 (a), 4 helongs to exactly

one of ¥y, ..., ¥y, say ¥;. ; X
finition 20-’1’ » Ym, say ¥;. By 14 (b), ¥; C Kyyy(f), and hence, by De-

(5 < m).

o \/Vkog')[f[ﬂ] .
We can, therefore, choose, as ¢(i), an element of A® in such a way that
(17) a0 05 [£1i1(k/g )]

We may supposg (by the Axiom of Choice) that such & choice hag been
made for each iel, so that the function g is now defined.
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Recalling that f{z](k/g(4)) = f(k/g)[i], we see from (17) that
(18) if ie¥;, then —lgw0[f(kig)[5]]
In other words (by 2.1)

(ism).

(19) Y; C Ky (f(kig) (G <m).

Since the sets Yo, .., Ym, ond, also, by 2.2, the sets Ry (f(kg)), -,
o
KZ (f(k/g)) both form partitions of I, (19) implies that, actually,
m

(20) Y= Eg(i(klg)  G<m).
From (20) and our hypothesis (14) (¢), (12) follows directly.

Thus, the proof of the equivalence of (13) and (15) is finished, and
we have shown that condition (ii) holds, completing part (4) of the proof.

Tt is now clear that a general (effective) method can be given for
bresking an arbitrary formula I' down into its component parts, and,
then, by applying the methods of parts (1), (2), {3), and (4), building
up to a sequence ¢ as demanded in 3.1.1. Moreover, if desired, one could
always apply, at the last, part (3) to obtain a partitioning sequence {,
so that 3.1.3, as well as 3.1.1, is proved. 3.1.2 is an immediate conse-
quence of 3.1.1, so the proof of 3.1 is complete.

The generalized product, as we have defined it, is a system with
infinitely many relations. It is, of course, much more common, in alge-
praic discussions, to encounter systems having only finitely many rela-
tions. Tf we take any finite list &g, ..., {p—1 Of standard acceptable se-
quences, we may define a notion of product, which will be of this latter
sort, by simply taking the system :

D, Qz’ea sy ng&

to be the product of the indexed family 2 relative to the algebra of sub-
sets G (U, S, and D as in 2.1). Any such notion of product will be re-
ferred to as a generalized product. To avoid ambiguity we shall ocea-
sionally refer to the product notion defined in 2.4 as the full generalized
product.

A more general possibility is to consider, in addition to Lo, ) fp—19
one standard acceptable sequence #, baving only one free variable, and
to take for the product the system
? Up—1>

(21) QT Ugy e
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where, for each j < p, Uy is the relation @5° restricted to the set Q™S
Such a notion of product will be called a relativized generalized proch;et,
(That any generalized product can also be taken to be such a relativized

product is seen by considering 7 = (¥,p> where 9= (v,=7v,) and

V= (Xe=X,))

TEEOREM 3.2. Theorem 3.1 remains valid if the words “‘the product
P, B)? are interpreted to mean an arbilrary (fized) generalized product
or relativized generalized product, while “L," is laken to mean the language
appropriate to that product.

Proof. For a generalized product, this is immediate. In the more
general cage let I" be an arbitrary formula of the language corresponding
to systems similar to (20), let D’ = @& and D' = <D, ...> be a system
like the one described above, and let fe(D')®. In the old language of
the full generalized product © form the sentence I by relativizing all

g}lllantiﬁers in I' to @, (in the sense of [25], p. 24-25). It is easily seen
at

= I'lf]
if and only if

1 I'[f].

Hence we can take as the sequence [ to be correlated with I" in the pre-
sent theorem the same sequence as that correlated to I by 3.1.

§ 4. Examples of generalized products

In this section we shall discuss a number of examples of notions
of product or sum, which are either directly interpretable as, or are clo-
sgly 1:elabed to, a (possibly relativized) generalized product notion. To
s1mp}n‘y the discussion, we shall usmally assume that of is the class of
relational systems of the form (B, R}, when R is a binary relation, and
thus, that L, has one non-logical constant, the binary predicai;e Rf

It will }?e clear that, in some cases, any other similarity class could be
treated in a corresponding way.

£.1. Direct products (also called cardinal products or direct
sums). The direct product of a non-empty indexed family % = %% |i eI
where fm(‘0 each ieI, AP = <49, BD), is the system (D, U Wher(;
D=?§A ]’be.I) and, for any ¢,heD, {g,h> e U if and onlgz if, for
every iel, <g(), h(4)> ¢ R®. Clearly, it ¢,heD, ’

(1) g, h>eU if and only if {i|<{g(i), h()> e R?} =1
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Tetting 6 be the formula Rvyvi, @ be X,=1, and ¢ be <P, 03,
we gee from (1) (and Definitions 2.1, 2.4) that U is identical with the
relation Qf’s, where
@)

Thys, the direct product may be interpreted as a generalized product
relative to subset algebras of the (simplest) form (2).

S =<8, 4,u, A~y GO

4.2. Weak direct product. Suppose we are given a (fixed) formula
p of I,, whose only free varigble is v,. It is common, in defining
a weak direct product, to restriet our attention to a subclass of* of &
consisting of systems B having exactly one element e such that —spiied].
However, that need not be done here, unless one so desires.

Wow if %, I, D, and U are as in 4.1, the weak direct product of the
AD(i e I) is defined to be the system (D*, U*>, where, if geD,

(3) geD* if and only if {i|iel and g ~p[{g(E)>1} s findte,
and where U* is the relation U restricted to D*. Let
(4) & =<8(), 4,v, f‘:—_ugsF’i”)

where Fin (strictly, Fins) is the set of finite subsets of I. Then it follows
easily from (3) and the results of 4.1, that the weak direct product is
a relativized generalized product relative to subset algebras of the form (4).

4.3. Countably weak direct product (). The definition of this notion
is obtained from that of the weak direct product by replacing,
throughout, the word «finite” by the word ugountable”. Exaetly as
in 4.2, one sees that this is a relativized generalized product relative

to subset algebras of the form
(S(I), A7U7 "’:ta _Q, G):
when ¢ is the set of countable subsets of I.

4.4. The “almost everywhere diret product”. By this name we refer
to a notion introduced in [2]. We form first the intermediate product

(5) D=<D, B, V>,

where, for g, heD,

(6) g kyeE if and only if {i]g(i) = (D)} is finite
and

(1) (g hyeV if and only if {5]<g(0), h(i)> ¢ EF} 48 finite.

(1) This notion was considered by Tamski in [21].
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Now, E is an equivalence relation having the substitution property
relative to V, so we may form the quotient system D' = {D', V') in the
usual way, where D’ is the set of all equivalence classes g/E for gD,
D' may be called the almost everywhere direct product of the AP (i e1I).

From (6) and (7) we easily see that the intermediate product (5)
can be considered as a generalized product relative to base systems of
the form (4).

In order to derive certain consequences concerning the almost every-
where direct product from the above diseussion and Theorem 3.2, it is
convenient to have at hand an exact statement concerning the relation
between the theory of a system like (5) and its quotient system. This is
the purpose of the following (well-known) lemma, whose proof is very
simple and will be omitted:

Lemma 4.4 ( .1) To each formula 6 of Ly, correlate the formula v
of L, with the same free variables by replacing each occurrence of a sub-
formula v;=v; of 8 by Evyv;. Suppose gwen any relational system
B = (B, B, B> of type <2, 2, where B is an equivalence relation having
the substitution property velative to R, and form the quotient system
B = (B', R") with respect to H. Then for any ®eB” and 2 e B'®, if
@t =u;/E for each iew, we have )

wlra
—syle]
( -2) In particular, if 6 is a sentence then so also is y and
~{g 0 if and only if —Amy.

4.5. Ordinal product. We now consider an indexed family (A% |ieI)
(I;.é/l) and a particular binary relation < among the elements of I.
It is usual to as(sume < is an ordering or even a well-ordering of I,
and that each R® orders A", but we need not insist on these condi-
tions here. The ordinal product is then taken to be the system

<D, W>,
where D is as before, and, if ¢, heD,
(8) <g, by « W if and only if, for some i<, {g(i), h(3)> e« R while, for

all ' <4, g(i') = h(i").

Let < be the binary relation among subset f. i
X xer g s of I such that, if
(9) X 3X" if and only if, for some i, ¢’ eI, X = {i}, X' = {i’}, and i < ¢'.
Now, notice that, if ¢, ke D, then, by (8) and (9),

(1.0) (g,(!)b) « W if and only if there ewisis a singleton X C {5 | <g(i), h(f)>

e B™} such that for any singleton ¥ 2 X, YC {4 ]g(_i) = h(%)}.

if and only if
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(By a singleton is meant a set having exactly one member.) Now,

(11) X is a singleton if and only if X A and jor any sels ¥ C X, either
Y=Aor ¥Y=X.

1t follows from (10) and (11), that the ordinal product may be con-
sidered as a generalized product relative fo subset algebras of the form

<8(I), Ay wymy c, <.

4.6. Weak ordimal product. Let p be as in 4.2, other symbols as
in 4.7. The weak ordinal product is the system (D*, W*y, where D* is
as in 4.2, and W* is W restricted to D*. From 4.2 and 4.3 we easily see
that the weak ordinal product may be interpreted as a relativized gen-
eralized product relative to subset algebras of the form

(12) . B, 4, v, LG, =2, Fing .

Tf we restrict our attention to the cases where < orders I, then a subset
X of I is finite if and only if every subset of X has a first and last member
(relative to <). It follows that, under this restriction, the relation Fin
of (12) may be dispensed with (2.

4.7. Cardinal sums. A separate theory of generalized summation
operations for the case that I is finite was reported in [4]. We shall not
attempt here to develop a special theory of summations, but, rather,
it will be seen from the examples discussed in 4.7 and 4.8 that, by means
of a certain device, the discussion of a wide class of summation oper-
ations can be subsumed under that of generalized products (*%).

Suppose given a non-empty indexed family of systems WO = a®, E®y
(i), such that the sets 4% and A% are disjoint, if 554" and 4,4 e L.
The cardinal sum is then the system
(13) U449 UED .

i€l Tel

T4 is often convenient to talk about the cardinal sum of a family
of systems AP even when the corresponding sefs A® gre not pairwise

() The ordinal product and the weak ordinal product have been defined in a num-
ber of different ways in the literature. Most of these can be treated in ways similar fo
those we used for the particular notions discussed above. However, Day [3] introduced
a further operation of «transitization” to follow the formation of the product of 4.5 — in
order to obtain interesting results when the usual assumptions on < and the R; are
not met; and our methods do not apply to this notion. (Indeed, it is not difficult fo
provide an example showing that transitization does not preserve elementary equi-
valence.)

(*) We do not know whether a special theory of summation operations can be
developed (for I arbitrary), using different techniques but yielding the same regulbs
for these operations that are obtained by our method of including them among products
(and perhaps also additional results).
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digjoint. This we shall assume always to be accomplished by first re-
placing each system AP by an isomorphic system A, in such a way
that the corresponding sets A*® are pairwise disjoint, and then forming
- the cardinal sum of the systems A*® as above. This procedure can, if
desired, be carried out in a completely determined fashion; however, it

is not necessary to specify it since the result is unique up to isomorphism.
In particular, when all the systems U® (i e I) are identical with a fized
system 2B we obtain in this way a system which will be called the car-
dimal multiple of B by I.

We can replace (13) by a product in the following way:

For each ¢eI choose an entity ¢; ¢ A®. For each ie¢l, put

(14) AP = (A9 {e}, BY, {e:}) .

Tet D' be the Cartesian product P(4d'?[ieI), and let

O=1{g|geD and g(i) #¢ for exactly one tel}.
For g, hel, let

{g, by eV if and only if, for some ©elI, {g(¢), h(%)> cR9,

and let U be V restricted fo C.

It is clear that the system <O, U) is isomorphic to the cardinal

um (13). Now, from the definitions of ¢ and V, we see that, if g,k e D',
then

(18) g e O 4f and only if {2]{g(3) ¢ {e;}} s a singleton

and (g, h> eV if and only if {i]<g(i), h(i)> e R¥}y 7~ 4.

From (15) it follows that the operation of forming the system (C, U>
from the A'? is a relativized generalized product velative to subset al-
gebras of the simplest form (2).

In order to derive certain consequences concerning cardinal (or
other) sums from a discussion like the above and Theorem 3.2, one needs
a careful statement of the relations between the theory of a system A
and the theory of the augmented system %', This is the purpose of
the following lemma, whose proof is straightforward and will be omitted:

Lemma 4.7 (1) To each formula 6 of L., whose free variables
are {v;|j et}, can be correlated (effectively) formulas p, (s Ct) of Ly with
free variables {v;|jes}, in such a way that: given any relational system
B=(B,R), 06¢B, B' ={BuicR,{e}, and any ze(Bv {8})° f
s={j|jet and z; #c}, then, for any &' ¢ B® with x}==w; for each je$,

—w 0[]
~spda’].

if and only if
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(.2) In particular, to each sentence § of Lig,1y 18 correlated (effectively )
one sentence p 0f Ly such that

g8 if and only if —sy -

1.8, Ordinal sums. Consider a disjointed family aa® liel, as in
4.7, and suppose given, also, a binary relation < among the elements
of I. The ordinal sum is defined as the system

(16) <U-A-(i)7 Wy,
tel

where (a,a’> e W provided either, for some iel, {a,a’ e Rm, or, for
some 4,4 eI, acA® o’ e A¥), and i <. The ordinal sum of an ar-
bitrary family of systems and the notion of ordinal multiple are then
introduced by the same devices as described in 4.7.

Tet < be defined as in 4.5, and form the systems '@ (ieI) and
the sets € and D’ as in 4.7. Instead of the relation ¥ of 4.7, we put now,
for g,heD’,

(17) <g, kS <V if and only if {i|<g(i), h(i)> <R} 4

or ilg(d) ¢ {a}) = {i | B(6) ¢ {oi}} -
TFinally, let T be V restricted to D’. Then the system <C, U is isomorphic
to the ordinal sum (16). Moreover, the formation of <(C, U> from the
%A'® may be considered as a relativized generalized produet relative to
subset algebras of the form

<8(I), A; Yy f’H—’g, =>.

4.9. A product of Hahn. As a last example, we shall mention briefly
a product of Hahn (as described in [10]) (). Let Qe [4eI> be a non-
empty indexed family of ordered Abelian groups PO =4, 89, B9,
(8® is a ternary relation replacing the usual binary group operation,
R® 3 binary relation). Denote the zero element of 4® by 0. Let <
be an ordering of I. The Hahn produet is the system {0, U, V), where
D is the Cartesian product of the A%,

C={glgeD and {ilg(3) # 0%} is well-ordered by <},

U is the direct product relation formed from the S8, restricted to C,
and V is the ordinal product relation formed from the R, restricted o '

The class of ordered Abelian groups is closed under the Hahn oper-
ation. The operation may be defined in exactly the same way if the

(4) The example of the Hahn produect was brought to our attention by Daua
Scott. Feferman had previously dealt with a finite product which is more or less a special
case of it in [5] (cf. the remarks following the proof of 5.4).
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factors are ordered Abelian semigroups with zero and with concellation:
the class of these systems is also closed under the operation. ’

It is clear that this product is a relativized generalized product
relative to subset algebras of the form

<8(I), Aa vy, 56,0,
where < ig as in 4.5.

§ 5. Consequences of the basic theorem

Theorems 3.1 and 3.2 have a number of interesting consequences
concerning generalized products; by means of the discussion in § 4, we
may also obtain consequences concerning the particular produets and
sums considered there. We shall state in this section three such results
which lie in the theory of models, and three which concern the decision
problem.

Suppose we are dealing with any sort of operation which may be
applied to an indexed family (A® | 2 € I relative to an “index structure” &
of some sort (on I or §(I)). We say that this operation preserves elementary
equivalence provided that whenever we are given two non-empty indexed
tamilies (AP |iel> and <Y'P |ieI) and a common index structure &,
such that, for each 4 ¢ I, the system UA? is elementarily equivalent to A'®,
then the system obtained by operating on the U relative to & is ele-
mentarily equivalent to that obtained by operating on the A'D relative
to G. We say that the operation preserves elementary extensionality if
the same condition holds with “is elementarily equivalent to’ replaced
by “is an elementary extension of’.

TeeoREM 5.1. The full generalized product, any (relativized or not)

generalized product, and each of the products or sums 4.1-4.9 preserve ele-
mentary equivalence (1%).

(35) ]?‘or ordinary or weak direct powers, this is an immediate consequence of
Mostowski’s results in [13]. For finite ordinal sums, it was established by Beth [1].
Feferman ([4], [5]) announced the extension of Beth’s results to arbitrary finite genera-
lized sums and products.

Fraissé [8] established 5.1 for the case of infinite ordinal sums, by an interesting
method, entirely different from ours. (We did not know of his work until after obtaining
the same result by our methods.) It appears likely that Fraissé’s method could be ex-
t.e;nded to give more general results, Just how their generality would compare (or overlap)
with that of 5.1 is a question we have not fully investigated.

Incidentally, it is an open problem as to whether the operation of forming the
free product of systems preserves elementary equivalence —even for the special case
of the free produet of two groups, In general, the methods of this paper do not extend
to free or tensor prodmets (when applicable) of systems.
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THEOREM 5.2. Each of these operations (except 4.4) also preserves
elementary extensionality.

Proof of 3.1 and 5.2. If, for each i eI, A? and A'® are element-
arily equivalent, then, for any sentence 8, Ki = KY, by Definition 2.1.
If, for each i eI, AP is an elementary extension of A, then, by 2.1,
Kg‘(]‘):K?'(f), for any formula 6 and any fe(D')® (where D’ is the
Cartesian product of the 4'®).

Therefore, for the full generalized product, or for any (relativized
or not) generalized product, 5.1 and 3.2 are immediate consequences of
3.1 or 3.2, respectively. In particular, by § 4, this applies to all the oper-
ations 4.1-4.9, excepting 4.4, 4.7, and 4.8

As regards the “almost everywhere direct product” of 4.4, the inter-
mediate product formed in 4.4 is a generalized product, and so preserves
clementary equivalence and extensionality. The final produet is formed
by taking the quotient relative to a definable equivalence relation with
the substitution property. Using Lemma 4.4.2 we see that this process
also preserves elementary equivalence. 1t also preserves the relation
ijsomorphic to an elementary extension of”. Thus the final product
preserves the latter relation, as well as elementary equivalence.

To deal with the sums of § 4.7 and § 4.8, it is enongh to consider
the discussion in those sections together with the following remark: The
operation of passing from a system <B, R> to a system <(Bui{c}, R, {¢}>;
whete ¢ ¢ B, preserves elementary equivalence, as is seen immediately
from Lemma 4.7. The same applies to elementary extensionality (if the
same ¢ is used for both passages.) (For sums, the assertion of 5.2 is
intended to refer only to cases in which both indexed families con-
sidered are pairwise disjoint.)

TEEOREM 5.3. If B and B’ are elementarily equivalent, and S=<8I}),..>
and &' ={8(I'), ...> are elementarily equivalent, then so are the generalized
powers BE and 8BS, The same applies to the powers (or multiples) corres-
ponding to the operations 4.1-4.9 ().

Proof. In the case of a power, K is always either A or I (0 being
a sentence). Consequently, 5.3 for generalized (and relativized generalized)
products follows at once from 3.1 or 3.2. The assertion regarding the
operations +4.1-4.9 now follows, noting the remarks made in the proof
of 5.1 and 5.2.

(1%) The system & is here still to be a subset algebra (according to the case, the one
indicated in 4.1-4.9). For the ordinal multiple, Fraissé [8] obtained the stronger result
in which ¢S(I),C, ..., 2> is replaced by <I,<). We can obtain this result by our
methods, since the ordinal multiple of B relative to <I, <> is isomorphie to the ordinal
product of B and <I,<)>. We do not know whether a corresponding result holds for
the ordinal power (or weak ordinal power) of B relative to (I,<).
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TEEORBM b.4. The decision problem for the theory of the generalized
product of systems (AP |ieI) relative to &, in the case that I is finite
(and © has only finitely many relations, i. e., f < w) may be reduced to
the decision problems for the theories of the factors. In particular, if each
factor has a decidable theory, then so has the (finite) generalized product,
The same applies to all products and sums of § 4 (V7).

Proof. This is a direct consequence of 3.1, 3.2, and the discussion
in § 4, except as regards the operations 4.4, 4.7, and 4.8. The operation
of 4.4 is trivial when I is finite. As regards 4.7 and 4.8, one need only
note that from Lemma 4.7.2 it follows that the decision problem for
the theory of a system <(Buic}, B, {c}> reduces to that for Th({(B, R}).

The following example of the application of 5.4 was mentioned in [5]:
Let n be a positive integer, and consider the systems D= (0", N, <)
and B = {w, 8, <}, where <k,l,m>efS if and only if k4I=m,
{ay B, y> ¢ N if and only if y is the “natural sum” of ¢ and §, and where
< is the usual ordering-restricted to w or to " (®). It is easily seen
that D is ifomorphic to the Hahn power (in the sense of §4.9) of B
relative to the ordered system (n, >)>. Since the theory of B is known
to be decidable (cf. [15]), it follows, by means of 5.4, that the theory
of D is decidable (*¥). It can be shown that the ordinary addition +,
restricted to o", is elementarily definable in terms of < and N, and so
one obtains also the result that the theory of <(w", +) is decidable. (For
a further discussion of the elementary theory of addition of ordinals,
cf. §10.)

Another application is to the elementary theory of addition of
cardinal numbers, the system of which can be thought of as a general-
ized sum of the systems of addition of finite and of infinite cardinals.
Speaking precisely, let ¢ be an arbitrary ordinal number different from 0.
Let L, be the ternary relation among elements of p defined by:

{a, B, y>eL, if and only if ag'ﬂ and f=y or f<a and a=y.

Let 91(1°)= {w, 8y, where § is as defined in the preceding paragraph,
and AP = (g, L). Pick ¢,¢ w and ¢, ¢ o and form

UP=wu o}, 8, ) and AP =(gu e}, Ly {6},

(**) For the ordinal sum, this result was obtained by Beth [1]. The general result,
announced by the first anthor in [4] and [5], was originally obtained by a more direct
argument than that used here, based on an analogue of 3.1 applying only to finite
produets. .

(*#) “Natural sum” is understoed as in [9], p. 68. The notation w® is to be under-
stood here as the usual ordinal exponentiation, not ag the set of functions on a to .

(**) Mostowski [13] already showed that the theory of (w®, N> (or, indeed, <(w®, N),
where o is any ordinal) is decidable.
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just as in 4.7. Now take €, to be the subset of (@ {6}) X (o v {&1})
defined by the condition:

feC, if and only if fyew and fi=¢, or fo=¢, and fieo.

Further define a ternary relation V, among elements of (f, by the con-
dition:

fr9,h> €V, if and only if fr=g,= 0 and {fo; go)ho> €8

or fo=¢, and gy=1¢, and fi="n

or fi=c¢ and go=¢, and gy =h

or fo=go= ¢y and {fy, g1, k) eL,.
Put €,=<0,, V,». Then €, is a relativized generalized product of the two
systems U@ and A, Moreover, by means of the mapping which sends f
into fo, if fo € @, and into 8z, if f; € o, we see that €, is isomorphic to the
system G,= <0}, +>, where C, is the set of all cardinal numbers less than
x, and + is the operation of addition of cardinals restricted to this set.

We can now apply to the construction of the preceding paragraph
certain consequences of the results detailed by Mostowski and Tarski
in [14]. These are:

(i) For any ordinal gz 0, the theory of AP is decidable.

(i) For any ordinals p, ¢’ different from 0, %" and AP are ele-
mentarily equivalent if and only if either g = ¢’ < w® or for some E#£0,
70 and y < o, g =0 E+y and o' = w®- &+ 7.

It follows, from (i) 5.4, 4.7, and the decidability of A (ef. [14]),
that: For any ordinal ¢ 5£0, Th(E,), i. e., the theory of addition of cardinal
numbers less than x,, i decidable. On the other hand, we can obtain
from (ii) 5.1, and 4.7, that: For any ordinals £ 0, n#0, y <o @0,
for which o= wo-&+y and o' = w»-& +y, the systems G, and @ are
elementarily equivalent. Tn this way we have obtained some results origin-
ally found by Tarski (*). (The theories of addition of cardinal numbers
will play a further role in § 8.)

THEOREM 5.5. The decision problem for the theory of the generalized
power B reduces to the decision problems for the theories of B and of S.
In particular, the first theory is decidable if the second and third are. The
same applies to the power operations of §4 (© still being taken as the
appropriate subset algebra).

(=) Cf. [26], p. 118, footnote 20, where it i8 remarked that the decision problem
for the theory of addition of cardinal numbers may be reduced to that for the theory
of addition of natural numbers and that for the theory of the “less than” relation among
ordinals. This reduction procedure, which was obtained directly by Tarski, prior to the
work on finite generalized sums [4], deserves to be mentioned along with Beth’s re-
sult [1] as a forerunner of this work,
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Proof. As already remarked, in this case K%I, 6 being a sentence,
is always either A or I. A decision method for the theory of B allows
one to decide which. By 3.1.2, the guestion whether a sentence I' holds
in 8% is the question whether

_|G¢[—K(ﬁ£n7 ---5K§£,] 3

and this becomes the question whether a certain sentence, say
&[4, 4, 4, ..., 4], holds in &.

As regards the operations 4.7 and 4.8, 5.5 yields a weaker result
than 5.4 (cf. a remark in footmote (*)). In connection with the oper-
ation 4.4 we make use of the obvious consequence of 4 4.2 that the decision
problem for the theory of a quotient system (like thabt in § 4.4) reduces
to that for the theory of the original system.

THEOREM 5.6. Let K be any class of relational systems (X C o).
Let Po s be the class of all product systems PN, G) such that, for some I,
S =<8, ..>ed and, for each i eI, AP ¢ K. Suppose that Th(K) is
decidable and Th(J) is decidable. Then Th(P.y ) 18 decidable. Here P (U, &)
can mean any (possibly relativized) generalized product, or amy of the
products or sums of § 4 (the class S being chosen, in each case, as indicated
m § 4) (). .

Proof. We will consider only the case in which (U, S) means
the generalized product, as the other cases follow from this ease by the
same devices used all through this §.

Let I' be a sentence of the language corresponding to the product
gystems. We want to decide whether or not

1) I e Th{Pry )
Applying 3.1 we find an acceptable partitioning sequence { = (@, 8y, ..., On>
such that, whenever, % and & are as in 5.6,

(2) —pae
if and only if
(3) ~e@[ Koy .-, Ky ]

For each j <m, we may, by assumption, determine whether or not
(4) ~0;e Th(K).
Let ¢ be the set of those j < m for which (4) does hold.

(=) Theorem 5.6 was found recently, after some related work of Dana Scott. See
footnote (%).
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Consider, now, the sentence
(8) W= AXq . AXp{Party(X,, ...,Xm)Aﬂ(X,-=J)—>¢(X0, s X}
By assumption, we can decide whether or not
(6) ¥eTh(d).

Finally, it-is not difficult to see that (1) and (6) are equivalent.

We shall show that (1) implies (6); the proof that (6) implies (1)
is similar, though even simpler. Suppose (1) holds, let & = <S(I),...>
be any member of S, and let X, .., X be any subsets of I forming
a partition of I and such that X;= A, for each jei. From (5) we see
that, to establish (6), we must show that

(7) ” _‘{GQB[-XM sy Xm] .

Now, for each p such that p < and p ¢3, 6, must be true in at least
one member of K, call it B,. Now we form the indexed family (QI“)I 1el>
as follows: For each i eI, i is 2 member of exactly one X,, where p ¢%;
we pub AP = B,. As a result of this construction and the fact that ¢
was chosen to be a partitioning sequence, we have

(8) Kg®=X; jor each j<m.
Now, from (1) we infer (2) and hence also (3); and from (3) and (8) we
infer (7), which was to be proved.

Using the kind of arguments made in the proof of this theorem,
with very little change, one can infer two further consequences which

may be of interest. The first is that, independent of the decidability
of the theories involved, the theory of Py 4 is a function only of the

‘theories of K and <. In other words: If Th(K)= Th(’’) and Th(d)

= Th{$') then Th(Pq s)= Th{Pg g). Secondly, it may be remarked
that: If a sentence I holds in some member of P s then I' holds n some
member of Pp s, for some finile subsel L of K.

To obtain further results, we must delve more deeply into the
theories of particular subset algebras. Some of these will be considered
in § 6-§ 8.

8§ 6. The simplest subset algebras
Algebraic systems of the form
(1) Gr=<SD), 4,v,n, L, T#£4

are the simplest type which may be used in forming the generalized
product. The theories of such systems (and the theory of the class of all
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such systems) were investigated by Skolem [17], who established the
now well-known results 6.1 and 6.2 below.

8.1. (.1) To each formula @ (from the language corresponding to
systems like (1)), whose free variables are Xy oiny Xz, we may correlate
(effectively) o natural number M, functions p® e S (k= 0, .., M-1),
and subsets T® of S(m) (=0, ..., M—1) such that: given any system (1)
and any X = (Xy, ey Xy p € S(I)%

~ig,P[X]
if amd only if ‘
there exists &k < M such that, for each v Cm, the set
NX;n Y (I-X)

jer Fem—r
has exactly p®(r) elements, if 7 e U(k), and has at least p®(r) elements
if re U%.

‘(Here the intersection of a sequence of sels over the empty set of tndices is
taken to be I.) -

(.2) In particular, there exist sets Sq, .., Sy—1Cm and functions
4O, o, gD ¢ ™ guch that if X, ..., Xu_y form a partition of I, then

e, X]
if and only if

there exists k< M such that, for each §<<m,X; has exactly g
clements if j e sy, and X; has at least g% elements if § ¢ sy

6.2. (.1) The theory of any one system of the form (1) is decidable.
(.2) The theory of the class of all such systems is, also, decidable.

With reference to 6.2.2 it may be remarked that it also follows
easily from 6.1 that the theory of the class of all systems of the form (1)
is the same as the theory of all these systems Sy in which I is finite.
Another very direct consequence of 6.1 is the following:

. GonoyLAmz 6.3. T’Lfi() systems Sy and Sy of the form (1) are elementarily
equivalent if and only if I and I' are both finite, with the same number of
elements, or I and I' are both infinite.

From 6.2.1, 5.5, and 4.1, we obtain immediately 6.4.1 below, which
was one of the principal results of Mostowski’s paper [13]. The second
part of this theorem, which also follows easily from the work in [13]
(although it was not stated there), is obtained here by using 6.2.2 and 5.6
(applied to the case that K consists of a single system B).
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THEOREM 6.4. Suppose that the theory of a system B is decidable.
Then:

(.1) The theory of any one (finite or infinite) direct power of B is
decidable.

(.2) The theory of all (finite or infinite) dirvect powers of B is decid-
able (). '

The following theorem is an immediate consequence of 6.3 and 5.3;
it could also be obtained directly from the work of Mostowski in {13}

TasorsM 6.5. If B and B’ are elementarily equivalent systems and
T and I' are either both finite, with the same number of elements, or both
infinite, then the corresponding direct powers BT and (B are elementarily
equivalent.

By making use of the remarks at the end of § 5 and following 6.2
i can be seen that, for any system B, the theory of all {tinite or infinite)
direct powers of B is identical with the theory of all finite direct powers
of B. However, it will be seen that a more general statement concerning
arbitrary direct products follows directly from 6.7.1 below. Of more
interest is the fact that 6.7.1 provides & direct answer to a question
raised by J. Eod (¥). 6.7 will be obtained as a corollary of the (in certain
respects more informative) theorem which we now turn to.

THEOREM 6.6. Given any sentence y (of the language L, of § 3) we can
find (effectively) a number N € w such that: whenever v is true in the direct
product of systems AP (4 eI), there is a set I' C I, having at most N elements,
and such that v is true in the direct product of ND (i eI, provided
I'cC1”C1I

Proof. By 3.2 and 4.1, we can find an acceptable partitioning
sequence ¢ = (P, 0o, ey Om> (Boy o3 6,, being sentences) such that for
any indexed family A = (AP |ieI> with direct product D(H)

(2) —n@y
if and only if
(3) e, PG, ..., K5,

By 6.1.2 and Definition 2.1, we may, therefore, find M, ¢, ..., (¥,
89, -, Sur—y Such that for any (A® |iel), (3) (and hence, also (2)) is
equivalent to the statement:

() The system B (and all factors considered in this §) may be taken from an
arbitrary similarity class <f. The notion of direct product for a relation with any number
of places is defined in & way analogous to that in 4.2; if each factor has several relations,
the product has one relation corresponding to each of them.

(*) L.os stated the question in a letter to the second author in December, 1852.
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(4) there emists k< M such that for any j<m, —uwb; for exactly ¢

7.nembe'rs iof I, i §esx, and —Jawb; for at least q(]‘) members i of 7I

'I:f 7 ¢ Sk '

Lot n= g8+ ...+ gy for k=0, ..., M—1and N =max {0, g, ..., ny_y}.

Now suppose Fhat YOI lieI> is a particular indexed family, and
for each J C I, write D, for the direct product of (A |ieJ. Suppose’
fu.rther that o, . Then (4) holds, and we may find a particular number 7;
.Wlth the property demanded in (4). Sinece { is a partitioning sequence
it follows from (4) that we may find pairwise disjoint sets X, ..., XmCI’
such that, for each j < m, X; has exactly ¢ elements, and, for each
1] GXf, —Iq;ﬁ)@,* .

Let II'=X,,u...uXm. Clearly, I’ has #; (<XN) elements. Now
supp(l))se I’ C I" C 1. Certainly, for each j < m, —lyaf; for at least ¢
members 7 of I, namely, the members of X;. Moreover, i i
it must be that , ’ e

—g@rd; for exactly o members i of I,

gince X; contains all such ¢ belonging to I.
_Thus,mcm.ldition (4) (with the same value of “%’’) is fulfilled by the
family (W™ |ieI”), and so, by the equivalence of (4) and (2), we have

"lfDI//'l/)
as demanded in 6.4.

. SOR((;LLARY 6.7. (.1) For any family of systems (A?|iewd, if a
irst order) sent ) i 73
) sentence 0 is true in each of the direct products AP, YO x

X AU AP g™ then it 4 ) infing
y ..y Them 4t 48 true in the infinite direct
AP X UK o x AP x ! produt

. (.2) If the c‘lass of all_modds of a set of first order sentences is closed
under the operation of taking the direct product of two systems, then it is
closed under the operation of taking arbitrary, infindte, direct products ().

() 6.6 and 6.7.1 were established by Mostowski i i
letter raising the question answered by 6.7.{ Lo st?;:ec}i 1[1}531]1:&“01;1131;::(11):: :If‘:i:nf;tpm
answer for the case that 0 is a universal sentence. 6.7.2 was established i ot
of universal sentences. plished tn [28] for sete

) Theorems 6.6, 6.7, and 6.8 were reported 111 [28], and proved in the second ’
g;isgﬁzxzﬁoff. ffo;\){tn(zte (1))..’ The method.of proof there consisted in a stra.igh;gglv(:r.ds
r— [13]0 j_ndjos t(;‘gsi;k]l;s work on d:Lrect powers to the case of direct products.
(ostomslel [18] in tcath at many f’f his results on ordinary and weak direct powers
pond be St couldo tebcorrespondmg prod.ucts; but did not carry this out because
et o m.’(w.hme I;OSkel 8O ,exbend'ed?. This proof, like Mostowski’s, had the feature

o o Toael Ty o olem’s 6.1 iz involved during proof of the “elimination of
q ers eorem (the analogue of 3.1). The idea of the present proof of 3.1 which,

even if applied only to direet i i
o e e, y powers, avoids this feature, was found by the first author
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Another consequence of 6.6 is the following

TrmorEM 6.8. Let I be an arbitrary set and AP eIy an indexed
family of relational systems. Then there ewists a countable subset I'CI
such that, whenever I’ CI"CI, the direct product of the AP (i eI) and
that of the ND (5 e I") are elementarily equivalent.

Proof. The language appropriate for systems AD has only denumer-
ably many sentences. To each such sentence 6 which iz true in the direet
product of the ND (ieI), a set Ig may be associated as in 6.6. Then
the conclusion of 6.9 holds if we take for I' the union of all the sets Ij.

We have thus far in this § applied 5.6 and 6.2.2 to direct produects
only in the case that oK consists of a single system (6.4.2). Turning now
to the general case we obtain immediately

TaEoREM 6.9. Let K be a class of relational systems (K C sl). Let K’
be the class of all direci products of arbitrary (findte or infinite) indexed
families of members of K. If Th{°K) is decidable, so is Th{K").

All results of this section have been obtained from the basic results
of §3, §5, and from 6.1, 6.2 by means of the fact, established in 4.1,
that the operation of forming the direct product is an example of a gene-
ralized product operation. Since no other features of the direct product
were involved, it follows that each of the theorems of this section holds
equally well for any operation which can be interpreted as & generalized
or relativized generalized product relative to subset algebras of the
form (1). In particular (also using the results of § 4.7), one obtains in
this way

THEOREM 6.10. 6.4-6.9 remain valid if the words “direct power” and
“direct product” are everywhere replaced, respectively, by “oardinal multiple”
and “cardinal sum’ (*).

8 7. Subset algebras with Fin

Tt is a simple matter to obtain results, gimilar to Skolem’s 6.1 and 6.2,
whieh apply to systems of the form

() St = (8(I), A, vy~ 5 G, Finy (T A),

considered in § 4.2 and § 4.4. In fact, 2 straightforward inductive (or
“quantifier-eliminating”) argument yields the following theorem:

(*5) Theorem 5.6 and its corollaries in 6.4.2, 6.9, 6.10, 7.4.2 and 7.9 were obtained
jointly by the authors and Dana Scott. The work on these theorems was stimulated
by Scott’s discovery that they have a number of interesting applications to proofs of
decidability of certain theories. Scott plans to publish his work on these applications
in the near future.
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THEOREM 7.1. Given any formula @ (from the 0T
for systems like (1)), whose free mriablesﬁme {X; |l?7:g;;ag:uga%;0pm.a fe
(effectively ) a natural number M, functions p® e uS® (k’= 0 gffmd
and partitions (U, UP, UP, UPY of S(t) (k= 0, ..., M—1) such .
giwen any system (1) and any X = (X, ..., X,, ...>’eS7(I)“’, ol that:

~1e;P[X]
if and only if there ewists k < M such that, for each rC34, the set
NXjn N T—-Xy
jer

jel—r
has exactly p®(r) elements, if r ¢ UM,
has at Teast p™(r) elements, if 7 ¢ TP,
o .
has c.zt .Zet?st p( r) and finitely many elements, if r e UP, and
has infinitely many elements, if r ¢ UP. ,
The next two theorems follow easily from 7.1 (with t= A )

TEROREM 7.2. (1) The th I
o deom {.1) eory of any one sysiem Gi of the form (1)

(-2) The theory of the class of all such systems 18, also, decidable.

o 5 ot oy 5 o B o s e menter
only 1 and I' are both finite, with th
of elements, or I and I' are both infinite. ’ ¢ same mumber

It also follows from 7.2.1 and 7.3 ( i
2. .3 (or directly from 7.1) that the
jrheory of the class of all systems &} of the form (1), for which I is infinite
is complete and decidable. ’
From 7.2.1, 5.5, and 4.2, w i
) B, .2, we obtain Theorem 7.4.1 below, which
;;sazgogh;r of the basic resul.ts of Mostowski’s article [13]. On th,e other
s 7.2.2 and 5.6 are used in the derivation here of the new result 7.4.2.

?Tllmo;fm 7.4. If the theory of a system B s decidable then:
(.2) The theory of any one weak direct power of B is decidable.
-2) The theory of the class of all weak direct powers of B is decidable.

A number of interestin icati i
Mostowiis to [18 g applications of 7.4.1 are discussed by
- m]il}i;,l is:&(;f the following examples of the application of 7.4.2 was
e 0 us by Dana Scott. Let %, be the eyclic group of order p
IlOn_zerop ime). Lgt £, be the class of all Abelian groups of which every

element is of order p. Then, as is known, .2, consists of all

(Systems lsomorphle to) weak dﬂe(l Ower (1) Hellce by 7.4.2
( ) t P s f \51" s bl

Another, very similar,

e 3 . - .
of all integers, Tat 0, xample is provided by eonsidering the group

be the class of all free Abelian groups (including

icm

Products of algebraic systems > 87

the group with one generator). 2, consists of all (systems isomorphic to)
weak direct powers of J. Hence, from 7.4.2 and the fact of the decida-
bility of the theory of J (obtained by Presburger in [15]), it follows that
Th{2,) is, also, decidable.

By modifying 7.4.2, some other slight variations of the above two
examples can also be treated. For example, it is easily seen that the
theory of all free Abelian groups with at least n free generators is decid-
able, for any natural number (%).

The derivation of 7.4 described earlier would apply as well to any
(possibly relativized) generalized power relative to subset algebras of the
form (1). In particular from 7.2, 5.5, and 4.4, we derive

TaEorEM 7.5. If the theory of a system B is decidable, so s the theory
of any one “almost everywhere direct power” of B and so, also, is the theory
of all such powers.

Tet us now turn to problems concerning elementary equivalence.
We can derive immediately, from 7.3 and 5.3 the following

TaworEM 7.6. If B and B’ are dlemeniarily equivalent systems and
T and I’ are both infinite then the corresponding weak direct powers B!
and (23’)1' are elementarily equivalent (¥7).

The following application of 7.6 is of interest in connection with
the discussion above of some classes of Abelian groups. Let £2; be the
clags of all infinite groups in 2, (as described earlier) and let .2; be the
class of all free Abelian groups with infinitely many free generators.
Then, a8 a consequence of 7.4.1 and 7.6, it is seen that both Th(L1)
and Th(.2}) are complete and decidable.

Theorems 6.6 and 6.7 cannot be extended to weak direct products
(or even powers (®)). A simple counter example, which was pointed out
by Tarski, is provided by any sentence interpretable as saying “B is
a Boolean algebra”. The (weak-ordinary) direct product of finitely many
Boolean algebras is again a Boolean algebra, but the infinite weak direct
product (relative to the zero element) never is, if the factors all have

(%) The decidability of the various theories of special classes of Abelian groups
mentioned in this § follow from the decision method for the theory of all Ahelian groups
given by W. Szmielew in {191

Another proof of the decidability of Th(£,) was given by Henkin in [11]. Henkin’s
argument is very short. However, the method of Szmielew and our method each yield
primitive recursive decision methods, while Henkin’s does not. Moreover, hiz method
does not extend to the case of Th(LZ;)-

(") As with 6.5 (for ordinary direct powers), +this theorem 7.6 follows directly from
the work of Mostowski in [13].

(®) This contradicts an erroneous statement (theorem 5.32) in [13] regarding
weak direct powers,
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at least two elements, because, roughly speaking, of the difficulty in
taking the complement of the new zero element.
On the other hand, one can obtain

TueorEM 7.7. Theorem 6.8 applies also to weak direct products (and
to “almost everywhere direct products” ).

Proof. One first obtains, by an argument similar to the proof of 6.6,
using 7.1 in place of 6.1, an analogue of 6.7 in which it is only asserted
that I’ is countable. One then argues as in the proof of 6.6. (For the
“almost everywhere direct power’, some obvious additional remarks are
necessary.)

‘We now turn our attention to decidability questions relating to
arbitrary weak direct products. Before proceeding to the analogue of 6.9,
it it perhaps worth noting that some results can be obtained concerning
individual infinite products, other than those already obtained for powers.
One such is the following:

THEOREM 7.8. Let U= (U® |1 eI> be such that for each ¢ I, there
are infinitely many distinet i T with AD elementarily equivalent (or iso-
morphic) to AP, Let U = A | i eI} If the theory of °K is decidable, then
so 8 the theory of the direct product, or the weak product, or the “almost
everywhere direct product”, or the cardinal sum of the AP (i ¢ I).

Proof. From 3.1 (and 3.2 and § 4), we see that question of the
truth of a given sentence in the product (or sum) system reduces to
whether certain Kg, ..., K5, satisty in &; or G} a certain formula &.

By 6.1 or 7.1, this becomes (roughly speaking) a matter of whether Eg
has exactly p, or at least p, or at least p and finitely many, or mﬁmtely
many elements, and similarly for 0,, ..., 6,,. Under the hypotheses of 7.6,
K,i is either empty or infinite, respeetlvely, acecording as the sentence
6; is or is not (valid) in the theory of 9. From these three facts the
desired result easily follows.

From 5.6 and 7.2.2 follows immediately the following direct ana-
logue of 6.9:

TrEOREM 7.9. Leét X be a class of relational systems (K C sf). Let
K’ be the class of all weak direct products of arbitrary (findte or infinite)
indexed families of members of K. If Th(K) is decidable, so is Th(X').
- For an example of the application of 7.9, let » be an arbitrary
positive integer and let <X consist of all eyclic groups of order p*, where
p* runs over all prime power divisors of . Let .2, be the class of all
Abelian groups in which every non-zero element has as order a divisor
of n. Then, as is known (cf. [12], p. 17), every group in £, is isomorphic
to a weak direct product of groups from X and conversely. Hence
Th(Lg) = Th(K') and, by the above theorem, Th(L,) is decidable.
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We wish, finally, to consider a question about elementary equivalence
of systems which is closely connected with the preceding example. Let
us call an Abelian group B = (B, +)> a group of the first kind if the
orders of all its elements are bounded above, hence if there is a fixed
integer # which is divisible by all orders of its non-zero elements. Let m
be an arbitrary positive integer. We say that the elements 4, ..., T,y
of B are strongly independent modulo m if for every sequence ag, ..., &g
of integers the condition

there exists & y € B such that ayy—+... L QpsByeqy= my
implies
a;=0(modm) for i=0,..,r—1.

For each prime p and integer % > 0, set o[p, ¥1(B) equal to the maximum
finite number r, if it exists, of elements in B which are strongly inde-
pendent modulo p* and of order p¥, and equal to w if no such maximum
exists. It can be seen from the uniqueness of the representation of groups
of the first kind as weak direect products of cyclic groups of prime power
order (ef. [12], p. 27) that: o[p, K1(B) is a finite number r if and only
if the number of cyclic groups of order p* in the representation of B
is finite and equal to 7.

We now wish to show that two Abelian groups B and B’ of the
first kind are elementarily equivalent if and only if p{p, k](B)= o[p, k1(B’)
for every prime p and integer k > 0. It is a direct matter to verify the
necessity of this condition. The essential step is to constrmet for each
p, k and r a sentence ¢@%hn, of the language corresponding to groups,
having the property that for each Abelian group B, —dgp®kn if and
only if o[p, kJ(B) > ». To establish the sufficiency, we proceed as follows.
Represent B as a weak direct product of groups U®* (p prime, &k > 0),
where each A®® i5 a4 weak direct power of the eyclic group of order p%;
if o[p, k](B)=r is finite then A®™ has exactly r such factors, other-
wise it has infinitely many. In the same way represent B’ as a weak
product of groups W™, We can then apply 7.6 to see that Vi
and AP are elementarily equivalent systems for each p, k. Hence,
it follows from 5.1 that B and B’ are, also, elementarily equivalent (*).

A direct analogue of 7.1 (and 7.2) can be obtained, applying to
subset algebras in which the singulary relation Fin is replaced by the
singulary relation Othl of 4.4. Consequently, one can prove that 7.4
holds for countably weak, as well as weak, direct powers.

(®) The decidability of Th(.%,) is a eonsequence of the work of Szmielew in [1?].
The result about elementary equivalence of Abelian groups of the first kind is a special
case of Theorem 5.2 of [19]. We use here the notation glp, k] for what Szmielew denotes
by ¢®[p,k].
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§ 8. Subset algebras involving set-theoretical equivalence
A type of subset algebra more powertul than those of § 6 and § 7 is
(1) 6./1'=<S(I)1A5U7 f"f—a_c_: ~> (I#4) *

where ~ (properly, ~;) is the binary relation of ordinary set-theoretical
equivalence. We have shown, in § 5, how to obtain the result of Tarski
that the theory of the addition of cardinal numbers (or of all cardinal
numbers less than any one given one) is decidable (30). From this result
and the reduction theorem 8.1, given below, we shall infer that the
theory of any system ©f is decidable.

Tt is obvious that ©7 has a decidable theory if I is finite. We may
therefore Testrict our attention to the case when I is infinite (in order
to simplify the notation needed in 8.1). Let I be the langunage appro-
priate to the discussion of systems (1), and let L’ be the language cor-
responding to systems of the form

€}= <0,Iy 07 +>7

where O is the set of cardinal numbers <c(I) (the cardinal number
of the set I), and + is the binary operation of addition of cardinals,
restricted to Cj. The non-logical symbols of L' are 0 and .

Suppose ¢ is a finite set of natural numbers, and for each e, 7; 18
a term of L. We denote by

Tis
jet

the term 0, if ¢ is empty, and the term

(2 =)+
1 €t={k}
if k is the largest member of ¢.

TEroREM 8.1. With each formula @ of L, having the n free variables
{X; | et} and list vy, ..., 7oy of the subseis of i, cam be correlated (effectiv-
ely) a formula v of L', whose free variables are, at most, Vo, ..., Vano1, n
such a way that, for any nfinite set I, and any X e S(I)%,

—eyPLX]
if and only if
‘ _{(EIW[QM sy Ogn_g],
where, for each 1 < 2%,

0y = C(leXfr\ m (I——Xj)) .

jet-r;

() See footnote (3).
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Proof. Part (1). As regards the case in which & is atomic, we need
consider only the special formulas X; C X; and X~ X;, where k #1.
This is because, when k =1, these formulas are always true (and hence
trivial to handle), while all other atomic formulas of L are (as is well
known) equivalent to formulas built up using only atomic formulas of
these two types.

If & is one of these special formulas, the desired p is easily con-
structed, by noting that

X C Xy if and only if (Xp—A&p)=0,
and

Ko~ Xy if and only if ©( g X+ 0(Xp— X1) = (X ~ X))+ (X~ Xy)

Part (2). Suppose that @ is ¥ |6, and 8.1 is known to apply
to & and to 0@, Let =P Lt®, where, for ¢=1,2, {X;|jet?®}
are the n@ free variables of &@. Let 'r?); ...,r;‘f(q) , be a list of the

subsets of i@ and let 4@ be the formula of L’ correlated with ¢ and
the list 7@ (¢ =1,2). Then, for p, we may take the formula

()

(1)) (2 (2)
k4 (To ERIE 772,,(1)_1) lp (T“ ’

)
ey T H
’ 2,.(:)_1) H

where, for ¢=1,2, and 1 < o,

T;‘D == Z \Z]
{)
jea?
and

s§@={j| j < 2" and 1@ Cr; and 1P —r? Ci—r;}.

Part (3). Suppose that @ is of the form VX@’, and 8.1 holds for &'.
T# X, is not free in @, then for y we may take the formula already cor-
related with @ and the Hst r. Therefore, we assume that X is free in &
and that the n'= n-41 free variables of @' are {X;|jei}, where
' =1tuw {k}. Form the list

(s ey Tin gy = o {k}, ooy Tpa v {k}s 7oy vory Tomr)

of the subsets of #', and let y’ be the formula correlated with &’ and r’.
Write w;= vanys, for j < 2%. Let y be the formula

(2) VWgeo VWar'eg [H (Wi +Wangz= V1) AP (Woy oees WZ"I—I)] .

1<2®

Tt is straightforward to establish that y has the properties demanded
in 8.1. We shall omit this argument, and only make the following heur-



Artur


92 8. Feferman and R. L. Vaught

istic remark. If —gy@’[X], then the powers b; (I < 2") to be taken for

the w; in (2) are obtained as follows: The sets X; (j ) generate a parti-

tion of I. The set X, divides each set Z of this partition into two com-

plementary parts. The powers of these two parts are to be taken for

wi and wes+t, when Z is the Ith set of the partition, i. e., the set
NX;n N I-X).

jerg fel—ry

8.1 now follows from Parts (1), (2), and (3) above.

It is an immediate consequence of the resuits of Tarski concerning
the systems G, described following 5.4 that the theory of any particular
system Qp is decidable. Combining this fact with 8.1, for the case % =0
(and recalling our earlier remark about a finite set I), we obfain:

THEOREM 8.2. If I is any set, then the theory of the system

&= <S(I)’ 4, v, Ay D, e~
18 decidable ().

Skolem [18] obtained a decision method for the theory of the muli-
plication of positive integers, i. e., for the theory of the system {(w— {03}, -.
Mostowski [13] showed that such a decision method could be obtained
by means of his work on-weak direct powers from Presburger’s decision
method for {w, +>. By combining 8.2 and 5.3 we can obtain the follow-
ing, somewhat stronger, result:

TEEOREM 8.3. A decision method can be comstrucied for the theory
of the system
A= (P, -, ~),

where P is the set of positive integers, - is ordimary multiplication, and
~s 15 the bimary relation which holds between two positive integers provided
they have the same nuwmber of distinet prime divisors.

Proot. Consider the relational system 8 = <(w, 8, where <k, m,nd> ¢ §
if and only if &+ m =p. Let O be the set of sequences # ¢ w® such that

(**) The theory of the class of all such systems is also decidable. This fact follows
easily from 8.1 and the results of Tarski and Mostowski-Tarski deseribed in §5 (cf.
footnote (3)).

It should be remarked that the decidability of the theory of €7 and, hence also,
that of the theory of o7 s highly non-effective, in a certain sense, in the case, for example,
that I is the set of all real numbers. Indeed, to apply the decision method one would
need to know certain facts about the ordinal ¢’ such that No’ i8 the power of I. However,
“practical” applications of 8.2 can be expected for the case ¢(I) = w. In thig case,
the work of Mostowski-Tarski may be avoided altogether, and (using a very special

case of Tarski’s reduction) the decision problem for the theory of &, easily reduces to
Presburger’s results.
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2, =0 for all but finitely many neow. If x,y,2¢C, let <x,y,2>e U
if and only if @ntYn= 24 for all new, and (z,y) eV if and only if
{n | on#0} and {n|y¥,7#0} have the same number of members. Let
C=<C, U, V>

For each ze(, put f(x) equal to the product of the numbers
POy wvey Piy veoy WHET Dy, ooy Pay ... are the primes (say, in order). Then
(disregarding the difference between an operation and the corresponding
relation), 7 is an isomorphism of the system € onto the system A
Moreover, the system € is, clearly, a relativized generalized power of U
with respect to the subset algebra &;. Therefore, by 5.5 and 8.2,
Th(€) = Th(A) is decidable.

§ 9. Generalized weak powers

As was seen in § 4, various notions of “weak products” (e. g., weak
direet products, weak ordinal products) and, hence, in particular, the
corresponding notions of ‘“weak powers” may be interpreted as relativ-
ized generalized products. From the basic theorems of § 3, we may,
therefore, infer that the discussion of the theory of a weak power system
can, roughly speaking, be reduced to the discussion of the theory of the
factor system and the theory of a certain algebra of subsets &, of the
type discussed in § 2. It is possible, for the special case of weak powers,
to strengthen this result by replacing the system & by an algebra of
finite subsets. To do this, a whole development parallel to that of §2
and § 3 must be carried out. We shall .outline this development in the
present section.

As in § 2, we shall consider a similarity class <l of relational systems
of type p. Moreover, we suppose given a (fixed) formula ¢ of L, with
the single free variable v,. We shall not here be concerned with the
whole class ¢f, but only with the class «f* of all systems B el such
that B has exactly one element satisfying . For any B ¢ ¢f*, this special
element will be called es.

Also given is another similarity type u' e w? (2 <o < o) of rela-
tional systems, such that w'(0)= 2 and z'(1) = 1. Finally, we consider
a fixed subclass * of the class of all algebraic systems

(1) S=<8XI), 4, v, ~, ", C, Pin, My, ..., My, 0> (2<j<a),

where I is any non-empty set, S¥(I) is the set of all finite subsets of I
and their complements, u, ~, etc., are the usual set-theoretical oper-
ations or relations, restricted to §*(I), Fin is the set of finite subsets of I,
and, for 2 <j <o, M; is a uj-ary relation. We denote the common
type of all algebraic systems in &* by o. The language in which such
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systems could be discussed is, therefore, L,; its second predicate will
be called Fin.

We shall not be concerned with an indexed family of sf*-systems,
but simply with a single of*-system (the “base’’) together with a subset
algebra (1) (the “exponent”).

DepNrTion 9.1. (1) Suppose that B = (B, ... edl* and I is any
non-empty set. Then we pub

BD = {g|geB’ and g(s) = eg for all but finitely many iel}

(.2) Suppose, also D = BP, {eD” and 6§ s a formula of L,. Then
we put
E$®(f) =i |41 and —eb[f131]} -

(.3) In porticular, if 0 is a sentence, we write simply K537 for
B,

Tn 9.1.2, 6 has, say, only the free variables Vi, ...) V&, and each
of fa,()y -y Fry(8) must equal ey for all but finitely many iel. One
sees, therefore, that, always,

E¥H(f) e 8¥(T) .

On the basis of 9.1, one can state and prove a lemma concerning K*
exactly analogous to 2.2. Without stating it explicitly we shall call this
Lemms 9.2. The (new) notions of .standard, or partitioning, acceptable
sequences are defined in Definition 9.3, which can be 2.3 verbatim,
though “I, is now to be interpreted differently. We assume o R+
is an effective list of all standard acceptable sequences, like that of § 2.

permrmion 9.4. Lt B = (B, .0 et &= &), D€ o§*, and
D=B%.

(.1) For each standard acceptuble sequence L= D, 0y ..
p free variables, we put

5 Oy, with

Q1% = (fos s Tpm? |1 € D* and —AsBUEEY (), ooy () -

O

(.2) By the generalized weak power B, we mean the relational system

D= D, QZ‘?,G; ey Q:‘?,ey e
Finally, in analogy with § 2, we define the similarity type « (in
which systems like D can be discussed), the language L., and the pre-
dicates Q.
We can now state our first basic theorem for weak powers:
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TEEOREM 9.3. (.1) There is an effective procedure whereby to each
jormula I' of L, can be correlated a sequence { = <@, Uy ..., O}, in such
a waey that

(i) ¢ 48 an acceptable sequence, and I and I' have corresponding free
variables; ‘

(i) Given any B = (B, ..)esl*,
=<{D, ..>, ond feD®, we have:

—12If]

G = 8™I),.>eS*, D=B®

if and only if
e @Ko, " (f)y s Koy (D] -
(.2) In particular, if I' is a sentence, so are 8y, ..., Op, and
oI if and only if —eP[Ks ", ..., Kol

(.8) If desired, { may alhways be taken to be.a partitioning sequence.
Proof. The proof is similar to that of 3.1. Parts (1), (2) and (3)
of the proof of 3.1 may be repeated almost verbatim, and so will be

omitted. Part (4), however, requires an essential modification, and we
shall show here how this may be done. '

Suppose, then, that I'= \/fi/" is a formula of L,, that [’
= (@', 0}, ..., Ojy> has been correlated with I” as demanded in (.1),
and that ¢’ is a partitioning sequence. Suppose that vy, ..,vy_, are
the free variables of {’. We want to define [ = (@, b, - s Om> iII1 such
a way that (i) and (ii) hold.

Put m = 2m’ +1. For j <m/, let 8;= Vv, 0; and
Omrrsi =V Ve eoe V4, {0770 (Vi) A oo Ap(vy, )}

Thus, Opy1+4 18 a sentenee such that

(2) - —is Hm/+1+j if and OIlly if —|539;'[€c_;3, vaey EB].

For j <m/, let Y;= Xpsays- As @ we take the following formula:
(3) VY VYmPartm( ¥y, o, T [ (Y€ X))
j<l<m’

AB(Tay ooy Tu) 2 D) (Krsrsgr = A Fin(Tp))}.

F<m’

It is obvious that £ = <@, 8y, ..., 0, fulfills requirement (i). Now,
suppose the hypotheses of (i) hold. Then, clearly,

() = L'lf]
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if and only if
(8) - for some gDy —e® (K> (Fk]g))s s Ko (1(RI)] -
Moreover, the statement

(6) —BLEG )y -y Ky (D]

™

which we wish to prove equivalent to (4), is, by (3) and (2), equivalent
to the assertion:

(7) there exist sets Y, ..., ¥y e 8¥(I) such that
(3) ¥4y ooy XYoo are a partition of T,
(b) ¥; CEZL(f) for each j < m/,

VVil;
(e) ~1ePT¥o; vy Ymd,
(d) and, for some j'<<m', —nbjles, ..., es] and I—Y; 18 finite.

We shall show that (5) and (7) are equivalent. Suppose, first, that
(B) holds. Let f'=7(k/g) and, for each §j <m/,

(8) Y= K1)

Just as in part 4 of the proof of 3.1, it follows that (7) (a), (b), and (¢)
hold. Now, sinee ¢’ is a partitioning sequence, there is exactly one j' <m'
guch that

(9) '—1536;"[6353 ey 658] .

Since f' e D”, we must have fi(¢) = ...=f{ (i) = ey for all but finitely
many ¢ e I. Therefore, by (8), (9), and 9.1.2, the set ¥; has a finite com-
plement. Thus, 6(d) holds.

On the other hand, suppose (7) is true. We want to define ge.D
so that (5) will hold. Choose j' as in 7(d). Let

J={i|iel and fi(i) = ... = fi_(i) = eg}.

To define g we proceed exactly as in the corresponding step of the
proof of 3.1; that is to say, for each 7¢I, we choose g(¢) in such a way that

(10) —1sbi[f[11(k]g(3))], when ie¥y.

However, in the case that ¢ e Y; and, moreover, ¢ «<J, we insist further
that g(¢) = eg; this iy consistent with requirement (10), in virtue of (9).
Since both Y and J have finite complements, so does Y ~J; and, thus,
g(¢) = en for all but finitely many eI, that is, ge D. It now follows
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from (10), exactly as in § 3, that (5) helds. Thus, the proof of Theorem 9.5
is complete (32).

From 9.5 it follows that, for any given B and &, the decision
problem for Th(B®) reduces to the decision problems for Th(B) and
Th(S). By means of a simple theorem, 9.6, below, we shall obtain, in 9.7,
an improvement of this result, involving, in place of §*(I), the set of
all finite subsets of I, denoted here by S8+(I).

The remaining results of this section will not concern the whole
class &* but only the class ' of all members (1) of J* such that the
relations My, M;, ... hold only between finite subsets of I ().

TEEOREM 9.6. With each formula @ of L,, whose free variables are
{X; 1] et}, can be correlated (effectively) jormulas ¥, (r C1) of L,, each
having at most the same free variables as @ and involving neither Fin nor =,
in such a way that: whenever

(11) S =<8¥D), 4, v, ny , &, Pin, My, My, .0 e
and

(12) G =(8H(I), Ay vy ~, Cy My, M, >

and

X=Xy ey Xy -y € S¥I),
the conditions (13) and (14), below, are equivalent:
{13) —sP[X]

(14) if s={j|jet and X; is finite}, and, for each jew, ¥Y;= X; or
Y;=I—-X;, according as X is finite or not, then

e Pl ¥1.

Proof. Part (1). Suppose & is an atomic formula of the form
X; CX;, where j # 1. Then the formulas

Yon=X;C X1,
T{,’}= X,-an=A 5
Tm: ~Ad=4,

() In a sense, this proof is closer than that of §6 and § 3 to the one used by Mo-
stowsld to deal with the weak direct power (cf. [13]).

(%) It can be shown (by an argument related to that in the proof of 9.6, below)
that this represents no real loss of generality.

Fundamenta Mathematicae, T. XLVIL 7
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and

Pa=X;C X
have the desired properties. If @ is X;CX;, then, trivially, we may
take Wy = Yy= A=A, Sinee =, 4, U, N, and ~ are “definable” in
terms of C, we need ot consider atomic formulas involving these
gymbols.

If @ is of the form Fin(X,), we may take, for ¥ the formula 4 =4,
and, for ¥,, the formula ~A=4. Finally, if @ is My(X,, ..., X
tuke W= @ and, for any proper subset 7 of i, ¥, = ~A4=4.

Part (2). Suppose, now, that with the formulas @ (¢=1,2),
having the free variables {X;]j ¢ 19}, we have correlated formulas
PO (y C49), with the desired properties; and suppose @ = &%|@®,
Thus, $ ==t w®. Then, we may take, for each r C 1,

g/,- == T,S.)‘t(l) ] ’:p,g%-);t(a) .

"’.“’(k)—x)’

Part (3). Suppose that @Y, 1V, and ¥® (» Ct™) are as in part (2),
and @ is VX0, In case k¢i®, we have t=1t", and we can take
¥, = ¥®, for r Ct. Suppose that & ™, Then we may take, for each r ¢,

Vo= VAPV ¥m)
Thus, the proof of 9.6 is complete.
Theorem 9.6 (with t = A) implies, in particular, that, if & and &°
are as in (11) and (12), then the decision problem for Th(S) may be

veduced to that for Th(&?. From this and Theorem 9.5, we can now
infer the following theorem:

TarOREM 9.7. Suppose B e ¥, S e ¥, and suppose S° is the algebra
of finite subsets related to & as in (11) and (12). Then the decision problem
for Th(B®) reduces to the decision problems for Th(B) and Th(S°). In
particular, if the latter two theories are decidable so is the former.

It is possible to generalize the results of this section in the following
way. Let a be an arbitrary, fixed infinite cardinal. (Heretofore, a has
been x,). Let 8+(I) (or 8*(I)) be the set of all subsets of I of power less
than a (or these and their complements). Let B® be the set of all fe B’
such that c({i | f(?) = em}) < a. Then all other definitions, theorems, and
proofs of this § ean be carried over with no essential changes.

Before continuing, in § 10, with a further discussion of the relation
of 9.7 to the decision problem, we want to conclude this section with
two, unconnected, remarks involving application of the results here.

Certain results obtained using 5.5, namely 7.4 (assuming B e «(*)
and 8.3 can alternatively be obtained using the methods of this §. For 8.3
and also 7.4 (for the case B = <w,...)), this would allow a derivation
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in which the notions of finite sets and sequences, rather than the notion
of arbitrary set, are all that is needed (%),

Recently Tarski has shown that the Léwenheim-Skolem theorem
may be extended to langnages in which the notion of finite set is avail-
able (in [24]). Specifically, he has shown that if we are given a system
80 = {SH(I), ...>, a8 in (12), where I has any infinite power, then I has
a countable subset J, such that the systems S° and

T= BHI )y oy My, My, ...>

are elementarily equivalent. From this result and Theorems 9.5 and 9.6,
we see that, given any B e cf*, G e ', the system B® is elementarily
equivalent to some system B, where I = (S*(J), ..., My, ...>, J being
a countable subset of I. In 6.9 and 7.7 we already obtained stronger
results in some special cases, but this present remark applies to arbitrary
generalized weak powers.

§ 10. Addition of ordinals and related systems of subsets

As regards applicability to the decision problem, it would appear
that 9.7 is a considerable improvement over 5.5. However, we have not
so far found as much evidence of this as might be expected.

Some years ago, Tarski raised the problem of establishing the de-
cidability of the theory of the addition of ordinals. This problem was
one of the principal motivations for the studies which led to the results
of 8 1-9; however, these methods did not yield a solution. A positive
solution of this problem has recently been reported by Ehrenfeucht.
It may, nevertheless, be of interest to describe briefly some results con-
cerning Tarski’s problem which are related to § 9.

“As in § 4, we denote by < a binary relation such that X <Y if and
only if, for .some ordinals « and 8, X = {a}, Y = {#}, and a < 8. Let
Sm be the ternary relation among ordinals such that <{a, §,y> e Sm if
and only if a+p=y.

TarorEM 10.1. The decision problem for either of the theories

Th{{we, Sm>») and  Th{<S*e), C, <))

(where o is any ordinal different from 0) 4s reducible to that for the other.

Proof. Let B = (w, Sm>. The element 0 of B is definable in B,
and we shall have it in mind as eg in considering weak powers. Let C

(**) To obtain 8.3 in this way, one must first establish analognes of 8.1 and 8.2.
For this purpose, it should be noted that, although the relation ~ does not hold only
between finite sets, it differs only trivially from one which does.

7*



Artur


100 8, Feferman and R. L. Vaught

be the weak power @, Every ordinal a < ¢ can be expressed in exactly
one way in the form:

1) o= % b+ 0 b+ ..+ o Iy
(where ¢ > &> &> ...> &p1, and, for each j <p, 0£Tkjew).

On the basis of (1), there is a natural one-to-one correspondence
between the sets we and €. (To the ordinal a of (1) corresponds the
funetion f on o having f(&;) = k; for each j < p, and f(n) = 0 otherwise.)
We denote by U the ternary relation among members of ¢ which is
the image of Sm under this correspondence.

From the familiar properties of ordinal addition, we see af once
that if f,g,heC, then a necessary and sufficient condition in order
that {f, g, k> e U is that:

(2) either, for all & <o, g(&) =0 and f(&) = h(§),
oty for some & < g, (&) #0 and [{&)+g(&) = h(£),
and, for all u such that & <n < g, g(n)=0 and
fn) = h{n), and, for oll u <& g(n)=h(n).

Employing devices like those in § 4.5, it is easy to express (2) in
an equivalent way which shows that the system (C, U) is a general-
ized weak power (in the sense of §9) of B relative to the system
B w)y Ay wyny, C, Fing <. Since <O, U) is isomorphic to {we, Sm,
we conclude from 9.7 that the decision problem for Th’((we, 8m3) re-
duces to the decision problems for Th(%B) and Th(<8*(g), A,)v,~, C,=3D).
For the first of these last two theories, there is Presburger’s decision
method [16]. The second theory is, of course, essentially the same as
Th{({8*(g), C, <)). Thus we have shown that the decision problem for
Th({we, Sm>) may be reduced to that for Th({S*(g), C, 3>).

The reverse reduction can be shown by a method of direct inter-
pretation of Th({S+(g), C, <)) within Th(<we, Sm)>). Note, first, that,
if a,f < we, then

(3) a<<p if and only if, for some y < wt, a-+y =48 and y 0.
Let V, be the set of a < we such that o is of the form (1) with k,
=lky = ...= ky_y = 1. One easily checks that, if a < we, then
(4) aeVy if and only if either a= 0 or there do mot exist f,y, 5 < we
such that a=f+y+y+6 and py+0£46.
Let V, be the set of a < we which are of the form o = wé Then if
@ < we,

(8) aeVy if and only if aeV,, a0, and there do not ewist 8,y < o
such that B0, y 0, BeV,, yeVy, and a=f+y.
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Let Vg be the set of {#,«> such that f eV, and a eV, and g is one
of the terms in the expansion (1) of «. Then, if 8, a < we,

(6) ByayeVyif and only if feV,, aeV,, and a+3¢éV,.

Finally, if a, f < we, let

(7) La, By eV, if and only if, for any y eV, if {y,as eV then {y, B> eVs;
and

(8) {ay By eVy if and only if aeV,, feV,, and a < §.

From (3)-(8), we infer that each of the relations V,-V; iz defin-
able in the theory of {we, Sm)>, and that the system <¥,,7V,, V> is
isomorphic to <{(8*(g), C, <>, under the correspondence that takes
o+ @i+ ... -+ 0¥t into {&,..., £p1). Henee, clearly, the decision problem
for Th((S"'(g), c, %)) reduces to that for {we, Sm), and the proof
of 10.1 is complete.

From Ehrenfeucht’s result and the last proved reduction one could
infer, in particular, that the theory of the system <(8*(w),C,=3> is
decidable (*). In this connection, two remarks may be of interest:

As far as we know, the problem is open whether the theory of
{(S{w), C, <) is decidable. This is simply a version of the second order
theory of <(w, <) in which only one-placed predicate variables are
allowed. The problem of its decidability was raised by Tarski some
time ago ().

While the system {(S+(w),C, <> has a decidable theory (assuming
Ehrenfeucht’s result) and {(8+(w), C, ~> (or even {(§(w), C, ~)) has
a decidable theory, the system (S+{w), C, <, ~)> has an undecidable
theory. This fact (already known to Tarski) may be established rather
easily by showing that in it one can interpret the theory of addition and
divisibility of natural numbers, shown to be undecidable by Tarski (%).

(%5) This problem of decidability is closely related to a cerfain problem of definabi-
lity, also raised by Tarski, and recently discussed by R. M. Robinson in [16]. Ineident-
ally, Robinson points out that the decision problem for the second order theory of
{w, < in which only one-placed predicate variables are allowed is reducible to thas for
the corresponding theory of {w.’> (where’is the successor operation).

From 10.1 (or from the second half of its proof) and Ehrenfeucht’s results we may
also infer that the second order theory of the ordering of all ordinals, in which only one
placed predicates, ranging over finite sels, are allowed, is decidable. And one can ask
what is the case if the italicized restriction is dropped.

(*) Added in proof: The authors have learned that the decidability of the theory
of ¢8F (w),C, <> was established directly by Ehrenfeucht (and nsed in his proof of
the debidability of the theory of addition of ordinals).

(%) For the undecidability of this theory of natural numbers, cf. [25], p. 79,
footnote 3.
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