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On cyclically ordered groups
by

S. Swierczkowski (Wroctaw)

A relation [z, y,2] which is defined on all ordered triplets of dif-
ferent elements a, 9,z of a group @ is called a eyclic order if it has the
following properties:

1. Either [z, 4,2] or [2,v, z],
1. (%, y, 2] implies [y, 2, ],

IIL. [z, ¥y, 2] and [y, u, 2] implies [2,u, 2],

IV. [z, 9, 2] implies [uav, uyv, uev] for u,ved.

A group on which a cyclic orderis defined will be called a cyclically
ordered group (for references see [1]).

The natural order of points on a directed circle defines a cyclic order
on the group of multiplication of complex numbers of absolute value one.
‘We shall denote this group by X and the eyclic order on K by (», ¥, 2) (*).

It I' is a (linearly) ordered group, then a eyclic order [z,y,2] is
defined on I" by

[z,y,2l =<y <z or y<z<g O r<ox<Yy.

We shall say that this cyclic order is generated by the order on I
Cyclically ordered groups can be obtained by the following construe-
tion. Let I be an ordered group and let [z,,#] be the cyclic order
generated by the order on I We consider the direct product I'x K
(its elements are pairs ¢z, a), z I, a ¢ K) and we define a eyclic order
on this group by
(a,b,¢) in K if az#bzc+#a,
<y in I' if a=b#c,
(<=, ay, <:l/7b:;7 <#, eol= 1y <z in I if b=¢*a,
z<® in I it e=a+#b,
l[m,y,z] in I i e=b=e¢.

This eyclic order on I"x K will be called the natural eyelic order. Bvidently
every subgroup of I" x K is also a cyclically ordered group. The aim of this
paper is to prove that there exist no other cyclically ordered groups, i. e.

() A more precise definition is given in the remark to Lemma 1.
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THEOREM. If G is a cyclically ordered group, then there ewists an ordere.
group I' such that
GCI'xK

and the cyclic order on G is determined by the natural cyclic order on I' x K.

Let us call a cyclic ordered group Archimedean if it contains no
elements #, y such that [¢, 27, y] holds for every positive integer n (e = the
unity). From our theorem follows the

CorOLLARY. If G is an Archimedean cyclicly ordered group, then GC K
and the cyclic order on G is carried over from K.

.The Proof of the theorem will be preceded by three lemmas. Let us
consider first an arbitrary ordered group F. We suppose that F contains
an element, z such that

(*) 2z belongs to the centre of F', z < ¢, and for every z ¢ ¥ there exists
an integer n for which 2» > 2.

Let & be the cyclic group generated by # and let ¢ = F/N. For each
coset a ¢ G we denote by r, the unique representative of @ in F such

that e <r,<z Let [z,y,2] be the cyclic order on F generated by
the order.

Leywa 1 (L. 8. Rieger [1]). If we define for a,b,cc@
(2, b, ¢] = [rq, 13, 7]
then we obtain a cyclic order on @.

n I,

Remark. If ¥ iz the additive group of real numbers and N is the

grm%) of integers, then this cyclic order on ¢ is the natural cyelic order
on K.

LEmA 2 (see Rieger [1]). Qiven a cyclically ordered group @, there exists
an ordered group F and an element z ¢ F' which satisfies () and generaies
a group N . ﬂ?r which G = F|N. Moreover the cyclic order on G is then given
by the definition in Lemma 1.

Levma .3(2). If 2> ¢ belongs to the centre of am ordered group F,
then ‘there exists am ordered group B’ which contains F so that the ordering
relation of F' passes over to F and is such that to every real number a cor-
responds an element = ¢’ and these elements satisfy

() B =pth, > for a>f.

Moreover every element z¢ belongs to the centre of F'.

Proof. In the sequel let 2z denote a fixed element belonging to the
centre of ¥. For certain rational numbers » — m/n the group F contains

(*) I am much indebted to the reviewer, M 6 i
SRS . Krdl, £ i
simplification to my original proof of this len;ma. o uggesting an mportant
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an element z for which a»= zm. We shall denote such element x by 2.
It is easily seen that the set of all these =" e F forms a subgroup D of
the centre of F. Also (#x) holds if a, 8 are rationals for which 27, 2 ¢ F.

We consider now the group R of real numbers and a group 4 which
is isomorphic with B. We denote by £ the element of A which corresponds
to aeR so that °0f =", Let

H=FxA

be the direct product of the groups F, 4. So the elements of H are pairs
{w, % where » ¢ F, 2% ¢ A. Let F' be the group which we obtain from H
if we extend the family of all group-relations in H by adding

2'=¢" for every 2" eD.

In other words, P/ is the factor group of H by its normal subgroup
U={{ el 2 eD}.

The elements of F' are U-cosets in H. In the sequel & coset which con-
tains a representative <z, e, v ¢ F, will be denoted simply by = This
notation is unique sinee to <z, e> s <y, ) correspond different cosets.
Tt follows that F is contained in F'. A coset corresponding to (¢, (®
will be denoted by z= This is justified by the fact that if " ¢« F' then the
coset with the representative (2, e), which we have already decided to
denote by 27, is the same as that one which has the representative (¢, L.
Let us observe that all elements 22 ¢ B’ belong to the centre of F' and
the law of their multiplication is given by the first part of ().

Tn our mew notation every element of F' has a factorization mze
where o ¢F. This factorization is not unique and all others are zz"z*—"
where 2* ¢ D. We consider the elements of 7 which have a factorization
22 where p is rational and s < F. It is evident that these elements form
a subgroup of F'. We shall denote this subgroup by ¥. We extend now
the ordering relation on F C ¥ to an order on ¥ by defining there the
positive elements (i. e. >¢). We define for a = x22 e ¥, o=m/n

a>¢ in ¥ if and only if arzm>e in F.

Tt is easily verified that this definition does not depend on the factor-
ization of a. We define an order on ¥ by & > b = ab—*> e. This is indeed
an order if
I. &, b > ¢ implies ab>e.

IL. @ > ¢ implies bab—*> e for every .

IIT. If @ > ¢ is not true for some a ¢, then a=*>e.
These postulates are equivalent to statements valid in F and they are
easily verified. For example we shall prove here IIL Let a = qze. If
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gnem > ¢ is not true and aee # e, then an2™ £ ¢ and thus amz™ < ¢, Qon-
sequently z—mg-7==g~"2~™> ¢ and this implies a~l= g-lz—e >

‘We shall prove now that there exists a subgroup @ of P’ such that

F=¥xd,

i. e. that ¥ is a direct factor of F’. Let us define @. Let M C R be a ma-
ximal set of irrational numbers which are rationally independent. Al
rational combinations of elements of M form a subgroup of B. We denote
this subgroup by 2. It is clear that no rational number belongs to Q
except 0. We now define @ as the subgroup of all those elements 22 for
whieh a € 2. Evidently ¥ ~ @ = {¢}. Every element a « ' has a factoriza-
tion a = x2? where @ « F. Since for every f there exists a rational number o
such that a=f—p 2 we have a= x2°z* where 220 e ¥, 22 ¢ ®. Thus
we have proved F'C V. .

‘We now define the positive elements of F'. Let @ = w2* ¢ ' where
ze? and cef2. We set

x> e

if and only if one of the following conditions holds:

A a=0 and z>¢in V.

B. xze>e in W for some rational g << a and a s 0.

C. aze > e for every rational ¢ > a and az¢ < efor every rational
e<ain ¥ and a>0.

We define the order in F' by @ > b= ab-? > e. It follows that the
second part of (xx) holds. We have to verify that conditions I, IT, and ITE
hold. We assume that a = w2, b = y2f; 2,y ¢ ¥; a, f € 2. Let us verify I.
Since ¥ is an ordered group, it easily follows that if ¢ > ¢, b > ¢ both
hold by A, then ab> e also by A. The same is true for B and €. Suppose
a>eby Abut b>e not by A. If b > ¢ by B, then also ab > ¢ by B.
If b > e by C, then we evidently have wzyze> ¢ for every rational ¢ > g
and it can also be pyze> e for some o< f and then ab >e¢ by B or
ayze << e for all p < 8, and then ab > e by C. If a > ¢ holds by B and
b>e by O, then we can find rationals g, g, such that o+ 0p<< a-§,
22" > 6, Y2 > ¢ and thus ay%@ > ¢, i. ¢. ab > e by B. We obtain the
remaining possible agsumptions on a > ¢, b > ¢ if we transpose ¢ and b
in those considered above. The proofs will be similar.

Now let us verify II. We have bab—1= yay—lee. It is sufficient to
observe that if one of the conditions A, B, C holds for a, then the same
condition holds after substituting yay—1 for z.

III has already been verified for ¢ ¢ ¥. Thus we may assume a ¢ ¥
and consequently anon > ¢ implies non B and non C. From non B follows

a << e for every rational p<a
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and this in conjunction with non C implies that

(i) w2¢ < e for some rational ¢ >«
or

(ii) aee > e for every rational g>a and a < 0.

If (i) holds, then z—'ze > e for some p < —« and thus a=' > ¢ by B.
If (ii) holds, then we have

a—1z¢ > ¢ for every rational ¢ > —a and
x—1z¢ < ¢ for every rational ¢ < —a and —a >0

Thus a—!>e by C. We have proved the lemma.

Proof of the Theorem. Let & be a cyclically ordered group. We
consider F, 2, N, F’ as they are defined by Lemmas 2 and 3. Let A be
the ordered subgroup of F' consisting of all elements 2o Let I' be the
ordered subgroup of all those x ¢ F' which satisfy

<A
for every > 0. We shall prove that
F'=IxA

and the order on F' is defined lexicographically by the order on I' and
on A. Sinee I' ~ A = {e}, it is sufficient to prove that if y e ¥, then y = 2~
for some e I. Let us obgerve that there exists a number a such that

wf<y <zoth for every B>0.
Consequently z—# < yz~e <%’ and this proves yz e I. Thus y = xz
with z e I'. It is obvious that F’ is lexicographically ordered.
We have @ = F/N CF'/N and thus from F'=I'xA and NCA
follows
GCF'|N=IxAN=TxK.

For every (=, a> ¢ I'x K, let us denote by {(z,7.> el x4 that element
which is mapped in {z, @) by the natural homomorphism of I'kxA on
I'xE and for which e < rq <z holds. We now define a cyclic order on
I'x K by (see Lemma 1)

[z, @), <y, b5, {2y 00] = [z 7oy <Yy 762y <35 r.y] in F’

where the cyelic order on the right is generated by the order on F'. Since
the ordering of F' is lexicographical, it follows that the cyclic order on
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I'x K defined above is the natural cyclic order. If in this definition we
restrict ourselves to the subgroup @ of I' x K then by Lemma 2 we obtain
the cyclic order on G which was initially given. Thus the cyclic order
on @ is carried over from I'x K.
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On cyclically ordered intervals of integers
by

S. Swierczkowski (Wroclaw)

A relation [z,y,2] defined on all ordered triplets of different

integers »,¥,# from the interval {0,1,..., N}is called a eyclically ordering

relation in this interval if it satisfies for 0 < &, y,2,2+v, ¥+ 0,2+,
# < N the following postulates

1. Either [z, vy, 2] or [2,¥, %],

1. [%,y,2] implies [¥,2, 5],

IIL [%,y, 2] and [y, u, 2] implies [z, uw, ],

IV. (&, ¥, %] implies [m+v,y+v,2+70].

AN EXAMPLE. Let # be & real number such that p,= exp(2wiazy),
where ©= 0,1, ..., N, are different points on the circlé |z[= 1. We esta-
blish a sense on this circle, say the counter-clock-wise sense, and denote
the open arc with the initial point p, and the endpoint p, by (Pzs Py)-
Thus (ps, py) is empty if and only if = y. Defining

(2, Y, 21y =Dy € (P2, D)

we obtain a cyelically ordering relation on {0,1,.., N}
The purpose of this paper is to prove the following (announced in [1])
TaporEM. For every cyclically ordering relation [,y ,2] on {0, 1, ey N}
there exists an interval I of real mumbers 7 for which

[z,9,2] =[z,¥, 2],

If 5 is irrational, then [z, ¥, 2], is a cyclically odering relation on the set
of all integers and thus

COROLLARY 1. Every relation [z, y,#] on {0,1, ..., N} can be crtended
to o cyclically ordering relation on the set of all integers.

Let us say that y follows immediately after = if [2,2, y] is always
false (0 <@, 4,2 < N). If 7 satisfies the assertion of our theorem, then
s number y follows immediately after another one, say , if and only
if the arc (p,,p,) contains no points p, with 2 < ¥. Thus there exists
for every x strictly one y which follows immediately after z. Let a be
the number which follows immediately after 0 and b the one which is
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