On cyclically ordered intervals of integers

by

S. Świerczkowski (Wrocław)

A relation [x,y,z] defined on all ordered triplets of different integers x,y,z from the interval $\{0,1,...,N\}$ is called a *cyclically ordering relation* in this interval if it satisfies for $0 \le x, y, z, x+v, y+v, z+v, u \le N$ the following postulates

I. Either [x, y, z] or [z, y, x],

II. [x, y, z] implies [y, z, x],

III. [x, y, z] and [y, u, z] implies [x, u, z],

IV. [x, y, z] implies [x+v, y+v, z+v].

AN EXAMPLE. Let η be a real number such that $p_x = \exp(2\pi ix\eta)$, where x = 0, 1, ..., N, are different points on the circle |z| = 1. We establish a sense on this circle, say the counter-clock-wise sense, and denote the open arc with the initial point p_x and the endpoint p_y by (p_x, p_y) . Thus (p_x, p_y) is empty if and only if x = y. Defining

$$[x, y, z]_{\eta} \equiv p_y \in (p_x, p_z)$$

we obtain a cyclically ordering relation on $\{0, 1, ..., N\}$.

The purpose of this paper is to prove the following (announced in [1])

Theorem. For every cyclically ordering relation [x, y, z] on $\{0, 1, ..., N\}$ there exists an interval I of real numbers η for which

$$[x, y, z] \equiv [x, y, z]_{\eta}.$$

If η is irrational, then $[x, y, z]_{\eta}$ is a cyclically odering relation on the set of all integers and thus

COROLLARY 1. Every relation [x, y, z] on $\{0, 1, ..., N\}$ can be extended to a cyclically ordering relation on the set of all integers.

Let us say that y follows immediately after x if [x, z, y] is always false $(0 \le x, y, z \le N)$. If η satisfies the assertion of our theorem, then a number y follows immediately after another one, say x, if and only if the arc (p_x, p_y) contains no points p_z with $z \le N$. Thus there exists for every x strictly one y which follows immediately after x. Let x be the number which follows immediately after y and y the one which is

immediately followed by 0. From a result concerning the distribution of the points p_x on the circle |z|=1 (see [2]) and from our theorem it follows easily that

COROLLARY 2. The differences y-x, where y follows immediately after x, take at most three values. They are a, -b and a-b (the last value occurs only in the case N < a+b-1).

It is not true that every relation [x, y, z] defined on the set of all integers is of the form $[x, y, z]_n$ (see [3]).

Outline of the proof of the theorem. We show first that it is sufficient to prove the theorem for those relations for which [0,1,2] is true. Then we prove that two relations $_1[x,y,z]$, $_2[x,y,z]$ which coincide on all triplets $\{0,x,x+1\}$, where $0 \le x < N$, coincide on $\{0,...,N\}$ (Lemma 1). Then we consider an arbitrary fixed relation [x,y,z] and prove that for the sequence $m_1 < m_2 < ... < m_r$ of those numbers which satisfy $[0,m_i+1,m_i]$ we have (Lemma 2)

$$m_k + m_l \leq m_{k+1} \leq m_k + m_l + 1$$
.

Finally (Lemma 3) we show that the above inequalities enable us to construct an interval I such that for $\eta \in I$ and $0 \le x < N$ the relation $[0, x+1, x]_{\eta}$ holds only with $x = m_1, ..., m_r$. Thus, by Lemma 1 and postulate I, [x, y, z] and $[x, y, z]_{\eta}$ coincide on $\{0, 1, ..., N\}$.

We suppose first that our theorem is already proved for those relations which hold on (0,1,2). If [x,y,z] is a relation which does not hold on (0,1,2), then let us define the relation $[x,y,z]^*$ by

$$[x, y, z]^* \equiv [z, y, x]$$
 for $0 \leqslant x, y, z \leqslant N$.

Since evidently $[0,1,2]^*$ holds, we have $[x,y,z]^* \equiv [x,y,z]_{\eta}$ for some interval I and $\eta \in I$. Thus $[x,y,z] \equiv [x,y,z]_{-\eta}$ for $\eta \in I$ and it follows that our theorem is true for [x,y,z].

In the sequel we shall consider only relations which hold on the triplet (0, 1, 2).

LEMMA 1. If $_{1}[x, y, z]$ and $_{2}[x, y, z]$ are such relations that

$$_{1}[0, x, x+1] \equiv _{2}[0, x, x+1],$$

then these relations are equal.

Proof. 1.1. If $x, y, z, u \in \{0, 1, ..., N\}$ are different and p = [x, y, z], q = [y, z, u], s = [x, u, z], t = [u, x, y], then

$$p \equiv s \cdot q \vee q \cdot t \vee t \cdot s$$

(·, v are the symbols of conjunction and alternation of sentences).

Indeed, suppose that $s \cdot q \lor q \cdot t \lor t \cdot s = 1$ (1 = true, 0 = false). Let be $s \cdot q = 1$. Then [x, u, z] and [y, z, u], what by II and III implies [x, y, z], i. e. p = 1. Similarly we obtain p = 1 from $q \cdot t = 1$ or $t \cdot s = 1$.

Now suppose that $s \cdot q \vee q \cdot t \vee t \cdot s = 0$. We verify $(s \cdot q \vee q \cdot t \vee t \cdot s)' \equiv s' \cdot q' \vee q' \cdot t' \vee t' \cdot s'$ (' denotes negation). As before we find that $s' \cdot q' \vee q' \cdot t' \vee t' \cdot s' = 1$ implies [z, y, x], i. e. p' = 1.

As a consequence of 1.1 we infer that

1.2. If two relations $_1[x, y, z]$ and $_2[x, y, z]$ coincide on three triplets out of four arguments, then they coincide also on the remaining triplet.

1.3. Bearing in mind the postulates I, ..., IV we observe that the conclusion of Lemma 1 follows if we prove the equivalences $E_{x,y}$:

$$[0, x, y] \equiv [0, x, y]$$
 for $0 < x < y \le N$.

We shall prove them by induction. $E_{1,2}$ is true since we consider only relations which hold on $\langle 0, 1, 2 \rangle$. Suppose that we have proved $E_{1,y}$ for some $y \geq 2$. Then both relations considered coincide on the triplets $\{0, 1, y\}, \{0, y, y+1\}$ and $\{1, y, y+1\}$ (by IV and $E_{y-1,y}$). Thus 1.2 implies their coincidence on $\{0, 1, y+1\}$, i. e. $E_{1,y+1}$.

Now suppose that $E_{x,y}$ for some x. Proving $E_{x+1,y}$ we may assume x+1 < y. Thus both relations coincide on $\{0, x, y\}$, $\{0, x, x+1\}$, $\{x, x+1, y\}$ (by $E_{1,y-x}$). Consequently they coincide also on the remaining triplet $\{0, x+1, y\}$.

DEFINITION 1. Let [x, y, z] be a cyclically ordering relation on $\{0, 1, ..., N\}$. We shall denote by $m_1, m_2, ..., m_r$ the increasing sequence of all numbers m_k for which $[0, m_k+1, m_k]$ holds.

Remark. For a relation $[x, y, z]_{\eta}$, where $0 < \eta < 1$, the numbers $m_1, ..., m_r$ are exactly those which satisfy $m_k \eta < k < (m_k + 1) \eta$, k = 1, 2, ..., r and $m_k < N$.

LEMMA 2. $m_k + m_l \leq m_{k+1} \leq m_k + m_l + 1$.

Proof. 2.1. If the numbers $m_k + m_l$, $m_k + m_l + 1$ are smaller than N, then one of them belongs to the sequence m_1, \ldots, m_r .

Assume $m_k + m_l \neq m_i$, i = 1, 2, ..., r. Then

(1)
$$[m_k, m_k + m_l + 1, m_k + m_l]$$
 by $[0, m_l + 1, m_l]$;

(2)
$$[m_k+1, m_k+m_l+2, m_k+m_l+1]$$
 by (1);

(3)
$$[0, m_k, m_k + m_l + 1]$$
 by $[0, m_k + m_l, m_k + m_l + 1]$ and (1);

(4)
$$[0, m_k+1, m_k+m_l+1]$$
 by $[0, m_k+1, m_k]$ and (3);

(5)
$$[0, m_k + m_l + 2, m_k + m_l + 1]$$
 by (2) and (4);

This proves $m_k + m_l + 1 = m_i$ for some i.

171

2.2.
$$m_k + m_1 \leq m_{k+1} \leq m_k + m_1 + 1$$
.

We prove first $m_{k+1} \leq m_k + m_1 + 1$. This inequality evidently holds if $m + m_1 + 1 \geq N$. In the other case it follows easily from 2.1. By 2.1 we also see that $m_k + m_1 \leq m_{k+1}$ will be proved if we show that $[0, m_k + x - 1, m_k + x]$ for $x = 2, ..., m_1$. We have

$$[0,1,2],[0,2,3],...,[0,m_1-1,m_1].$$

(2)
$$[0,1,x]$$
 for $x=2,...,m_1$.

Indeed this is true for x = 2 and if [0, 1, x] holds for some $x < m_1$, then also [0, x, x+1] is true by (1), which implies [0, x, x+1]. Thus for $x = 2, ..., m_1$

(3)
$$[m_k, m_k+1, m_k+x]$$
 by (2);

(4)
$$[0, m_k+1, m_k+x]$$
 by $[0, m_k+1, m_k]$ and (3).

Substituting x=2 in (4) we obtain the first relation which we wish to prove. Now let x>2. Then

(5)
$$[m_k+1, m_k+x-1, m_k+x]$$
 by (1);

(6)
$$[0, m_k+x-1, m_k+x]$$
 by (4) and (5).

Thus 2.2. is proved.

2.3. We shall prove

$$m_k + m_l \leqslant m_{k+1} \leqslant m_k + m_l + 1$$

by induction on l. The first step is done in 2.2. Now suppose that both the above equalities hold for some k, l.

Let us show that $m_k + m_{l+1} \leq m_{k+l+1}$. If $m_k + m_l < m_{k+l}$ then the inequality proved easily follows. Indeed it is sufficient to observe that (by 2.2) $m_k + m_{l+1}$ exceeds $m_k + m_l$ by m_l or $m_l + 1$ and m_{k+l+1} exceeds m_{k+l} also by m_l or $m_l + 1$. Now if $m_k + m_l = m_{k+l}$, then the above argument is insufficient only in the case where

$$m_{l+1} = m_l + m_1 + 1$$
 and $m_{k+l+1} = m_{k+l} + m_1$.

Let us prove that this case is impossible. Indeed, observe that [0,1,2] implies $m_1 \ge 2$ and thus

(1)
$$[0, m_k-1, m_k]$$
 by $m_{k-1} \leq m_k - m_1 < m_k - 1$;

(2)
$$[m_l+m_1, m_k+m_l+m_1-1, m_k+m_l+m_1]$$
 by (1);

(3)
$$[m_l+m_1-1, m_k+m_l+m_1, m_k+m_l+m_1-1]$$
 by $[0, m_k+1, m_k]$;

(4)
$$[m_l + m_1 - 1, m_k + m_l + m_1, m_l + m_1]$$
 by (2) and (3);

(5)
$$[m_l + m_1, m_k + m_l + m_1 + 1, m_l + m_1 + 1] \quad \text{by} \quad (4);$$

(6)
$$[0, m_k + m_l + m_1, m_l + m_1]$$
 by $[0, m_l + m_1 - 1, m_l + m_1]$ and (4);

(7)
$$[0, m_l + m_1, m_k + m_l + m_1 + 1]$$
 by $[0, m_l + m_1, m_l + m_1 + 1]$ and (5);

(8)
$$[0, m_k + m_l + m_1, m_k + m_l + m_1 + 1]$$
 by (6) and (7).

Thus we have obtained $[0, m_{k+l+1}, m_{k+l+1}+1]$, which is a contradiction.

It remains to prove $m_{k+l+1} \leq m_k + m_{l+1} + 1$. This inequality easily follows if $m_{k+l} < m_k + m_l + 1$ (it is sufficient to apply 2.2). If $m_{k+l} = m_k + m_l + 1$ then 2.2 is inapplicable only in the case of

$$m_{l+1} = m_l + m_1$$
, $m_{k+l+1} = m_{k+l} + m_1 + 1$.

This case however is impossible, since by 2.1 one of the numbers $m_k + m_{l+1}$, $m_k + m_{l+1} + 1$ must belong to the sequence m_1, \ldots, m_r and this contradicts

$$m_{k+1} < m_k + m_{l+1} < m_k + m_{l+1} + 1 = m_k + m_l + m_1 + 1 < m_{k+l+1}$$
.

LEMMA 3. There exists an interval I such that for $\eta \in I$ the relation $[x, y, z]_{\eta}$ is defined on $\{0, 1, ..., N\}$ and $[0, x+1, x]_{\eta}$ holds strictly for $x = m_1, m_2, ..., m_r$.

Proof. We shall find a number $m_{r+1} \ge N$ such that there will exist an interval I of numbers η satisfying $m_k \eta < k < (m_k + 1) \eta$ for k = 1, 2, ..., r+1. Then Lemma 3 holds by our remark on Definition 1.

3.1. There exists a number $m_{r+1} \ge N$ such that

(*)
$$m_k + m_l \leq m_{k+1} \leq m_k + m_l + 1$$
 for $k+l \leq r+1$.

Consider the numbers $q_k = m_k + m_{r-k+1}$ where $k \leqslant r$. If they are all equal, say, to some q, then (*) evidently holds if $m_{r+1} = q+1$ (cf. Lemma 2). In the other case define $m_{r+1} = \max q_k$. Let $m_{r+1} = q_s$. The first inequality in (*) obviously holds. In order to prove the second one we ought to show that $m_s + m_{r-s+1} \leqslant m_k + m_{r-k+1} + 1$. This follows easily from Lemma 2. Indeed, if k < s then it is sufficient to add the inequalities $m_s \leqslant m_k + m_{s-k} + 1$, $m_{r-s+1} + m_{s-k} \leqslant m_{r-k+1}$. If k > s, then we repeat the above proof with r-k+1 and r-s+1 interchanged with k, s.

It remains to verify that $N \leqslant m_{r+1}$. Assume the contrary. We have $m_{r+1} = q_l + 1$ for some l. Indeed, this is evident when the numbers q_k are equal. In the other case we have $m_{r+1} = q_s \leqslant q_k + 1$ by $m_s + m_{r-s+1} \leqslant m_k + m_{r-k+1} + 1$ and $q_s = \max q_k$, which proves $q_s = q_l + 1$ for some l. From $N > m_{r+1} = q_l + 1 = m_l + m_{r-l+1} + 1$ it follows by 2.1 (Lemma 2) that one of the numbers $m_{r+1} - 1$, m_{r+1} belongs to the sequence m_1, \ldots, m_r . But this is impossible since $m_{r+1} - 1 \geqslant m_r + m_1 - 1 > m_r$ by (*).

3.2. If (*) holds, then the numbers η which satisfy simultaneously all inequalities $m_k \eta < k < (m_k+1)\eta$, k = 1, 2, ..., r+1 fill up a non empty interval I.

icm

Evidently

$$I = \bigcap_{1 \leqslant k \leqslant r+1} \left(\frac{k}{m_k+1} \,, \frac{k}{m_k} \right)$$

and it remains to prove that

$$\frac{k}{m_k+1} < \frac{l}{m_l} \quad \text{for} \quad k, l \leqslant r+1.$$

If k=l=1 then this inequality is obvious. Let us suppose that it holds for $k,l\leqslant h$. We shall prove it for $k,l\leqslant h+1$. If k=h+1 then a proof is necessary only if $l\leqslant h$. Then $k-l,l\leqslant h$ and thus by our supposition

$$\frac{k-l}{m_{k-l}+1}<\frac{l}{m_l},$$

i. e. $km_l < (m_{k-l} + m_l + 1)l$. Since $m_{k-l} + m_l \le m_k$ by Lemma 2, we obtain $km_l < (m_k + 1)l$, which we wished to prove.

Now if l = h+1, and $k \le h$ then from $k, l-k \le h$ follows

$$\frac{k}{m_k+1} < \frac{l-k}{m_{l-k}}$$

and $k(m_{l-k}+m_k+1)<(m_k+1)l$. It remains to apply $m_l\leqslant m_{l-k}+m_k+1$. It is evident that Lemma 3 implies

$$[0, x+1, x] \equiv [0, x+1, x]_{\eta}$$
 for $\eta \in I$, $x = 1, 2, ..., N-1$.

Thus our theorem follows from Lemma 1.

References

- [1] S. Świerczkowski, On cyclic ordering relations, Bull. Acad. Polon. Sci., Cl. III. 4 (1956), p. 585-586.
- [2] On successive settings of an arc on the circumference of a circle, Fund. Math. 46 (1958), p. 187-189.
 - [3] On cyclically ordered groups, Fund. Math. this volume, p. 161-166.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 14.5.1958

Dense families of continuous selections *

by

E. Michael (Seattle, Washington)

1. Introduction. Let X be a metric space, Y a Banach space, $\mathcal{C}(Y)$ the family of non-empty, closed, convex subsets of Y, and let $\varphi \colon X \to \mathcal{C}(Y)$ be lower semi-continuous (i. e. $\{x \in X \mid \varphi(x) \cap U \neq \varphi\}$ is open in X for every open $U \subset Y$). Under these circumstances, it was proved in [4], Theorem 3.2" (see also Theorem 1 of the expository paper [3]) that there exists a selection f for φ , that is, a continuous $f \colon X \to Y$ such that $f(x) \in \varphi(x)$ for every $x \in X$. In the present paper, this result is applied to prove Theorem 1.1 below and some of its consequences. A special case of Theorem 1.1 will be used by V. L. Klee [2].

THEOREM 1.1. For every infinite cardinal α , there exists a family Φ of selections for φ , with card $\Phi \leq \alpha$, such that, whenever $x \in X$ and $\varphi(x)$ has a dense subset of cardinality $\leq \alpha$, then $\{f(x)\}_{f \in \Phi}$ is dense in $\varphi(x)$ (1).

Our first corollary generalizes the well-known result that the Banach space of continuous, real-valued functions on a compact metric space is separable.

COROLLARY 1.2. If X is compact and if, for some infinite cardinal α , $\varphi(x)$ has a dense subset of ordinality $\leqslant \alpha$ for all $x \in X$, then the space of selection for φ has a uniformly dense subset of cardinality $\leqslant \alpha$.

If $C \subset \mathcal{C}(Y)$, then a face of C is a closed, convex subset F of C such that any line segment in C, which has an interior point in F, must be entirely in F; the *inside* of C, denoted by I(C), is the set of points in C which lie in no face of C. It is known that every separable $C \subset \mathcal{C}(Y)$ has a non-empty inside ([4], Lemma 5.1). As another application of Theorem 1.1, we have the following result, which was obtained in [4], Theorem 3.1", for separable Y.

COROLLARY 1.3. There exists a selection f for φ such that $f(x) \in I(\varphi(x))$ whenever $\varphi(x)$ is separable.

^(*) Research sponsored by the National Science Foundation and the Office of Naval Research.

⁽¹⁾ For separable Y, with $\alpha=\aleph_0$, this result was already obtained in [4], Lemma 5.2. Fundamenta Mathematicae. T. KLVII.