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On cyclically ordered intervals of integers
by

S. Swierczkowski (Wroclaw)

A relation [z,y,2] defined on all ordered triplets of different
integers »,¥,# from the interval {0,1,..., N}is called a eyclically ordering
relation in this interval if it satisfies for 0 < &, y,2,2+v, ¥+ 0,2+,
# < N the following postulates

1. Either [z, vy, 2] or [2,¥, %],
1. [%,y,2] implies [¥,2, 5],

IIL [%,y, 2] and [y, u, 2] implies [z, uw, ],

IV. (&, ¥, %] implies [m+v,y+v,2+70].

AN EXAMPLE. Let # be & real number such that p,= exp(2wiazy),
where ©= 0,1, ..., N, are different points on the circlé |z[= 1. We esta-
blish a sense on this circle, say the counter-clock-wise sense, and denote
the open arc with the initial point p, and the endpoint p, by (Pzs Py)-
Thus (ps, py) is empty if and only if = y. Defining

(2, Y, 21y =Dy € (P2, D)

we obtain a cyelically ordering relation on {0,1,.., N}
The purpose of this paper is to prove the following (announced in [1])
TaporEM. For every cyclically ordering relation [,y ,2] on {0, 1, ey N}
there exists an interval I of real mumbers 7 for which

[z,9,2] =[z,¥, 2],

If 5 is irrational, then [z, ¥, 2], is a cyclically odering relation on the set
of all integers and thus

COROLLARY 1. Every relation [z, y,#] on {0,1, ..., N} can be crtended
to o cyclically ordering relation on the set of all integers.

Let us say that y follows immediately after = if [2,2, y] is always
false (0 <@, 4,2 < N). If 7 satisfies the assertion of our theorem, then
s number y follows immediately after another one, say , if and only
if the arc (p,,p,) contains no points p, with 2 < ¥. Thus there exists
for every x strictly one y which follows immediately after z. Let a be
the number which follows immediately after 0 and b the one which is
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immediately followed by 0. From a result concerning the distribution
of the points p, on the circle |z| = 1 (see [2]) and from our theorem it
follows easily that

CorOLLARY 2. The differences y-—=, where vy follows tmmediately
after x, take at most three values. They are a, —b and a—b (the last
value oceurs only in the case ¥ < a+b—1).

It is not true that every relation [z, y, 2] defined on the set of ap
integers is of the form [z, y, 2], (see [3]).

Outline of the proof of the theorem. We show first that it
is suificient to prove the theorem for those relations for which [0,1, 2]
is true. Then we prove that two relations ,[x, ¥, 2], Jz, ¥, 2] which co-
incide on all triplets {0, #, 41}, where 0 < # < N, coincide on {0, ..., N
(Lemma 1). Then we consider an arbitrary fixed relation [,y,#] and
prove that for the sequence m, < my < ... << m, of those numbers which
satisfy [0, m;+1,m,] we have (Lemma 2)

M+ My K My K Mg+ Mg+ 1 .

Finally (Lemma 3) we show that the above inequalities enable us to
constrnet an interval I such that for n ¢l and 0 < o< N the relation
{0,241, 2], holdd only with z= m,,..., m,. Thus, by Lemma 1 and
postulate I, [z, y,2] and [z, ¥, 2], coincide on {0, 1, .., N}.

We suppose first that our theorem is already proved for those rela-
tions which hold on (0,1, 2). If [x,¥,2] is a relation which does not
hold on <0, 1, 2), then let us define the relation [x,y, 2]* by

[w,y,2]*=[2,9, o] for 0<z,y,2<N.

Since evidently [0, 1, 2]* holds, we have [z, ¥, #* = =@, ¥, 2], for some
interval I and #eI. Thus [z,y, 2] = [z,1 ) #l—y, for n el and it follows
that our theorem is true for [z, y, 2].

In the sequel we shall consider only relations which hold on the
triplet <0, 1, 2).

Lemma 1. If [, y, 2] and Ja, y, 2] are such relations that
10, 7, 2+ 1]=,[0, @, z+1],

then these relations are equal.
Proof. 1.1, If @,y,2,u€{0,1,..., N} are different and p = [®,y,2],
g=1y,2,u], s =[w, u, 2], t = [u, x, y1, then

p=8-gVg-tvi-s

(-, v are the symbols of conjunction and alternation of sentences).
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Indeed, suppose that s-qvg-tvi.-s=1 (1= true, 0 = false). Let
be s-g=1. Then [x,u,2] and [y,=2,u], what by II and IIL implies
[z,y,2], 1. e. p=1. Similarly we obtain p=1 from g¢-i=1 or £-s=1.

Now suppose that s-gvg-tvi-s=0. We verify (s-gvg-tvi-s)
=g.¢'vg-t'vi-s (' denotes negation). As before we find that
g vg-t'vt-s'=1 implies [z, 9,z], i.e. p'=1.

As a consequence of 1.1 we infer that

1.2, If two relations [z, y,¢] and Jx,¥y,z] coincide on three triplets
out of four arguments, then they coincide also on the remaining triplet.

1.3. Bearing in mind the postulates I, .., IV we observe that the
conclusion of Lemma 1 follows if we prove the equivalences E,.,:

L0, 2, y]=4[0,2,y] for O<a<y<hH

We shall prove them by induetion. E,. is true since we consider only
relations which hold on <0,1,2>. Suppose that we have proved E,,
for some y > 2. Then both relations considered coincide on the triplets
{0,1,9}% {0,y,y+1} and {1,y,y+1} (by IV and B, ,,). Thus 1.2 im-
plies their coincidence on {0, 1,y +1}, i. e. By ..

Now suppose that ., for some z. Proving H,.,, we may assume
#+1 <y Thus both relations coincide on {0, z, ¥}, {0, z, 241},
{x, z+1,y} (by Biy-.). Consequently they coincide also on the remain-
ing triplet {0, 2+1,y}.

DermaiTION 1. Let [x,y,2] be a eyclically ordering relation on
{0,1,..., N}. We shall denote by m,, m,, ..., m, the increasing sequence
of all numbers my, for which [0, mp+1, my] holds.

Remark. For a relation [#,y,z],, where 0 <% <1, the num-
bers m,, ..., m, are exactly those which satisfy myn <k < (mz+1),
k=1,2,..,r and my<N.

LEMMA 2. mp+mp < mpyp < mp+my+1.

Proof. 2.1. If the numbers my-+my, my+my+1 are smaller than N,
then one of them belongs to the sequence my, ..., m,.

Assume mg+my = my, i=1,2,...,7. Then
{1) [mg, myg+mu+1, mpy+m] Dby [0, my+1, myl;
2) [me+1, mep+m+2, mp+m+1] by (1);
(3) [0, my, mp-+m+1] by [0, mp+my, mg-+mg+1] and (1);
{4) [0, mp+1, mp+my+1] by [0, mp+1, me] and (3);
{8} [0, me+my+2, meg+m+1] by (2) and (4);

This proves myg+m;+1 = m; for some i.
¢ k
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2.2, iy My K My S Mg+ Mg +10

We prove first mgiq, < Mg+ m, 1. This inequality evidently holds
if m +my-+1> N. In the other case it follows easily from 2.1. By 2.1
we also see that my+m; < mpyr will be proved if we show that [0, my+
+o—1, mp+x] for =2, ...,m; . We have
(1) [o,1,2],[0,2,3],..,[0,m—1,m].
(2) [0,1,2] for x=2,..,m.
Indeed this is true for # == 2 and if [0, 1, #] holds for some = < m,, then
also [0, %, 241] is true by (1), which implies [0, #, #-+1]. Thus for
=2, .,m
(8) [mi, mp+1, mp+2] by (2);
(4) [0, myx+1, me+a] by [0, my+1,my] and (3).

Substituting =2 in (4) we obtain the first relation which we wish to
prove. Now let £ > 2. Then

(5) [me+1, me+e—1, met+e]l by (1)
(6) [0, me+ao—1, mxg+2] Dby (4) and (5).
Thus 2.2. is proved.

2.3, We shall prove

Mg+ My < Mpprp ] < Mg+ 1+ 1

by induction on I. The first step is done in 2.2. Now suppose that both
the above equalities hold for some k, 1.

Let us show that mg+mir < Mgqreq. IE Mg+ my < mggq then the
inequality proved easily follows. Indeed it is sufficient to observe that
(by 2.2) mg+ myq exceeds my--m; by m, or m,+1 and myir,, exceeds
My+1 also by m, or my +1. Now if my-m;= my, then the above argu-
ment is insufficient only in the case where

mrpy=m+m+1  and  Mppre == Mg+ My .

Let us prove that this case is impossible. Indeed, observe that [0, 1, 2]
implies m, > 2 and thus

(1) [0, me—1,me] by mp_y <mp—my < mp—1;

(2) Imi+my, me+mg+m =1, mp+my+m,] by (1);

(3) [mat+my—1, mp+my+my, mg4+-m+m—11" by [0, mg-+1, mgl;
(4) [ +my—1, my+my+my, mu+m] Dby (2) and (3);

(8) [Matmg, me+mp+my+1, my+m +11 by (4);
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(6) 10, mg+mg+my, m-+my] by [0, my+m,—1, m+m,] and (4);
(7) [0, my+my, mp+my+my+11 by [0, ml+”L1;ml+m1+1] and (5);
(8) [0, mg+myu+my, mp+m+my+11 by (6) and (7).

Thus we have obtained [0, Mzi1r1, Mp+141+1], which is a contradiction.

It remains to Prove Myyiry << Mp+Mier-+1. This inequality easily
follows if mg.g << mp+my+1 (it is sufficient to apply 2.2). I mypy;= mp+
+m;-+1 then 2.2 is inapplicable only in the case of

Mgy = My~ Myy  Mparpr= Mg+ My +1.

This case however is impossible, since by 2.1 one of the numbers mz+ 141,
Mg+ Mpy, +1 muost belong to the sequence M, ..., m, and this contradicts

Mpr1 < Mg+ My < Mg+ My +1 = Mg +my -+ my +1 < Mpygey -

LeMMA 3. There exists an interval I such that for nel the relation
[, 9,2], is defined on {0,1,.., N} and [0,2+1, 2], holds strictly for
B == My, Myy cauy Mp.

Proof. We shall find a number m,,; > N such that there will exist
an interval I of numbers % satisfying mzy <k<{(mz+1l)yp fork=1,2,..,
r-+1. Then Lemma 3 holds by our remark on Definition 1.

8.1. There exists a number m,.; > N such that

(*) M+ My < Mppr < me+my+1 for E+HI<r+1.

Consider the numbers gy = my+ My_x11 where k < r. If they are all equal,
say, to some ¢, then (x) evidently holds if m..; = ¢+1 (cf. Lemma 2).
In the other cage define m,,.; = max g. Let Mmy.; = g,. The first inequality
in (%) obviously holds. In order to prove the second one we ought to
show that m, + Myp_s41 < Mg+ Mp—pa1 +1. This follows easily from Lemma 2.
Indeed, if % < s then it is sufficient to add the inequalities mg<C my+
F Mg F1, Mp_gpq+Me_p < Mp_prq- I k> s, then we repeat the above
proof with r—k+1 and r—s-+1 interchanged with %, s.

It remains to verify that N < m,.,. Assume the contrary. We have
Mpy1= @+1 for some 1. Indeed, this is evident when the mumbers ¢
are equal. In the other case we have m,1;1= ¢: < gx+1 by ms+My_ss1
< Mg+ Mp_g+1+1 and ¢ = maxgqy, which proves g;= ¢+1 for some L
From N > M= q+1 = mp-+me_je1+1 it follows by 2.1 (Lemma 2)
that one of the numbers #m,., —1, m.., belongs to the sequence my, ..., m,.
But this is impossible since Mmpy;—1 = mp+my—1 > m,. by (x).

3.2, If (%) holds, then the numbers n which satisfy simultaneously all
inegualities mym < k < (mgxp+1)y, k=1,2,..,r+1 fill up a non empty
wnterval 1.
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Evidently

k k )
I = ——
1<Q‘r+1 (mk +17 my
and it remains to prove that

[ l -
T <Wz for k,l<<r41.
If k=1 =1 then this inequality is obvious. Let us suppose that it holds
for k,1 < h. We shall prove it for &, I < h+1. If k= h+1 then a proof
is necessary only if I < h. Then k-1, ! < h and thus by our supposition

k=l T
Mo+ 1 - my’
i e. kmy < (mp_y+m+1)1. Since my_;+mi< my by Lemma 2, we obtain
kmy < (me+1)1, which we wished to prove.
Now if 1= h+1, and & <h then from %,l—% < h follows
k <l-—k
mp+1  Mpp

and k(my_g+myp+1) < (mx+1)1. It remains to apply my << mi—p+ mp+1.
It is evident that Lemma 3 implies

[0,z4+1,2]=[0,2+1,2], for nel, x=1,2,..,N-—1.

Thus our thgqrem follows from Lemma 1.
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Dense families of continuous selections *

by
E. Michael (Seattle, Washington)

1. Introduction. Let X be a metric space, ¥ a Banach space,
©(Y) the family of non-empty, closed, convex subsets of ¥, and let
@: X—+C(Y) be lower semi-continuous (i.e. {zeX | p(@)nU +# ¢} Is
open in X for every open U C ¥). Under these circumstances, it was
proved in [4], Theorem 3.2 (see also Theorem 1 of the expository pa-
per [8]) that there exists a selection f for ¢, that is, a continuous f: XY
such that f(x) ep(w) for every z e X. In the present paper, this result
is applied to prove Theorem 1.1 below and some of its consequences.
A special ease of Theorem 1.1 will be used by V. L. Klee [2].

TuroREM 1.1. For every infinite cardinal a, there ewists a fomily @
of selections for g, with card @ < a, such that, whenever z ¢ X and ¢(z)
has a dense subset of cardinality <a, then {f(2)}es 95 dense in @(z) (*).

Our first corollary generalizes the well-known result that the Banach
space of continuous, real-valued functions om & compact metric space
is separable.

COROLLARY 1.2. If X is compact and if, for some infinite cardinal a,
(@) has a dense subset of ordinality <a for all @ eX, then the space of
selection for @ has a uniformly dense subset of cardinality <o.

If 0 C @(Y), then a face of C is o closed, convex subset ' of 0 such
that any line segment in ¢, which hag an interior point in F, must be
entirely in F; the inside of C, denoted by I(0), is the set of points in C
which lie in no face of ¢. It is known that every separable ¢ C C(Y)
has a non-empty inside ([4], Lemma B5.1). As another application of
Theorem 1.1, we have the following result, which was obtained in [4],
Theorem 3.1'", for separable Y.

CoROLLARY 1.3. There exisis a selection f for p such that f(z) eI(cp (m))
whenever @(x) is separable.

(*) Research sponsored by the National Sciemce Foundation and the Office of -
Naval Research.
(4 For separable ¥, with a = 8, this result was already obtained in [4], Lemma 5.2.
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