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On clusters in proximity spaces *

by
S. Leader (Rutgers)

1. Introduction. The topology in a mefric space is determined
by stating which points are close to each given set, a point being close
to a set B if the distance between @ and B is zero. A continuous mapping
is just a function which preserves proximity between points and sets:
fo is close to fB whenever z is close to B. In 1922 K. Kuratowski [3]
had abstracted the proximity relation “z is close to B* by axiomatically
characterizing the set B of all points close to B.

Now the uniform topology in a metric space is determined by stat-
ing which sets are close to each given set, a set A being close to a set B
if the distance between A and B is zero. A uniformly continuous mapping
is just a function which preserves proximity between sets: fA iy close
to /B whenever A is close to B. (See [17].) This immediately suggests
abstracting uniform topology by axiomatizing the proximity relation
“4 is close to B as & binary relation on subsets of a set X.

Strangely enough, this remained undone until 1952 when V. A. Efre-
movich [1] introduced a set of axioms characterizing proximity relations
and thus launched the theory of proximity spaces. This theory is an
elegant generalization of uniform topology in metric spaces, yet is more
specific than the theory of uniform structures. (See [6].)

The compactification of proximity spaces was first treated by
Yu. M. Smirnov [8]. Smirnov’s treatment involves constructions using
transfinite induetion. In this paper we introduce an alternative approach
to the eompactification of a proximity space based on the simple concept
of a “cluster”, which is extrinsically just the class of all sets close to
some fixed point. We avoid transfinite induction by using the axiom
of choice in the following form: Given a class of elements, every subclass
having & property of finite character is contained in some maximal sub-
class having that property [16].

2. Proximity spaces. Let X be an abstract set. A point is a subset
of X having no proper subsets. A prowimity relation in X is a binary
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relation “A is close to B” on subsets of X such that the following

axioms hold:

(1) If A is close to B, then B is close to A.

{2) A is close to X if and only if A 1is non-empty.

(3) AUB is close to C if and only if either A or B is close to (.

(4) If for every B, either A is close fo E or B s close to X—E, then 4 is
close to B.

(8) If a point x 18 close to a point y, then x =1y.

A set X with a proximity relation in it is called a prowimity space.
We say A is remote from B if A is not close to B.

We list without proof some basic properties of proximity spaces.
(See {1].)

) If A is a subset of C, B a subset of D, and A is close to B, then
C is close to D.

(i) If A intersects B, then A is close 1o B.

(i) The emply set is remote from every subset of X.

(iv) If there ewists a point x which is elose to both 4 and B, then A is
close to B.

(v) Bvery proximity space is a compleiely regular Howsdorvff space if
we define the closure of A to be the union of all poinis close to A.

(vi) A s close to B if and only if the closure of A is close to the clo-
sure of B.

(vii) Bvery compact Hausdorff space is a proximity space if we define
A to be close to B whenever A intersects B.

(viiil) Every metric space is a proximity space if we define A to be
close to B whenever the distance between A and B is zero.

Motivated by (v), P. S. Alexandrov posed the gquestion: Which
topological spaces admit a proximity relation compatible with the given
topology? Smirnov [8] showed that the answer is the one suggested
by (vii): A topological space admits a proximity rvelation if and only if
it is & subspace of a compact Hausdorff space. Qur version of this result
ig Theorem 4 below.

3. Clusters. A cluster ¢ from a proximity space X is o class of sub-
sets of X satisfying the following three conditions:

(a) If A and B belong to ¢, then A is close to B.

(b) If A is close to every C in ¢, then A belongs to. e.

) If ACB belongs to ¢, then either 4 or B belongs to .

It is readily seen that the class x of all sets close 0 @ point « is
a cluster. Clearly, if a point x belongs to a cluster x, then x is just the
class of all sets close to #. Axiom (5) means every cluster possesses at
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most one point. As we shall see (in Theorem ° below), the erux of the
compactification problem is that there may exist elusters which possess
no points.

By (b), X belongs to every cluster from .\. So (¢) implies that for
arbitrary F either F or X — F belongs to a given cluster. We now establish
some deeper properties of clusters.

TasoREM 1. If A 4s close to B, there exists a cluster to which both A
and B belong.

Proof. Let 4, be close to B. By the axiom of choice. 4, belongs to
a maximal class @ of sets such that every finite intersection of sets in a
is close to B. Define ¢ to be the class of all sets close to ev ery set in a.
Clearly, both 4, and B belong to c¢. We need only show that ¢ is a cluster.

Given P and @ in ¢, suppose P is remote from . Then by (4) there
exists B remote from P with X —F remote from Q. Thus for every 4
in a, AnFE is remote from P and A — ¥ is remote from ¢. Hence, neither
AnE nor A~ F belongs to a. Thus there exist 4, and 4, in a with 4,~F
and 4,—F remote from B. Let A = 4,~4,. Then 4 belongs to a and
both A~F and A — B are remote from B. By (3) this implies 4 is remote
from B, contradicting the definition of a. So P must be close to Q.
Hence (a) holds for c.

Since a is a subelass of ¢, (b) follows from the definition of ¢

Given Pu@ in ¢ with P not in ¢, P @ is close to every 4 in a and P
is remote from some A4, in a. Thus A~4, is close to PuQ and remote
from P for every 4 in a. By (3), @ is close to A~A4,. By (i), @ is close
to A. Sinee this holds for every A in a, @ belongs to e. Hence (¢) is
satisfied.

THEOREM 2. A proximity space X is compact if and only if every
cluster from X possesses a point.

Proof. Let X be compact and ¢ Dbe a cluster from X. Suppose that
no point belongs to c. Then by (b), every point  is remote from some
set in e. By (4), each z has a neighborhood E, which does not belong
to e. Since X iy compact, finitely many of these neighborhoods cover X.
Since each K, does not belong to ¢, (¢) implies no finite wnion of the B,'s
can belong to e¢. Thug X cannot belong to ¢, a contradiction. So some
point # must belong to c.

Conversely, let every cluster have a point. Let b be a class of closed
sets with finite intersections mon-empty. To show that X is compact
we have only to prove that the intersection of all sets in b is non-empty.
Using the axiom of choice we may assume that b is a maximal class of
closed sets with finite intersections non-empty. Define the class e to
consist of all sets whose closures belong to b. Since b is maximal, & be-
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longs to ¢ if and only if F intersects every set in b. Since, by hypothesis,
every cluster has a point, Theorem 1 gives the converse of (iv). So two
sets are close if and only if their closures intersect. Thus F belongs to ¢
if and only if F is close to every sef in b. We contend that_c is a cluster.

Given A and B in ¢, 4 and B belong to b. Hence, 4 intersects 3.
By (iv), A is close to B. So (a) holds.

Since b is a subclass of ¢, (b) is trivial. o 3

Given Pu@ in ¢ with P notin ¢, we have Pw@ in b with P not in b.
By the latter condition P fails to intersect some B, in b. Now for every
B in b, BAB, belongs to b. Hence, Pu@ intersects B~B,. Since P is
disjoint from BB, Q intersects B~B,. Thus @ intersects every B in b.
So @ belongs to c. Therefore (¢c) holds and ¢ is a cluster.

By hypothesis there exists a point # belonging to ¢. By (a), x is close
to every set in . Since b is a subclass of ¢, z is close to every set in b.
Since the sets belonging to b are closed, # is contained in every set in b.
This completes the proof of the theorem.

An immediate result of Theorem 1, Theorem 2, and (iv) is the fol-
lowing corollary which is proved directly in [1].

COROLLARY. In a compact proximity space trwo sets are close if and only
if their closures imtersect.

THEOREM 3. If X is a subspace of a proximity space Y, every cluster b
from X is part of a unigue cluster ¢ from Y. c consists of all subsets of ¥
which are close to every set in b. Every cluster ¢ from Y to which X belongs
contains a unique cluster b from X. b consists of all subsets of X which
belong to c. :

Proof. Given a cluster b from X let ¢ consist of all subsets of ¥
whieh are close to every set in b. By (a), b is a subclass of ¢. We must
show that ¢ is a cluster from Y. )

Let 4 be remote from B. Then by (4), there exists ¥ remote
from 4 with ¥ —E remote from B. Given C in b, (¢) implies either (~E
or. C—F belongs to b. In the former case 4, being remote from CAE,
dannot belong to ¢. In the latter case B, being remote from ¢ — E, cannot
belong to ¢. So e satisfies (a).

Bince b is a subclass of ¢, (b) is satisfied.

Let AoB belong to ¢ and A not belong to ¢. Then there exists D
in. b remote from A. By (4) there exists F remote from A with ¥—FE
remote from D. So for every C in b we have (— E remote from D. By (a),
C—E cannot belong to b. So (c) implies C~¥ belongs to b. Hence, AuB
is close to U~E. But, since 4 is remote from C~E, (3) implies that B

is close to C~E, hence close to €. So B belongs to e, giving (c). Thus
¢ is a cluster. '
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By (b) any cluster d containing b must contain e. By (a) every set
belonging to d is close to every set in e, hence must belong to ¢, by (b).
Thus ¢ contains d. So ¢ = d, which makes ¢ unigue.

Let ¢ be a cluster from Y such that X belongs to e. Let b be the
class of all subsets of X which belong to ¢. That b satisties (a) and (e)
is a trivial consequence of the corresponding properties of e.

To prove b satisfies (b) let 4 be a subset of X that does not belong
to ¢. We must show that 4 is remote from some subset of X which
belongs to c. Since A is not in ¢ there exists, by (b), € in ¢ with ¢ remote
from A. By (4) there exists F remote from A with ¥ — B remote from €.
So ¥ —E cannot belong to ¢. Hence X —F does not belong to e. Since,
by hypothesis, X helongs to ¢, X~E belongs to e¢. Since E is remote
from 4, X~F is remote from 4. So b satisfies (b). Thus b is a cluster
from X.

Uniqueness is & trivial consequence of (a) and (b), which completes
the proof of the theorem. :

4. The compactification of X. In section 3 we noted that every
point # determines a cluster x consisting of all sets close to . For 4 any
subset of X let 4 be the set of all clusters x determined by points z in A.
Let A be the set of all clusters to which 4 belongs. Clearly 4 contains
A4 and X is the set of all clusters from X.

By (5) the correspondence between X and X, induced by the iden-
tification of » with the cluster x» determined by w, is one-to-one.

A subset A of X absorbs a subset P of X if 4 belongs to every cluster
in P, that is, if 4 contains P. We define a proximity relation in X as
follows: P is close to Q if and only if 4 is close to B in X whenever 4
ahsorbs P and B absorbs Q. We must show that this satisfies the prox-
imity axioms.

Axiom (1), symmetry, is a trivial consequence of symmetry for the
proximity relation in X.

Setting Q = X above, we have P cloge to X if and only if A is close
to B whenever 4 absorbs P and B is dense in X. Let P be non-empty,
4 absordb P, and B be dense in X. Then A is non-empty, so 4 is close
to X, by (2). Since B is dense in X, 4 is close to B, by (i) and (iv). Hence,
P is close to X.

Convergely, let P be empty. Let A be empty and B be X. Then 4
Is remote from B by (2). Hence, P is remote from X. So (2) holds in X.

To prove (3) let PuQ be close to R and P be remote from R in X.
Let B absorb Q and C absorb R. We must show that Q is close to R by
Proving B is close to C. Since Pis remote from R, there exists A absorb-
ing P and D absorbing R with A remote from D. By (4) there exists &
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remote from A4 with X — E remote from D. The latter condition implies
O—F is remote from D. Since D belongs to every cluster in R, (- F
belongs to no cluster in R, by (a). But ¢ belongs to every cluster in R.
Hence by (¢), C~E belongs to every cluster in R. That is, O~FE ab-
sorbs R. Since by (c), A0B = AUB, AuB absorbs PuQ. Thus, since
PoQ is close to R, AoB is close to U~E. But since 4 is remote from ¢,
4 is remote from C~E, by (i). Hence B is close to C~E. So B is close
to C, by (i).

Conversely, let Q be close to R. Let D absorb PuQ and € absorb R,
Then D absorbs Q. So D iz close to C. Hence PuQ is close to R. Thus (3)
holds in X.

To prove (4) let P and @ be remote subsets of X. Then there exist
remote subsets 4 and B of X such that 4 absorbs P and B absorbs Q.
By (4) there exists B remote from A with X —E remote from B. The
latter condition implies X —F belongs to no cluster in Q. Hence E ab-
gorbs Q. Let R— E. Then ¥ absorbs R, A absorbs P, and E is remote
from A. So R is remote from P. Since E belongs to no cluster in X —R,
X —F absorbs X—R. Also, B absorbs Q and X —F is remote from B.
So X—R is remote from Q. Thus (4) holds in X.

P is close to ¢ if and only if 4 is close to B whenever A absorbs P
and B absorbs ¢. Now the latter condition means just that B belongs
to ¢ So by (b), P is close to ¢ if and only if A belongs to ¢
whenever 4 absorbs P. In particular, b is close to ¢ if and only if 4
belongs to ¢ whenever 4 belongs to b, that is, if and only if b=e.
So (5) holds in X. )

Given subsets A and B of X, 4 absorbs B if and only it 4 contains
B in X. S0 B is close to ¢ if and only if B helongs to e. That is, B is just
the closure of B in X. So X is dense in X. Now 4 is close to B if and
only if O is close to D whenever & contains 4 and D contains B. That
is, 4 is close to B if and only if 4 is close to B. So X is isomorphic to X
as a proximity space.

By Theorem 3, since X is dense in X, every cluster ¢ from X is
determined by & cluster ¢ from X. Since B belongs to ¢ if and only if ¢ is
close to B, Theorem 3 implies ¢ belongs to ¢’. So every cluster from
X has a point. By Theorem 2, X is compact.

If X is dense in any compact space Y, Theorems 2 and 3 imply
that the clusters from X are just those which are determined by points
In ¥. So Y is isomorphic to X. This makes X unique.

We have thus proved the following compactification theorem.

TeeoREM 4. Every promimity space is a dense subspace of a wnique

compact Housdorff space in which two sets are close if and only if
their closures intersect.
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5. Extension of proximity mappings. Let f be a single-valued -
function from a proximity space X into a proximity space ¥. We call §
a proximity mapping if f preserves proximity: j4 is close to fB in ¥
whenever 4 is close to B in X. (See [1].) Taking 4 to be a point, we
clearly see that a proximity mapping is continuous. If X is compact,
the converse follows from the corollary in seetion 3. We shall show that
every proximity mapping on X is induced by a unique continuous
mapping on X. :

TEEOREM 5. Every prozimity mapping f with domain X has a unique
extension to o continuous mapping f which maps the compactification of X
onto the compactification of fX.

Proof. Let ¥ = fX. Given a cluster ¢ from X define a class d of
subsets of ¥ as follows: A subset P of ¥ belongs to d if and only if P is
close to fO for every C belonging to ¢. Clearly, fC belongs to d for every
C in ¢, since f is proximity-preserving and c¢ satisfies (a). We contend
that 4 is a cluster.

Let P be remote from @ in Y. Then there exists § remote from @
with ¥ —8 remote from P. Let B = f'§S. For ¢ in ¢ we have either
CAE or 0—F in ¢, by (c). Since f(C~E) is a subset of §, @ is remote
from f(O~E), by (i). Similarly, P is remote from j(C—E). So either P
or @ fails to belong to d. Confrapositively, if P and @ belong to p, P is
close to Q. So d satisfies (a).

If P is close to every @ in d, then P is close to fC for every ( in ¢,
since fC belongs to d. So P belongs to d. Hence, d satisfies (b).

Let P @ belong to d with P not in d. Then P is remote from f4
for some 4 in ¢. Hence, there exists § remote from P with ¥ — 8§ remote
from f4, by (4). Let E=f""8. For every C in e, f(C—E), being con-
tained in ¥ — 4§, is remote from f4 by (i). So ¢ —F is remote from 4
sinee f is proximity-preserving. Thus by (a), ¢ —E cannot belong to e.
So by (e), CAE belongs to ¢. Hence, Pu@ is close to f(O~E). Since
f(C~E) is a subset of § which is remote from P, f(C~E) is remote
from P. Hence, /(C~E) is close to Q. So fC is close to @. Thus @ belongs
to d, which proves that d satisfies {¢). So d is a cluster from Y.

Define a mapping f from X into ¥ by letting fe = d. For x the cluster
of sets close to x, fx is clearly the cluster of sets close to fz. So f on X
agrees with f on X under the identification of x with .

To show that f is a proximity mapping, hence continuous, let 4 be
close to B in X. We must show that 74 is close to /B in Y. Let P ab-
sorb f4 and @ absorb JB. We have only to prove P is close to @ in Y.

Suppose that P is remote from ¢. Then by (4), there exist remote
sets R and 8 with P remote from Y —R and @ remote from ¥ -—§.
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Since @ belongs to every clusterin /B, ¥ — 8 belongs to no clugter in IB.
Thus %Y — &), which equals X /'S, belongs to no cluster in B. So
by (e), /7S belongs to every cluster in B. Similarly, /'R belongs to
every cluster in 4. Since A4 is close to B, j7'R is close to f™'S8. Since f
pregerves proximity, B is close to 8, a contradiction. So P must be close
to @. Hence j preserves proximity.

Now YCfXCY with JX compact. Thus, since Y is dense in Y,

Y =JX. So  maps X onto Y.

Let 7 and 7 be continuous mappings of X onto ¥ with fe distines
from ge for some ¢ in X. Since ¥ is Hausdorff, there exists a neigh-
borhood E of ¢ with JE and §E disjoint. Since X is dense in X, there

exists some x in E~nX. For such =, fx is distinct from gx. This proves

that the extension f of 7 is unique, completing the proof of the
theorem.

6. Applications of the compactification theory. The Urysohn
lemma and Theorems 4 and 5 immediately give the following result,
which is proved directly in [1].

THEOREM 6. A s remote from B im a provimity space X if and only

if there exists a prowimity mapping of X into the interval [0,1] which maps

A onto 0 and B onto 1.
Similarly, the Tietze extension theorem assumes the following form.

TEEOREM 7. Let -4 be any subspace of a prowimity space X and |
be a proximity mapping of A into the interval [—1,1]. Then F can be ex-
tended to a promimity mapping of X imto [—1,1].

Let % be the class of all bounded, real-valued, proximity mappings
on & proximity space X. By Theorem 5, each f in % is uniquely defined
by a continuous mapping f of the compact Hausdorff space X into the
real numbers. Thus % is a Banach algebra wunder the uniform norm.

Let @ and b be distinet clusters from X, that is, distinet points in X.
Then there exist 4 in a and B in b with 4 remote from B. If fA is remote
from fB, then fa iz distinet from 7b.

We thus obtain the “following extension of the Stone-Weierstrass
theorem [15].

T.HBOREM 8. Let U be the algebra of all bounded, real-valued, proximity
Mappings on a prowimity space X. Let B be o subalgebra of W such that:

(X) B contains o mapping whose range is bounded away from 0,

(II) Given A remote from B in X, there ewists some | in B with fA
remote from fB. v

Then B is uniformly dense in 9.
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By our diseusgion above, condition (II) means just that for @ and &
distinet points in X there exists f in B with fao and b distinot. Con-
dition (I) means that for every point ¢ in X there exists f in 8 with
Je distinet from 0.
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