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Fixed point theorems for connectivity maps
by

J. Stallings* (Princeton)

Introduction. Some problems of topology may be ‘solved only
through the study of non-comtinuous functions. Such is, perhaps, the
question: Does every continuous function of an aeyclic plane confinuum
into itself have a fixed point? But the investigation of non-continuous
functions for their own sake also has imterest. Connectivity maps are
a species of such functions; their importance till now les in Hamilton’s
Theorem: A connectivity map of an n-cell into iiself has a fized point [1],
His proof makes use of another kind of non-continuous function, the
peripherally continuous function; but I believe that his proof contains
& gap (see section 3 of this paper). ’

In order to extend Hamilton’s Theorem and method of proof, it is
necessary for me fo introduce still other sorts of non-continuons functions,
the almost continuous and the polylhedrally almost continuons functions;
this assortment of functions is worthy of study because of the scope of
the theorems of this paper. A start is made here to the study of the ab-
stract properties of these functions, to the understanding of their differ-
rences and similarities. There are many easily asked questions about
these functions, which appear to be very difficult to answer; some of these
are collected in section 6. One of the most provocative is a problem about
the topology of the unit interval. )

1. Connectivity maps. The graph of a function f: X—Y is the sub-
seb of X X ¥ eonsisting of the points (z, 7(2)); this set will be symbolized
I'(f). For 0 C X, the funection flC: €Y is defined to be the restriction
of f to C. Hence I'(f|C) C I'(f).

DrrFviTion 1. If X and ¥ are topological spaces, f: X —¥ a func-
tion, then that f is a connectivity map means that for any connected
CCX, I(f|C) is connected.

DEFmNITION 2. If X and ¥ are topological spaces, f: X—¥ a fune-
tion, then that f is a local connectivity map means that there is a covering
of X by open sets {U,} such that flU. is a connectivity map.
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Obviously, every connectiviby map is a 10('.?-1 connecb.ivity map;
T do not know under what conditions the converse is true. It is also clgar
that every continuous map is a connectivity ma;p,vand that t?lE‘: restric-
tion of a connectivity map X—Y to a subset @ C X is a connectivity map.
‘We recall for future reference Hamilton’s Theorems 1 and 2.

HammroN’s THEoOREM 1. If fis a connectivity map of a T, space A
into a T, space B;p e A, V, U open in A, B, resp., cs}nfaini%g P, ]f(p), resp.,
then every mondegenerate connected subset of A eontaining p contains a point
qeV, such that ¢+ p, f(g) e U.

HammroN’s TaEoREM 2. If | is o commectivity map of a T space A
into a T, space B, and if CCB is a closed subset of B, then each component
of FYC) is closed.

(A T, space is a space in which each subset of finite cardinality is
a closed set. Hamilton stated these propositions only about Hausdorff
spaces; but his proof applies equally well to T, spaces.)

2. Polyhedral almost continuity.

DemINTIION 3. By a polyhedron P, I mean a finite simplicial com-
plex K together with a geometric realization |K| of it. A subpolyhedron Q
is then a subecomplex I of a subdivision of K, and the geometric reali-
zation L] which is in a canonical way identified with a subset of |K]|.
A sipr-neighborhood of a point x « | K| is the realization of the open star
of a vertex of some subdivision of K, such that this realization contains .
The Cartesian product P x@ of the polyhedra P = (K, |[K|), @ = (L,.[L[)
is given by the product K XL of their respective complexes (as .dfafmejd
in {2}, p. 67) and a geometric realization |K x L] which is identified in
a caponical way with |K|x|L|, so that the projections |K xL|->|K]|,

|K xLj-|L} are induced by simplicial maps K X L—+K, KxL-L; and-

so that furthermore if the diagonal 4 C |K|X[K| is defined as the set
of points (p, p), then 4 is the geometric realization of a simplicial complex
D which is isomorphic to K, and (D, 4) is a subpolyhedron of P xP.

Henceforth, for obvious reasons there will be a systematic confusion
among the polyhedron P = (K, |K|), the simplicial complex X, and the
geometric realization |K|.

DrFINITION 4. If P is 2 polyhedron, then that a subset N is a poly-
hedral open set, means that P— N is a subpolyhedron of P.

Dervrrion 5. If f: P—>@Q is a funection of one polyhedron into
another, then that f is polyhedrally almost comtinuous means that for
every polyhedral open set ¥ C Px@Q, it I'{f) C ¥ then there exists a con-
finuous fanction g: P—+Q such that I'(g) C V.

icm

Fired point theorems 251

The relation with fixed point theory is provided by this theorem:

TeEOREM 1. Let N be a polyhedral open set in Px P. Suppose that
every continuous g: P-—P for which I'g)C N, has a fized "poim. Then
every polyhedrally almost continuous f: PP for which T'(f)C XN, has
a fired point.

Proof. Suppose to the contrary that f: P—P ig polyhedrally almost
continuous, I'(f) C ¥, and f has no fized peint. Then I'(fy C ¥ —4; now.
PXP—(N—-4)=(PXP-N)ud, both PXxP—N and 4 are subpolyhedrs
of PxP, and the union of two subpolyhedra is again a subpolyhedron.
Thus ¥ —4 is a polyhedral open set. Hence there exists a continunous
g: P—~P such that I'(g)C N~—A4; but this contradicts the hypothesis
that if I'(g) C N, g must have a fixed point.

A proposition which iz important for the main theorems is now
proved. )

THEOREM 2. Leét f: I—+P be a connectivity map, I=1[0,1], P an
arbitrary polyhedron. Let N be a polyhedral open set containing I'(f). Then
there exists a continuous g: I—>P, I'(g) C N, g(0)=f(0), g(1} = f(1).

Proof. Suppose IxP is triangulated so that IXP—N is g sub-
complex, and the projection a: I xP—I is a simplicial map, where the
vertices of I in its triangulation are 0= v, < ;< ... < 0= 1. Define
9{v;) = f(v;). The problem now is to extend g to the intervals [v;, v;.,];
this is done as follows: x1v;, ¥.,] AN is a subcomplex of Ix P, and
according to [3], Lemma 2, (v, v4y) A N is homeomorphic to (v, v14) X
X(rz—l(ﬁi+ Vip1/2) "N ) with z as the projection on the first factor. Let Q;
be the component of =—(w;, v:11) ~ N containing I’(ﬂ(@i, 'u,-_H)); such
exists sinee f is a connectivity map. ¢; i8 a polyhedron and contains
I(f ! [vs, 9341]) for the same reason. It follows now from the consideration
that @; is homeomorphic to (v, 7;4,) x B; where R; i3 a component of
A0+ 942/2) A N, that there exists an arc 4 (2)y v <t < 044, In §;, which
except for its end points Hes in Q;, such that A(vg) = ('o,- s f(vi)), A(vieq)
= (viz1, F(Desa)), and such that 7 (A (1) =1 The arcs A(f), o <t < v
can then be pieced together to make one arc A(t), 0 < t<<1, which is
the graph of a continuous function g: I —P, with the desired properties.

COROLLARY. Let P be a 1-dimensional polyhedron; Q an arbitrary poly-

hedron. Then every conmectivity map f: P->Q is polyhedrally almost contin-
HOUS.

Proof. Let N be a polyhedral open set in P ¢, such that I'(f)C N.
Let J be a polyhedron consisting of 2 number of disjoint segments and
points and p: J P a simplicial map onto P such that o7(p) consisbs
of only one point unless p is a vertex of P. Then it is easy to see that
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fo: J—Q is a connectiviby map; thus we may apply Thejorem 2 to each
1-simplex of J, and define on each vertex v of J the function g(v) = fp(v),
extending this to a continuous function g on J to @ sueh that I'(g)C N
CJ %@, where N' is the polyhedral open set of all points (j, fl) such that
(p(), @) e N. Then g¢~i: P—Q is single-valued and continuous, and
I'(g9") C N, thus showing that f is polyhedrally almost continuous.

This Corollary, although a particular case of a later theorem, was
injected in order to give you a faste of the methods to come.

Note that the ideas of this section are much concerned with simplicial
things, and not with truly topological things. I do not known whether
this can be avoided; I conjecture that the Corollary is still true when
in. the phrase “polyhedrally almost continuous”, the word ‘polyhedrally”
is deleted. (See next section for definition.)

3. Almost continuity and peripheral continuity.

DrrNiTIoON 6. If f: XY is a function of topological spaces, then
that f is almost eontinuous means that for any open set NC X xX Y, if
I'(f)C N, there exists a continuous function g: X —Y¥ such that I'(g) C N.

As in section 2 we have a fixed point theorem:

THEOREM 3. If N is an open set of X x X, where X is o Hausdorff
space, and if every continuous fumction g: X —~X whose graph lies in N
has a fized point, then for every almost continuous f: X=X, if I'(f) C N,
f has o fized point.

Proof. Suppose on the contrary that f: X—+X is almost continuous,
I'{(f)C N, { bas no fixed point. Let A4 = {(#,y) e X XX | # = y}; since X
is a Hausdorff space, 4 is closed in X x X. Thus I'(f) C ¥ —4, and ¥N—4
is open in X X X; hence there is a continuouns g: X —X with I'(g) C N —4;
which contradicts the hypothesis. v

‘We now recall the definition of peripheral continuity due to Hamil-
ton.

DerixreoN 7. If f: XY is a function of topological spaces, then
that f is peripherally continuous means that for each » e X, each open
V CX for which ¢V, each open U C ¥ for which f(2) e U, there exists
a neighborhood N of 4, 2e N CV, such that I'(f{bd N)CV x U.

Hamilton purported to show that a connectivity map of an #-cell,
% 2> 2, into itself, is peripherally continnous. However, his proof contains
a gap {(see remark after proof of theorem below). A generalization of
this theorem, which is of great importance to this paper, is proved below
after an auxilliary definition.

DpFmvrrion 8. That a polyhedron P is Ipe (locally peripherally con-
nected) means that for each p ¢ P there exist arbitrarily small neighbor-
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hoods & of p such that bd ¥ is connected. This is clearly equivalent to
saying that the local 1-dimensional homology groups are 0.

TaEOREM 4. If f: P—Y is a local conmectivity map of the lpe poly-
kedron P into a regular Hausdorff space Y, then f is peripherally continuous.

The proof will be preceded by a Lemma, similar in spirit to Hamil-
ton’s Theorems 1 and 2; this Lemma provides the bridge over the gap
in Hamilton’s proof.

LevmMA. Let X be a compact Hausdorff space such that each point
weX has arbitrarily small neighborhoods N such that X —XN is connected.
Let 1 X=X be a connectivity map, where ¥ is a T, space; and let O be
a closed subset of ¥. Then each component of ~3(CY) is closed, by Hamilion’s
Theorem 2. If {Q.} is ¢ family of subcontinua of fA(C), indewed on a directed
set {a} and if Lim,Q, erists and is a nondegenerate continuum @, then
@ C1H0).

(That Lim,@Q,= @ means that for any neighborhood U of the dia-
gonal 4 of X x X, therc exists an o such that for all g if B> a then
Ul9s]2@ and U[Q1DQ,. Here, Ula]l={y| (z,y)e U}, and U[4]
= {U[2] |z e A}. See [4], Chapters 2 and 6.)

Proof of Lemma. Suppose to the contrary weQ, ¢ f20), and
we@Q, ws x Then there exists a set {w.}, 1, €@Q,, Lim, w, = w, and
% neighborhood ¥ of x not containing any ,, for « > some B. By hypo-
thesis, we can suppose that X — N is connected. Then (X—NyulJQ.w {m

a>§

is a connected set. D; but the open set N x (Y —C) contains just the one
point (, f(@) of I'(fiD); hence I'(flD) eannot be connected, which is
a contradiction.

Proof of Theorem 4. According to Definition 7 ; We must consider
points # € P, neighborhoods ¥ of « and U of f(z) and find a neighborhood N
ofx, NCV, I'(f{bd N) C V x U. Sinee this is a local matter, we can assume
simply that f is & connectivity map; since the space P is an Ipe polyhedron,
we assume that V is a star-neighborhood of # and that bd¥V is conuected.
Let ¥* be a star-neighborhood and T'* a neighborhood of # and f(w)
resp. such that V*CV, U* C U. Then consider the set D = f-( 0% ~ VF,
and the family of its components {D,}, each of which, by Hamilton’s
Theorem 2, is closed. Define D, < Dy if Dy separates D, and bdV in T;
this is & patrial ordering relation. Let {D,} be a linearly ordered subset,
where the indices {»} are themselves linearly ordered, and x < » if and
only if D, < D,,. Let L= ,0l[U,=Du); L is a subcontinuum of V=,
and clearly L separates D,, from bdV in V; omifting the trivial case
when {D,} contains only one element, since L separates points in V—F
from D,,, L is nondegenerate; otherwise P would not he Ipe at the
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point L. Finally L = Lim, D,,, the limit as » mcm‘mes for the fact that
every neighborhood of I contains all the D,, for x > some » follows oasily
from the compactness of 7* and L. It must only be shown that for each
£ > 0 there is » such that for all 4 & » the e-neighborhood of D,, contains L;
if this were false, from the compactness of L there would exist # ¢ I aud
a neighborhood N of ¢ in V (we can assumc that N is connected, since 77
is locally connected) such that D,, ~ N == @ for n e some cofinal subset
{u} C {»}; but this contradicts the fact, obvious from the definitions of D,
and L, that any connected set that intersects L and D, must intersect
each D,, for u & ». Henee Lim,D,, is contained D by the Lemma, for
every component of P is such a space X as oceurs in the Lemma. If
Dg D Lim, D,,, then it is clear that D, -5 Dj. Therefore every linearly
ordered set of D,’s has an upper bound; so by Zorn’s Lemma, every D,
is -3 a maxzimal Dg.

Let {D;} be then the set of maximal elements of the set {D,, <3}
Let H= {v¢V| Dy separates v from bdV}. Let D,,n Dgo Es. And
let D= UﬁDﬁ Then Ej is open; D is contained in D. And finally, the
components of D arve just the sets Dﬁ For, since Dﬂ is connected, each compo-
nent of D is of the form (J,Ds,. Now |, Dy, is not connected unless
there is only one Dy, involved; supposing there is more than one D,
involved, there is a partition of {y} = {3} {ys} such that ), D, and
Uy, Dgy, axe disjoint open-closed sets in j, Dp,, which cover [ J,.D,,.
Then I assert that U,lﬁﬁ,,l, U,,gﬁﬁ,g is a disjoint open-closed partition
of U, Dp,; disjoint, since ﬁﬁlmﬁﬁ,_,z @ it Dy % Dg,; open-closed, since,
for example, each point of Ds, has a connected neighborhood disjoint
from U, Dg,, and hence disjoint from U,@IN)M, and any point of g,
lies in the interior of ]3,3,,1; 80 any point of T)ﬁyl has a neighborhood disjoint
from J,, Dp,, - Therefore the components of D are just the sets l7ﬁ

This implies that ¥ —1 is conuected; for if not, since V is unicoherent,
some component of D must separate V; but since bdV is connected, any
such component Dﬁ does not separate F. Henoe, from Hamilton’s Theo-
rem 1, it follows that x eintfi otherwise (F—Dyu {e} I8 u connected set
for which the only point in F(j (F— ‘)um;) AVE T s (2, f(2).
Nince V is locally connected, there is a component I)ﬁ of D such that
&£ emtl)ﬁ And bd(mtDﬁ) CD;CD, so that I (ﬂbd int l)ﬁ } NWCVx U We

have thus found the neighborhood ¥ = int I),g, for which we were geeking.

Remark. Hamilton’s proof of this theorem (i a restricted case)
is sketchy. He seems to assume that if € is a set in 1" (for example, 1 = 2)
each of whose components is closed and ¢ ~bdI™ = @, then if we fill
up € by adding all points @ which ¢ separates from de” thereby getting
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(13

a aet G’ then any pair of points separated by J is separated by the filled
up C. of sume component C, of C. Thas this is false i is shown by the follow-
ing example: C is the subset of a large disk in the complex z-plane,
consisting of part of the real line {Jr= 0, {2} < 4}, semicircles

1., 1 1
= |2——1l=1-+—, =4,

n { 'n?'| =5 “af
1 1 1 w=1,2, ..,

P W PRSP )
n |

and pairs of line intervals

I :_L_< 2l 1 1l
\1 Bl Rl <4 T’ » 3 T’

The points + %4 are separated by C’, but not by any set .

This error is rectified here by the Lemma; the set ¢ which Hamilton
had to consider was of the form f~((), where f is a connectivity map
and ¢ is a closed set. The property of ¢ given by the Lemma and the
argument which followed. in the proof of Theorem 4, show that the asser-
tion of Hamilton is in this particular case correct.

I also remark that a peripherally continuous function f: P—X,
where P is Ipe, has the following property:

If xeP, x eV open CP, f(v) e U open C X, then there exists a con-
neeted neighborhood N of x, N C V, such that bd N is connected, and I'(f | bd N)
CVxU.

For we may assume that V is a star-neighborbood, hence unicoherent,
and bdV is connected; then for any neighborhood M of z, M CV, for
which I'(f| bd M)CVx U, bd M separates the two connected sets bdV
and ®; hence by the standard theorems about unicoherence [5], p. 51,
th. 4.12, there is a closed connected subset ¢ Cbd M such that C sepa-
rates bdV and x If 0= Cufy e V! C separates bdV and )}, then let
N = component of int containinig x; again by the standard theorems
bd¥ C C and bdN is connected. Sineé bA N C ¢ C M, it follows that
I'(fipd¥N)CVxT.

4. The main theorems. We proceed to a very important theorem
which will show that on Ipe polyhedra, peripherally continuous functions
are almost continuous.

In a metric space X, ¢(x, y) will denote the distance between x and y;
N{w;e) = {y e X| o(x,y) < £}. B*+' denotes the unit ball in Buclidean
(k+1)-space, and 8% is its boundary k-sphere.
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DerINITION 9. That a metric space X is wniformly locally n-con-
nected means: For any &> 0 there exists 6> 0 such that for any z ¢ X,
any integer k, 0 < k < n, and any continuous g: 8¥—N (x; §), there is an
extension of ¢ to a continuous g": E¥t1N(z; ¢).

DeFrvirioN 10. In such a space X, we shall use the following no-
tation:

d(e)=sup{6> 0| for all weX, all integers %, 0 << k< n, and for
all continuous g: §¥-=N(x; §), there exists an extension of ¢,
¢': E¥1—N(z; e)},

B(e) = &;

di(e) = 8(}e);

Opay (8) =6 (’:1{517(5)) .

The following propositions are easy to prove:

(A) For any e>0, 6,2‘(8) >0.

(B)  dpua(e) < Oyfe) -

(C) If = <&y then dy(e) < 8(e') .

These ideas will be useful in the proof of the next theorem, for which
in the applications in this paper, X will be a polyhedron.

THEOREM 5. Lét P be an Ipc polyhedron of dimension n, X a wniformly
locally (n—1)-connected metric space, j: P—~X a peripherally continuous
function. Then f is almost continuous. In fact if vy, ..., v,, are a finite number
of poinis of P, and W is an open set in P x X for which I'(f)C W, then there
exislts o continuous g: P—>X such that I(g) CW and g(v;) = f (),
t=1,..,q

Proof. For each p e P, let &(p), (p) be two positive numbers such
that N (p; z(p)) X ¥ (f(p); &(p)) C W. There is a connected neighborhood
of p, U(p), with connected boundary, such that diam (U(p)) < &(p),
and f(bdU(p)) C N (j(p); vg&n(ez(p))). Initially choose &(p)< &, where ¢
has the property that if two open connected sets with connected boundary,
Oy, G, C P are such that diam C;< ¢, ¢) ~ C, # @, 0 —0,+# 0 %+ C,—0,,
then bdC; ~bd C, + G; and also let & satisfy o(vs, 05) >, 4,i=1, ..., ¢,
DER ) .

Now the family of open sets {U(p)} covers P; since P is compact,
there can be chosen a finite subcovering {U(p,), ..., U(pm)}, 50 that
U1y -y g OCCUT among the seb p;, ..., pm, and so that no member of this
covering is contained in any other member. Let 5> 0 he less than the
Lebesgue number of the covering {U(pi), ..., U(pm)} and less than

e{pi; P—U(py)y i=1, ..., m. Finally, let P be triangulated with mesh

<47 and so that each p, is a vertex of the triangulation; eall these ver-
tices ay, ..., a,.
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To each vertex a; assign one of the points p;, called p(a;), such that
the closed star of a@; (in this particular triangulation) is contained in
U(p(a;)). Do this in such a way that 2{(p;) = p;.

On the 0O-skeleton of P, Pv = {ay, ..., @}, we define:

g(as) = f (p(ay)} .

Suppose that a continnous funetion ¢ has thus been defined on the
k-skeleton P¥ with the following property:

If A is a (k+1)-simplex whose boundary is 1" CP* then for any
vertex az of A such that sy(p(a;)) = max{e(p(a;) | a; is a vertex of 4}, it is
trie that g(4’) CN(f (p(as)); bner (sz(p(ui)))).

g will be extended continuosly to the (k+1)-skeleton P&+ go that
same condition is satisfied, with % replaced by k1.

First check that the condition is satisfied by the definition of g for
k= 0. It must be shown that if 4 = (a;, a;) is a I-simplex and e(p(a,))
> &(p(a;), then g(4)C N (;f (p{ay)); dn(sg(p(a,-)))). This is clearly true if
pla) = plag); if p(a;) # p(a;), noting that U (p(a) ~ U (p(ap)) D 4, it
follows that there is a point ¢ e bd Ulp(as) ~bA T(p(ay)); therefore:

olgta), 1@} = o(f (p (), f(@) < L6 (exftr (a))
< donfeafp(@))) > o/ (p(ay) , 7)) = olglan) , fe) .

Hence, o(f(p(a), g(a:)) < 3, (ea(p(ap))), so that gla)eN (7 (plan) 5
20, (ag(p(a,-)))). This is proof that the condition is satisfied for k= 0.

Assume ¢ defined on P* satisfying the given condition. It follows
from the definition of 8,_y, that if 4 is a (k+-1)-simplex and a; is 2 vertex
of 4 for which 82(p (a:)) is maximal among the vertices of A , then there exists

an extension of g|4" into 4 such that g(4)C ¥ (f(p(a,-)); LY - (eg(p (a;)))).
Let a; be another vertex of A for which ea{p(as)) is maximal; if p(a,)
= p(a;) we obviously have g(4)C N(f (p(as); gdn_k_l(sg(p (a,v)))). I pla;)

#p(a;), then Ulp(a)) ~ U (p(a;)) D 4 5 @; hence there is a point
¢ ebd U(p(a;)) ~bd Ulp(ay)) and

o

o lg(@), /() = o7 (ptan), 1(0)) < £ 6 (eafp (a)))
< 0nms (wafp (04))) = 4 Sn-na (eafp (a1))
>

1o (eafp (a))) > o [f (p(as) , 7 (0)) .
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Hence o (g(a._-), lp (a,))) < 2 Bpeiomy (ez(p(a@))) = %8p—p—1 (sg(p(aj))), and since
g(4) CN(f (p(@0); 4 Snms (Ez(p(ai)))), it follows that g(4) CN(]‘ (v (ap);
L - (ez(p (ai)))). Suppose then that ¢ is extended to eaeh (k+-1)-simplex
4 in this manner; then for each (% 1)-simplex 4 and vertex a; of 4 for
whieh Fz(p(ai)) is maximal among the vertices of 4,

\

g(4) C N (f [p(ag); #a—s (el (@)

Let A* be a (k—+2)-simplex and a; a vertex for which eg(p(a,-)) is @aximal
among the vertices of A* Then for each of the (k4 1)-simplexes
in the boundary of A%, 4;,..,dgs, of which a; is a vertex, g(4;)
CN(f(p(a.,-)); 2 éﬂ_k_l(sz(p(a,-)))). Let ag be a vertex of the remaining
(k+ 1)-simplex 4,, for which ez(p(as)) is maximal among the vertices of
A3 i p(ax) = plas), it follows that g(40) C Nf (p(a0}; 2 uss (ealp (@)
But if p(as) # plag), then U (p(a)) U (p(ag) D 4* # O; hence there is
¢ ebd U(p (a5)) ~ bd U(p(as)). Then:

18y, (82(]) (ai))) < Lop—imr (82(’}) (ai)))
w1 {2a(p (a5))) > 1 8n [eafp (a5)) > o7 (2 (45) o] -

W/\
o

Furthermore, y(;!,,)CN(]‘(p(aS)); gén-k_l(eg(p(as)m; hence, g(d,)
CN(j(p(ai)); bn_kﬂ(az(_p(ai)))‘). So for any (k- 2)-simplex A* g¢(4*)

C N(f {p(a0)}; Bnmi— (ez(p(ai)))), for any vertex a; of A% for which &fp (a;))
is maximal. This is just the condition required of g on the (k- 1)-skelefon
of P.

Thiz procedure can be carried through right up to and including
the n-skeleton of P, P* = P. Note that for an n-simplex A of P and vertex
a; such that afp(a)) = max{e(p(a;)| a; is a vertex of A}, the result
isthatg(A)C X (}‘ (plag); & sz(p(ai))). Tt is also easy to see that 4 C U(p (ay)).
Henge, if we recall the definitions of &, and U, we find that I'(¢{4) C W.
In the case of gimplexes of less dimension, the same resnlt holds. Thus,
I(g)CW. And by construction, g¢(p;) = f(ps), and so in particular
g{vr;) = f{r;). Therefore the theorem is proved.

CoroLLARY 1. If P is a polyhedron of dimension n which is at each
point of dimension 22, and f: P—X is a connectivily map, where X i
untformly locally (m—1)-connected, then f is almost continuous.

Fized point theorems 2549

Proof. One can construct an n-dimensional Ipe polyhedron P’ and
& simplicial map ¢: P'—P onto P, such that except for a finite number
of points v, ..., vg of P, ¢ of a point is just one peint of P/, and such
that ¢=(z;) consists of a finite number of points.

Then it is clear that fp: P'—X is a local connectivity map (I do not
know whether this is necessarily a connectivity map). By Theorem 4,
f¢ 1s peripherally continuouns. Now let W he any open subset of P» X,
sueh that I(f)CW; let g0 PxX—=PxX be defined by g (p’. 2}
= {g{p), ¥). Then 7Y W) is an open subsei of P'x X such that I'(fe)
Cex(W). By Theorem 3, there exists 2 continmouns g: P'—X, such that
I(g) C oy (W) and such that for any of the points ¢ in oMo, i=1,..,4q,
g(v') = fe(v'). Therefore gp~': P—X is single-valued, and in fact contin-
nous; furthermore, I'(gg—) C W. Therefore f is almost continuous.

COROLLARY 2. If P and @ are polyhedra, f: P~ a connectivity map,

- then [ is polyhedrally almost continuous.

Proof. Let P'be a polyhedron whose components are points, segments,
and Ipc polyhedra; and ¢: P'—P onto P be a simplicial map such that
for all points p ¢ P, ¢~i(p) is just one point, except for certain points o,
--3 Ug, for which ¢-(w;) is a finite set eonsisting of endpoints of segments
and certain points in the Ipe polyhedra components of P.

Then fg: P'—() is continuous on the point components of P, a con-
nectivity map on the segment components of P, and local connectivity
map on the Ipc components of P'. Let W be any polyhedral open subget
of Px@Q with I'(fCW; let ¢,: PPxQ->Px(Q be defined: 205 q)
= (q)(p'),q). Then ¢ri(W) is a polyhedral open set in P’'xQ, I'(fp)
C o7y W). Applying Theorem 4 snd Theorems 2 and 5, and the fact that
the polyhedron @ is uniformly locally #-conmected for any m, we obtain,
as in the proof of Corollary 1, a continuous function g: P'—Q, such that
I{g) CozY (W), and gp': P—Q is single-valued and continuous. and
L(gy) C W. Therefore, f is polyhedrally almost continuous.

Combining Corollary 1 and Theorem 3, we obtain the first of the
thearems below. Combining Corollary 2 and Theorem 1, we obtain the
second of these theorems.

. TumomEM 6. Let P be a polyhedron of dimension =2 at each point,
N an open set in P x P; if every continuous funetion g: P—P whose graph
lies in N has a fized poini, then any connectivity map f: P—P whose graph
lies in N Rhas a fized point.

THEOREM 7. If P is an arbitrary polyhedron, N a polyhedral open
set in PP, and if for any continuous g: PP, if I'(g) CN, g has a fized
point; then, for any connectivity map f: P—P, if I'(f)C N, f has a fized
point.
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So, for example, taking N = P X P, we discover that P hag for every
connectivity map some fixed point, if and only if it has for every contin-
uous function some fixed point.

5. Further study of almost continuity. Now, as an anticlimax,
we shall try to learn certain nice facts about almost continnous functions,
in the hope that these facts may Dbe useful in future study. Connectivity
maps do not, in general, satisfy a proposition similar to Proposition 4
below, and for this reason, the study of conneectivity maps is difficult.

ProrosiTiON 1. Lét f: X—Y be almost continuous, g: ¥—2Z contin-
uous, where X, Y,Z, are topological spaces. Then gf: X —+Z is almost
continuous.

Proof. Let N be an open set of X xZ, such that I'(gf) CN. Let
9t AXY X XZ be defined as g,(z,y) = (m, g(g/)). Then g;*N) is an
.open set of X XY and I'(f) C g;YN). Then since f is almost continuous,
there is & continuous F: XY such that I'(F) C g7 N). Hence gF: X2
is eontinuous and I'(gF) C N. '

ProposrTIoN 2. Let f: X =Y be almost continuous, ¢ a closed subset
of X. Then fiC: C—Y 4s almost continuous. '

Proof. Let N be an open subset of (X ¥ such that I{fle)CX.
Then there is an open set N’ in X x ¥ such that ¥ = ¥’ ~ (0 x Y). The
set ¥'w [(X —C) x ¥] is then open in X x ¥ and FHCN' V(X -0)x ¥1.
Hence there is a continuous ¥: X ¥, I'(F)C N'u (X)X ¥ F|C is
then continuous: ¢—~Y and I'(F|C)C N.

Prorosrrion 3. If X XY is a completely normal Hausdorff space,
where X and Y are topological spaces and X is connected, and if f: X =Y
8 almost comtinuous, then I'(f) is connected.

(Z is completely normal if whenever (4 ~B)u(d~B)=@, there
exist disjoint open sets @, H, with 4 C G,BCH.)

Proof. Suppose, on the contrary, that I'(f) is not connected. Then
there are open sets 4, B in X x Y, sueh that 4 ~B=@, I'(f)C 4 U B,
AnT(f) = B£BAT). Let a,beX be points such that (a, f(a)) e A,
(b, 7(b)) € B; let m: XX ¥ >X be the yrejection, (x, y)-»2. Let A= 4—
—ad); B' = B—x(a). Then 4’ w B’ is openin X x ¥,and N(f)C A’ w B
Thug there exists a continuous F: X—Y such that I'(F)C A’ B’. But
4" and B’ are open sets, disjoint, and (@, F(a)) e A, (6, F (b)) € B'. Thus
P(F) could not bhe connected; however, since F is continuous, ['(F) is
homeomorphic to X which is connected. Therefore I'(F) is connected.

From Propositions 2 and 3, we get a Corollary.
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" (OROLLARY. Ij XXX is a completely normal Hausdorff space, and
J: X=X s almost continwous, and C is a closed connected subset of X,
then I'(f|C) is connected.

ProposITION 4. Let X be a compact Hausdorff space, ¥ a Hausdorff
space, Z a topological space. Suppose that j: X Y is continuous, and
that g: X —Z 1is almost continuous. Then gf: X7 is almost continuous.

Proof. First note that if T is replaced by 7(X), then f: X —f(X)
is continuows; ¢if(X): f(X)—Z is almost continuous, by Proposition 2,
sinee f{X) is a closed subset of ¥. Thus we can assume thaf f maps X
onto ¥. Let N be an open set of X xZ such that I'gf)C ¥ slet foo X
“Z~Y¥xZ be defined by f.(2,8) = (f(2),2). Then 1L (gh) = T (g).
Now, for any y e ¥, f(y) is a compact subset of X; for any z < y)
let ¥, be an open set of X containing #, and M, be an open set in Z eon-
taining ¢f(z) = g(y), such that N,x M.CN; a finite number, say
N1 ooy Ny, of these XN cover f(y); let M, ..., M}, be the corresponding
Jf,. Then let Uy= ¥ —F(X—_E N;); and let Wy = U, x [y M,]. Then
U, is an open subset of ¥ containing »; hence W, is an open subset of ¥ X Z
containing (y, g(y)). Note that f7Y(W,) C N. Let W= (Uyer W,. Then W
is an open subset of ¥ X Z, and I'(g) C W. Therefore there is a contin-
wous G: Y—+Z such that I'(G)C W. Then Gf: X—Z is continuous.
1:{T(Gf)) = I'(() C W. Hence I'(Gf) C{73(W)C N. Therefore gf is almost
continuous.

6. Questions. One of the important questions left unsolved is, under
what conditions a connectivity map of the unit interval I into a space
is almost continuous. The first block of questions relates to this.

1. Is a connectivity map f: I—»X, where X is a uniformly locally
O-connected metric space, almost continuous?

2. If one considers I embedded in 7x7T as I3 0, can a connectivity
map I—X be extended to a connectivity map IxI-+X? Supposing,
for example, that X is uniformly locally 1-connected? If m: IXI—-Ix0
is the projection, and f: IT—X is a connectivity map, then, as any simple,
non-continuous example will show, fu: IxI—X is not a connectivity
map.

3. If T is a topology on I = [0, 1], let ‘T, be the topology generated
by the open sets of T and by left-closed intervals [a, b); let T, be the topo-
logy generated by the open sets of T and the right-closed intervals.
Suppose that T is a connected topology (i e., I,- under this topology,
is connected) and that every open interval (a, b) is open in T (i.e, T is
finer than the ordinary topology); let L and R be subsets of I yLuR=1,
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OeZ,1leR, L openin Ty, R open in G, Is it then necessarily true that
L~nR+#0O?

4. In I, %I, let € be the Cantor set described as follows (Figure 1),
¢, consists of two L-shaped closed components, so placed that the graph
of every continuouns funetion Ij—+I, must intersect C;. Cpyq is included
in the interior of C, and consists of a number of hook-shaped closed com-
ponents, so placed that the graph of any continuous function I,-I,
must intersect Cpyr. The maximum diameter of a ecomponent of ¢, appro-
aches 0 as #2—-co. (M (== C. Then
clearly the graph of any continuous
function I,—I, must intersect (.
Does there exist & connectivity
map: I, —+I, whose graph does not
intersect C?

%
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The next group of questions
concerns technical and esthetic
matters.

5. Under what conditions is
a local connectivity map X—Y
a connectivity map? This is, per-
haps, related to the guestion posed
by Hamilton: When is a periphe-
Fig. 1 rally eontinunous funefion a con-
nectivity map?

A

6. Is it possible to prove that a connectivity map f: P—@, of poly-
hedra, is polyhedrally almost continuous, by using elementary methods
similar to those used in the case dimP =17

7. 'To what extent are the theorems of this paper valid if the spaces
concerned are not polyhedra? E. g., if they are ANR’s, or quasi-complexes?

8. If f: X—¥ is a 1-1 function onto, and both f and f-! are connec-
tivity maps (or almost continuous functions), then what is the relation,
if any, between the homology and cohomology groups of X and ¥? Can
some sort of ,homology” or ,cohomology” theory be devised so that
this relation is isomorphism? It is obvivus that for connectivity maps
this relation is not isomorphism for the singular homology theory, and
the following example shows that the relation is not isomorphism for the
Cech homology theory. (See [2] for the definitions of these homology
theories.) :

Let X = the circle, parametrized as the real numbers mod 1. Lef
J: X+X be defined thus: f(r)= 1'r modl, where 0-z» <1 describes
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the points of X. Let ¥ be the graph of 7 and #* the induced map X -7,
Then f* satisties the conditions of the problem. We can now try to compute
the integral cohomology group HY) as the group of homc;topv elasges
of maps T X. Tt seems clear then that HY(Y) contains a subgro(up ZezZ
(% = infinite cyelic group) which corresponds to the group HYX ~ X))
restricted to ¥ C X x X. Hence HYY) is not isomorphic to HY(X). On
the other hand, the homology group H(Y), computed by the inverse
limit method, seems to be 0 (however, T have not carried out this compu-
tation with complete rigor).

A related question is: Do X and Y, satisfying the conditions of the
above problem, have the same dimension (in some sense of the word)?

9. Under what conditions is it true that if f: XY is almost contin-
uous and g: ¥ —Z is almost continuous, then the composed map gf: X7
is almost continuous?

Finally, there is a question, suggested to me by Professor K. Borsuk,
which is related to the problem, mentioned in the Introduction, of showing
that an acyclic plane continuum has the fixed point property. )

10. Let the acyclic continnum € be contained in the interior of the
2-cell D. Is tHere then an almost continuous funetion f: D—D, such
that (D)= C and such that f(f({l)) = f(d)? The affirmative answer to
this question (even if the phrase “almost continuous” is replaced by
“polyhedrally almost continumous”) would imply, by Proposition 1 and
Theorem 3 and the Brouwer Fixed-Point Theorem for D, that every
such acyclic plane continuwum (' has the fixed point property.

References

[1] O. H. Hamilton, Fized points for certain noncontinuwous transformations,
Proe. Amer. Math. Soe. 8 (1957), p. 750. '

[2] 8. Eilenberg and N. Steenrod, Foundations of algebraic topology, Prin-
ceton 1952.

[3] L. Pontrjagin, A classification of mappings of the three-dimensional complez
indo the two-dimensional sphere, Rec. Math. (Mat. Sborn.) 9 (51) (1941), p. 331.

[4] J. L. Kelley, General topology, New York 1955.

[6] R. L. Wilder, Topology of manifolds, New York 1940.

Recu par la Rédaction le 7. 10. 1958


Artur




